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What are Matrices?
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= Matrix: A Natural Representation for
Networks/Graphs/Relational Data
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Matrices in Social Networks

O @

Research Qs: How to find common friends?

Matrices: rows/columns: users; entries: friendship
Matrix Tools: graph proximity
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Matrices in Social Networks

W Teenager

&)
\‘ W Adult
u.‘k === Phone

: How to spot abnormal calling activities?

: rows/columns: users; entries: phone calls
: graph proximity; low-rank approximation
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Matrices in Social Networks jLeskovec+ 20071
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Research Qs: Can we boost the purchase?

Matrices: rows/columns: people; entries: recommendation
Matrix Tools: eigenvalue optimization




Matrices in Healthcare (prakash+ 2013

US-Medicare Network

Critical Patient transferring

Move patients = specialized care
- highly resistant micro-

organism -> Infection controlling

—> costly & limited

Research Qs: How to optimally allocate resources?

Matrices: rows/columns: hospitals; entries: patient transfer
Matrix Tools: eigenvalue optimization




Matrices in Healthcare (parikshit+ 2012]

Expanded

Wheezing

Expanded

Expanded

Chest
Pain

: How to find more, related symptoms?
: rows/columns: symptoms; entries: co-occurrence
: graph proximity
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Matrices in Healthcare (rei+ 2011

— Tom, Male, 30
john, Mate, 3 Hypertension
Heart Failure
& Roy, Male, 40 | 3 Hatzs:ia,igeemie;le, 42
Sep5|s ,‘// yperlip
< Sara, Female, 28 vj ack, Male,
% | Pneumonia

f Asthma

Research Qs: How to find clinically similar patients?

Matrices: rows: patients; cols: clinical features; entries:
values
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Matrices in Healthcare (rei+ 20121

Diagnostic Endorine Procedures (11)

Lens and Cataract Procedures (15)

Destruction of Lesion of Retina and Choroid (17)

Diagnostic Procedures on Eye (18)

Other Inraocular Therapeutic Procedures (20)

Diagnostic Cardiac Catheterization, Coronary Arteriography (47)
Other Yascular Catheterization, Not Heart (54)

Upper Gastrointerstinal Endoscopy, Biopsy (70)

Colonoscopy and Biopey (76)

Proctoscopy and Anorectal Biopsy (77)

Incision and Drainage, Skin nd Subcutaneous Tissue (168
Debridemertof Wound, Infectionor Burn(169)

Contrast Atteriogram of Fermoral and LowerExtremity Arteries (190)
Electroencephalogram (EEG) (199)

Cardiac Stress Tests(201]

Electrocardiogram {202)

Traction,Splints, and Other Wound Care (214
Ophthalmaologic and Ontalogic Diagnosis and Treabment(220)
Laboratory -Chemistry and Hematology (233)

tMedications (Injections, Infusion and Other Forms) (240)

GLY CO¥HEMOGLOBIN 41 CIHEMOGLOEBIN.TOTA
LDL#CHOLESTEROL.IN LDL#TOTAL LDL-C DIRECT

PCP

NEPHROLOGY

OPHTHALMOLOGY

CARDIOLOGY

NEUROLOGY

PODIATRY

ENDOCRINOLOGY

PULMDNOLOGY
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[
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Research Qs: How to find frequent event subsequences?

Matrices: rows: events; cols: time; entries: indicator
Matrix Tools: Low rank approximation
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Overview of the Technologies

== T1: Graph Proximity
T2: Low-Rank Approximation
T3: Sparse Learning
T4: Large-Scale Learning
T5: Eigenvalue Opt. (in Section 4)



T1: Graph Proximity

=) Basic Techniques: RWR
Recent Advance #1: Supervision
Recent Advance #2: Graph Kernel
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. @ e a.k.a Relevance,

Closeness, ‘Similarity’...

@@1@

Q: How close is A to B?

15
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Basic Tech. : Random Walk with Restart

[Tong+ ICDM 2006]

0.04 Node 4
Node 1 0.13
@ Node 2 0.10
0.02 | Node3 0.13
Node 4 0.22
Node 5 0.13
Node 6 0.05
Node 7 0.05
Node 8 0.08
Node 9 0.04
Node 10 0.03
Node 11 0.04
Node 12 0.02
0.05
Nearby nodes, higher scores Ranking vector
1
More red, more relevant v

4
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1. Spill a drop of wine on cloth
2. Spread/diffuse to the neighborhood

17



wine spill on cloth RWR on a graph

Same Diffusion Eq.



Random Walk with Restart
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Intuition: Why RWR is A Good Score?

A ” : B

\_/7

Prox (A, B) =
Score (Red Path) +
Score (Green Path) +

C | 1@ Score ( ) +
@ Score (Purple Path) +

High proximity 4= many, short, heavy-Wéighted paths

20



C omputing RWR

Ranking vector

(0.13)
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| 005
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Starting vector

Footnote: “Maxwell Equation” for Web [Soumen Chakrabarti]
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Recent Advance #1: Supervision

Ig = c WP +(1—c)£l.

* Q: What is the optimal W?
* A: Learning optimal weights from supervision

* Key ldea: if we know some preference, we use

such supervision to guild random walks to
minimize

— Penalty of preference violation + model complexity

L. Backstrom, J. Leskovec.: Supervised Random Walks: Predicting and Recommending Links in Social Network. WSDM 2011

A. Agarwal, S. Chakrabarti: Learning random walks to rank nodes in graphs. ICML 2007



Recent Advance #2:
Node Proximity =2 Graph Similarity/Kernel

Q . Q:Sim(A, A,)?
. -* A: Do two random walks (A,, A,)!

* ..=onerandom walkonA,

E(G,G" = Z Nogl A p =g (T=XA ) Ip,
:If

SVN Vishwanathan. Fast computation of random walk graph kernels. NIPS 2006
K. Borgwardt and X. Yan: Graph Mining and Graph Kernels. KDD 2008 Tutorial

U. Kang, H. Tong and J. Sun: Fast Random Walk Graph Kernel. SDM 2012
~20+ other graph similarity measures




Overview of the Technologies

T1: Graph Proximity
m=) T2: Low-Rank Approximation
T3: Sparse Learning
T4: Large-Scale Learning
T5: Eigenvalue Opt. (in Section 4)



Why low rank approximation

* Collaborative Filtering

— it is commonly believed that only a few factors
contribute to anyone's taste or preference.

e Health Informatics

— Usually the progression of disease is highly
associated with a certain set of risk factors
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Low Rank Approximation

 Nonnegative Matrix Factorization (NMF)

Original

NMF
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Daniel D. Lee and H. Sebastian Seung. Learning the parts of objects by non-negative matrix factorization. Nature 401,

788-791 (21 October 1999)



Nonnegative Matrix Factorization (NMF)

* Factorizing a nonnegative matrix to the
product of two low-rank matrices

L X = (x,%,0,,)

I P /

DR F s e £ ol

.-_:r__‘;___ézre_‘i___:h__;_!_. original min ﬂ(F G)

(PO 4 Y iy N s FeRIX" GeRTX"

A-fld-rly o LF.G) = X -FGT|
R , »

| \ | FG'= X

F:(fiafZ”f}\) G:(gl,gza'naglc)
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or NMF Solutions: Multiplicative Updates

* Multiplicative update method
(XG&)..

(¥

(FGTG)

L]

Daniel D. Lee and H. Sebastian Seung (2001). Algorithms for Non-negative Matrix Factorization. NIPS 2001.

H Zhou, K Lange, and M Suchard. (2010) Graphical processing units and high-dimensional optimization, Statistical Science,
25:311-324
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i NMF Solutions: Alternating Nonnegative
Least Squares
* |nitialize F and G with nonnegative values

* |terate the following procedure:
— Fixing G, Solve min J(F.G') ='

2
X — F(G(t))TH
F

— Fixing ¥, Solve nin  J¥® G) = HX - F(t)GTHQ
G | t

(1) Projected Gradient:
(2) Newtown Type of Method:

(3) Block Principal Pivoting:

P. Paatero and U. Tapper. Positive matrix factorization: A non-negative factor model with optimal utilization of error
estimates of data values. Environmetrics, 5(1):111-126, 1994

C.-J. Lin. Projected gradient methods for non-negative matrix factorization. Neural Computation,19(2007), 2756-2779.

D. Kim, S. Sra, I. S. Dhillon, Fast Newton-type Methods for the Least Squares Nonnegative Matrix Approximation Problem.

SDM 2007.
J. Kim and H. Park. Toward Faster Nonnegative Matrix Factorization: A New Algorithm and Comparisons. ICDM 2008.
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NMF: Extensions

* General loss
— Bregman Divergence

* Different constraints

— Semi-NMF, Convex NMF, Symmetric NMF
* Incorporating supervisions

— Pairwise constraints, label

Multiple factorized matrices
— Tri-factorization

I. S. Dhillon and S. Sra. Generalized Nonnegative Matrix Approximations with Bregman Divergences. NIPS 2005.
Chris H. Q. Ding, Tao Li, Michael I. Jordan: Convex and Semi-Nonnegative Matrix Factorizations. IEEE Trans. Pattern Anal.

Mach. Intell. 32(1): 45-55 (2010)

Chris H. Q. Ding, Tao Li, Wei Peng, Haesun Park: Orthogonal nonnegative matrix t-factorizations for clustering. KDD 2006.
Fei Wang, Tao Li, Changshui Zhang: Semi-Supervised Clustering via Matrix Factorization. SDM 2008: 1-12

Yuheng Hu, Fei Wang, Subbarao Kambhampati. Listen to the Crowd: Automated Analysis of Live Events via Aggregated
Twitter Sentiment. 1JCAI 2013.
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Low Rank Approximation

* Nuclear norm related technologies

31
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Rank Minimization and Nuclear Norm

* Matrix completion with rank minimizatign

minx rank(X) s.t. X;; = M;; V(i,7) € Q
e Convex relaxation

miny ’ XH* CRA Xz'j = Mij \V/(’L,]) c ()

X[l =3 oi(X)

M. Fazel, H. Hindi, S. Boyd. A Rank Minimization Heuristic with Application to Minimum Order

System Approximation. Proceedings American Control Conference, 6:4734-4739, June 2001.
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Nuclear Norm Minimization

* Singular Value Thresholding
— http://svt.stanford.edu/
* Accelerated gradient

— http://www.public.asu.edu/~jye02/Software/
SLEP/index.htm

* |Interior point methods

— http://abel.ee.ucla.edu/cvxopt/applications/
nuchrm/

J-F. Cai, E.J. Candes and Z. Shen. A Singular Value Thresholding Algorithm for Matrix Completion. SIAM Journal on
Optimization. Volume 20 Issue 4, January 2010 Pages 1956-1982.

Shuiwang Ji and Jieping Ye. An Accelerated Gradient Method for Trace Norm Minimization. The Twenty-Sixth International

Conference on Machine Learning (ICML 2009)

Z. Liu, Lieven Vandenberghe. Interior-point method for nuclear norm approximation with application to system
identification. SIAM Journal on Matrix Analysis and Applications (2009)




Overview of the Technologies

T1: Graph Proximity
T2: Low-Rank Approximation
=) T3: Sparse Learning

T4: Large-Scale Learning
T5: Eigenvalue Opt. (in Section 4)



the

City College
of NewYork

Why Sparse Learning

Wavelet
x 10* Coefficients
A
1.5}
1l
0.5¢
0
-0.5¢

Candes, E.J., Wakin, M.B. An Introduction To Compressive Sampling. Signal Processing

Magazine, IEEE. Volume: 25, Issue: 2. Page(s): 21 — 30.



Sparsity: LO Norm & L1 Norm

miny, ”WHO < Lowe‘r:l
s.t. w e C Boun

-

MiNy g 1'z
s.t. lw;| < Rz Yi=1,2,--- ,d
wecl, z,e€{0,1} Vi=1,2,--- ,d

My z 1'z I
s.t. lw;| < Rz; Vi=1,2,--- ,d
w e C —

2z, €10,1] Vi=1,2,--- ,d

miny, 1/R||w|1
st. weC

http://www.stanford.edu/class/ee364b/lectures/I1_slides.pdf



Why L1 Norm Can Achieve Sparsity

w! = arg miny ||ly—Xw||? (w—w") " XTX(w—-w")
|y —Xwl|* =

(W—wW )TXTX(W WO)

Robert Tibshirani. Regression Shrinkage and Selection Via the Lasso. Journal of the Royal

Statistical Society, Series B. 1994.
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Other Sparsity Penalties

* Group Lasso: L1/2 norm
SLEP: A Sparse Learning

e Exclusive Lasso: L2/1 norm | package
http://www.public.asu.edu/

* Elastic Net Regularization ~jve02/Software/SLEP/

* Fused Lasso
* Tree Structured Group Lasso

Lukas Meier, Sara Van De Geer, Peter Bihlmann. The group lasso for logistic regression. Journal of the Royal Statistical
Society: Series B, 70(1), 53—71, 2008.

Y. Zhou, R. Jin, and S. C. H. Hoi. Exclusive Lasso for Multi-task Feature Selection. AISTATS 2010.

Zou, Hui; Hastie, Trevor. Regularization and Variable Selection via the Elastic Net. Journal of the Royal Statistical Society,

Series B: 301-320. 2005.
R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, K. Knight. Sparsity and smoothness via the fused lasso. Journal of the Royal

Statistical Society: Series B. 67(1), 91-108. 2005.
J. Liu, J. Ye. Moreau-Yosida Regularization for Grouped Tree Structure Learning. NIPS 2010.




Overview of the Technologies

T1: Graph Proximity
T2: Low-Rank Approximation
T3: Sparse Learning

=) T4: Large-Scale Learning

T5: Eigenvalue Opt. (in Section 4)
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Distributed Learning

 Parallel Matrix Factorization

— H. F.VYu, C. J. Hsieh, S. Si, and I. S. Dhillon. Scalable Coordinate Descent Approaches to
Parallel Matrix Factorization for Recommender Systems. ICDM 2012.
Lester Mackey, Ameet Talwalkar, and Michael I. Jordan. Divide-and-Conquer Matrix

Factorization. NIPS 2011.

* Parallel Spectral Clustering
W. Chen, Y. Song, H. Bai, C. Lin, E. Y. Chang. Parallel Spectral Clustering in Distributed

Systems. IEEE TPAMI 33(3), 568-586. 2011.

e Parallel SVD

— M. W. Berry, D. Mezher, B. Philippe, and A. Sameh. Parallel Algorithms for the Singular
Value Decomposition. In Erricos John: Handbook on Parallel Computing and Statistics.

https://www.irisa.fr/sage/bernard/publis/SVD-Chapter06.pdf

* Parallel Optimization

Y. Censor, S. A. Zenios. Parallel Optimization: Theory, Algorithms and Applications.

Oxford University Press. 1998

May 1st-4th, 2013 SDM 2013, Austin, Texas
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Online Learning

* Online Matrix Factorization

J. Mairal, F. Bach, J. Ponce and G. Sapiro. Online Learning for Matrix Factorization and
Sparse Coding. Journal of Machine Learning Research, volume 11. pages 19-60. 2010.

Fei Wang, Chenhao Tan, Christian Konig, Ping Li. Online Nonnegative Matrix
Factorization for Document Clustering. SDM 2011.

— A. Lefevre, F. Bach, and C. Févotte. Online algorithms for Nonnegative Matrix
Factorization with the Itakura-Saito divergence. WASPAA 2011.

* General Online Learning

Shai Shalev-Shwartz. Online Learning: Theory, Algorithms, and Applications. The Hebrew
University of Jerusalem. PH.d. thesis. July 2007.

* Parallel Online Learning

Daniel Hsu, Nikos Karampatziakis, John Langford, Alex Smola. Parallel Online Learning.
http://arxiv.org/abs/1103.4204v1.

May 1st-4th, 2013 SDM 2013, Austin, Texas 41



(%)
N ~ [y
c Q < ~
s £ 5 £ 9
& K S © IS L Q& &
O = < NN ge]
o & Q. IS L S © L
L £ \ S Q = O x
< 2 g f£ § £ £ =«
O < < £ A © O
Tools
Prox. v v
LRA v v | vV
Sparse L’ v
Large L’ v
Eigen. Opt. v v
\ ) \ )
y | Y
ay 1st-4th, 2013 . 42
Social Networks Healthcare



Outline

* Introduction

* Overview of the Technologies
== Applications in Health Informatics

* Applications in Social Informatics

* Conclusions and Future Works



the

City College
of NewYork

e CPT
e Date of Service

* NDC

« ICD9, D_xGroup e Ingredient
 HCC, Hierarchy o Days of Supplies
e Date of Service e Date Filled

Patient

e Lab results o Age
* Break down by » Gender
age and sex
groups o

. . \J
Mlay 1st-4th, 2013 SDM 2013, Austin, Texas

Longitudinal Medical Records

Subjective:

ANXIETY STATE NOS 300.00
DEPRESSIVE DISORDER NEC311
ATRIALFIBRILLATION 427 31

OLD MYOCARDIAL INFARCT 412
CONGESTIVE HEART FAILURE 428.0
Current outpatient prescriptions

** LOPRESSOR 50 MG PO TABS 1tab
twotimesaday 60 5

Objective:

250.00 DM, CONTROLLED, TYPEII
(primary encounter diagnosis)

428 .0 CONGESTIVE HEART FAILURE
585.3 KIDNEY DZ,CHRONIC (GFR>30-59)
STAGE Il

412 OLD MYOCARDIAL INFARCT

715.09 GENERAL OSTEOARTHROSIS
427.31 ATRIALFIBRILLATION

Assessment:

BP122/68 | Pulse 78 | Temp (Src) 98.1
(Oral) | Resp22 | Wt 227 ibs
Abdomen: abdomen soft, non—-tender,
obese and no masses or organomegaly
Back: No CVA tenderness

Extremities: Noedema

Plan:

Continue present medication(s):
Referral(s) to: eye

Injection(s) ordered: b12
Schedule labs: Labs on return.




Applications in Health Informatics

m=p Patient Similarity Learning
e Risk Factor Identification
e Clinical Pattern Detection

May 1st-4th, 2013 SDM 2013, Austin, Texas
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Vector Space Model
Patient Profile

 Leverage historical data about the similar
x= [\_l /X E]

patients to diagnose the query patient
 Provide positive/negative feedback about
the similar patient results

Patient Similarity Assessment

Summary statistic of the
i-th feature during a
specific time period

Locally Supervised Metric Learning (LSML)

dy: i: i, X ::I = V"I (x; — X; :IT Y (x; — X :] S =WW'
Judgment . .
— .—»I Identifying Neighborhoods '
Patient - -
Population l'\’ Ni l
Heterogeneous Homogeneous

Compute Average Distance

e Generating patient cohorts such that
the patients within the same cohort .
are similar to each other , g €= S)
Maximize Difference '
tr (W '|IX(L? — L)X '|W)

e Explain why they are similar
min
W' 'w=I

Fei Wang. Semi-Supervised Metric Learning by Maximizing Constraint Margin. IEEE TSMC-B. 2011.
Fei Wang, Changshui Zhang. Feature Extraction by Maximizing the Average Neighborhood Margin. CVPR 2007.
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Physician Decision Support System

(1)input

PhySICian c—

(4)display

feedback

How to adjust the learned patient

patient similarity

assessment

visualization

similarity by incorporating

physician’s feedback in real time?

matrix

XLXT

X(L+AL)X "

eigensystem

—

({}?\ W?')
(Aiy W)

(2)retrieve

patient
database

(3)return

<

" Online Adjustment of Patient Similarity

Learning the distance metric is equivalent
to learn the projection matrix W, which

can be solved by doing eigenvalue

decomposition on X(L,° — L)X "

<

|

Any physicians’ feedback is an increment
onthe matrix [, =1°-L°

|

o

Efficient eigensystem update of a matrix:
matrix perturbation theory

|

iMet: interactive Metric Learning

perturbation

Y

A= A+ AN

X(L 4+ AL)X T (w; + Aw;) = (A + AN (w; + Awy)

AN, = w, XALX Tw;,
TXALX "w;,

Aw,; = Wi + Z N, W

i

Fei Wang, J. Sun, J. Hu, S. Ebadollahi. iMet: Interactive Metric Learning in Healthcare Applications. SDM 2011.
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Performance Evaluation

Initial Metric: The patient \
population was clustered into 0.73+
10 clusters using Kmeans with
the features as counts of the
HCC codes over one year. An
initial distance metric was then
learned using LSML

precision

Index
patient 0.7~

Feedback: For each round of ] :
simulated feedback, an index / 40 o ‘ 25
patient was randomly selected 1 ™ » s

and 20 similar patients were position oo 9
retrieved based on current number of feedback rounds

10

distance metric. The feedback is
based on whether these

retrieved patients have the 3
same label as the index patient

Precision @ 3: 2/3 =0.67

Precision @ 5:3/5=0.6

\ Retrieved

. patients

O O (- |O (- |-

Performance metric:

{ecision@position measure /

Wlay 1st-4th, 2013 SDM 2013, Austin, Texas
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| ntegrating Multiple Physicians’ Inputs
Comdi: Composite Distance integration

Different physicians have their own
opinions on patient similarities (" Patient Population )
LI Expert m

Expert 1 Expert 2 1

Neighborhood 1 ' Neighborhood 2 ' oo Neighborhood m '
i % S LI minw.wrw-g (WT(EG7 —Eg’)W)

minyy.wrw=r 7 (WT (z2-=%) W)

ming w Z;”:I agtr (VVT (=t - Ziﬁ)W) + A\Q(av)

Combining the Objective
Alternating Optimization
Output a Composite Distance Metric '

R m i T <
ming w Zq:l agti (W (34— zg)w) 1)
s.t. a>0,a’e=1
WTW -1 Optimization Problem

Fix W Solve «x

A

Eigenvalue Decomposition

st. Ww=I

How to integrate these
judgments from multiple o Some Converge?

physicians to a consistent
similarity measure?

minw Zm 1 (15]"“1‘,,' (VVT (¢ -x%) W) + ()
0=

Y

m T
ming Z | QT ((W(’)) (¢ -x%) W(f)> + M)
q= i
Euclidean Projection
Output the Metric

st. a=20,a'e=1

Fei Wang, Jimeng Sun, Shahram Ebadollahi. Integrating Distance Metrics Learned from Multiple Experts and its Application

in Inter-Patient Similarity Assessment. SDM 2011.
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Comdi: Experimental Evaluation

Data: ) Experimental Setting: A Observations:

‘ * Scale: 135k ‘ « Share versions: learning on ‘ « Shared version perform better
* Aggregation period: 1 year all 30 cohorts than individual versions
* Cohorts: 247, select 30 « Individual versions: « Comdi is comparable to LSML,
» Feature: HCC codes learning on 1 cohort which is the best among sharing

/ / versions

Classification Accuracy Comparison

0.9 shared -L§ML
I LSDA
individual I L DA
_ 08 I [ PCA
s [JEUC
5 [ ]Comdi
q 07 [ IMLSML
© [JMLSDA
0.6 |EEMLDA
' I MPCA
IV EUC
0.5

$0lay 1st-4th, 2013 SDM 2013, Austin, Texas



Applications in Health Informatics

e Patient Similarity Learning
m=) Risk Factor Identification
e Clinical Pattern Detection

May 1st-4th, 2013 SDM 2013, Austin, Texas
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Scalable Orthogonal Regression
» Scalable Orthogonal Regression is to minimize,, = = = = = = - .
(5 2}
J(o) = —Hy XalP+Aedi 47 > (axixja;)
C ) wJ | |
I
| : | :
Regression Sparse Redundancy )
Error Penalty Penalty
o = [alj (){23 e 3ap:|T & Rp y S R™

_ n X
X—[Xl,XQ,“',Xp]ER P
A and B are model parameters and assume x; is normalized, j = 1,2 ... p.
* Notice that the sparse penalty is non-smooth --Generating sparse solution of a.

» Feature selection
— If a; # 0, feature j is selected, j = 1,2, ..., p, where p is the number of feature

— Forthose a;# 0, rank the features according to |«;].
Dijun Luo, Fei Wang, Jimeng Sun, Marianthi Markatou, Jianying Hu, Shahram Ebadollahi. SOR: Scalable Orthogonal

Regression for Low-Redundancy Feature Selection and its Healthcare Applications. SDM 2012.
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» Metric: Computational time

4

x 10
25
o
21 - —f— |nfoGain 1
. =g—- LARS
- A —=aSOR
@ 15¢ @+ mRMR .
£
2
o
o 1 v
e
‘/
.,
_ -
051 : R ]
,Q .",
-
SRS - S S —
0 500 1000 1500 2000 2500 3000 3500

# Features (n fixed to 5000)

May 1st-4th, 2013 Fixing n

SDM 2013, Austin, Texas

Scalability Comparison

x10
25 J}
5l —&— |nfoGain
== LARS
- A —aSOR
Qo mMRMR
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AUC Comparison

vehicle

09r r ir
o 08| . 0.9}
=1 X
< A - 08¢
S07F O~ 40
5 b codhee InfoGain| 0.7} oodhee InfoGain| 0.7} +++&++ InfoGain
z 06l = % = mRMR 4 A - % = mRMR = % = mRMR

or + == LARS 06} VA +== LARS 0.6} +=¢—" LARS
—&#— SOR —&— SOR —&— SOR
05 : : : : . 05 : : i 05 : ; '
0 2 4 6 8 10 12 0 5 10 15 0 10 15 20
PROSTATE

SRBCT

1r
098} 0 °‘ V¥ N -
g Age. v A##"X VvVV
1 AA L
2 096| &Xﬁf 095 ¢
=] -
£ 094} <> , ~~A- InfoGain [ A InfoGain| 085} ~A-- InfoGain
z , -v-mRMR | 09 X - w = mRMR - = mRMR
092 +=¢— - LARS : +=¢— LARS 08} + ==+ LARS
¥ —&— SOR A —&— SOR —&— SOR
09 : : : ' 085 : : : 075 : : :
0 5 10 15 20 0 5 10 15 20 0 10 15 20
# Features # Features
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Augmented SOR

» SOR with pre-selected feature set

1
foleg) =5y - Xoag|® +4 ||95L|-; —————— -

o} 2 2
+Z Z (()i‘,jXTXj(,]ﬁj) 1— Z (af,jx?xjarj)

1j€Q

|’

\ ) |
| I I

|

\

=
=

Redundancy Redundancy between

among features preselected and
to be selected {eatures to be selected 7

ap = argmin ||y — Xpa? = (X5Xp) ' Xhy
(84

» P: pre-selected feature set
» (: Feature set to be selected from
» Algorithms of SOR and aSOR still apply

— With different computation of the gradient
May 1st-4th, 2013 SDM 2013, Austin, Texas

S e e e S .
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Performance of aSOR

600

0.8
+150 *200
0.75
+100
+50
0.7
S /
2 0.65
+Hypertension all knowledge
faatiirac
0.6 +diabetes  TTITHES
CAD
0.55
0.5
100 200 300 400 500
Number of features
SDM 2013, Austin, Texas

May 1st-4th, 2013
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#8585  Finding Relevance: Mining Clinical Notes

Clinical Notes II -

Symptom
|dentification

/! Input

Subjective; Objective;

ANXIETY STATE NOS 300.00 250.00 DM, CONTROLLED, TYPEII
DEPRESSIVE DISORDER NEC311 (primary encounter diagnosis)

ATRIALFIBRILLATION 427 31 428 O CONGESTIVE HEART FAILURE
OLD MYOCARDIAL INFARCT 412 585.3 KIDNEY DZ,CHRONIC (GFR>30-59)
CONGESTIVE HEART FAILURE 428.0 STAGE Il

Current outpatient prescriptions 412 OLD MYOCARDIAL INFARCT

** LOPRESSOR 50 MG PO TABS 1tab 715.05 GENERALOSTEOARTHROSIS
twotimesaday 60 5 427.31 ATRIALFIBRILLATION
Assessment: Plan:

BP 122/68 | Pulse 78 | Temp (Src) 98.1 | Continue present medication(s):
(Oral) | Resp22 | Wt 227 ibs Referral(s) to: eye

Abdomen: abdomen soft, non-tender, | Injection{s) ordered: b12

obese and no masses or organomegaly | Schedule labs: Labs on return.
Back: No CVA tenderness
Extremities: Noedema

SOAP sections of a Clinical Note
Input

Identified
Symptoms

¥

Graph
Construction

RWR
Symptom
Expansion

*

Initial
symptoms

Related

symptoms

Output

P. Sondhi, J. Sun, H. Tong, C. Zhai: SympGraph: a framework for mining clinical notes through

symptom relation graphs. KDD 2012

|
I
®
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ook Mining Clinical Notes: Symptom Expansion

Key ldea: Symptom Expansion = graph node proximity.
l.e., which symptoms are most relevant to initial
symptoms?

Expanded

Wheezing

Expanded

f

Initial <—|nitial

May 1st-4th, 2013 SDM 2013, Austin, Texas 58



Framingham Svmptom Expansion

0.8
0.6
0.46
0.4

0.2

AP P@10
m LocSenseRWR m EqRWR

R@100
Co-Occurrence

CHF Prediction (AUC

B Framingham M Co-Occurrence

0.649 (3.85%)

0.59 (14.24%)

LocSenseRWR

0.674

Evaluations

[Parikshit+ KDD 2012]
Evaluation Details:

Experts: 2; 175 symptoms judged

Relevant: 72, lIrrelevant: 103
Inter-annotator agreement : 81.8%

Symptoms labeled as related by
both experts were considered as
relevant.

Evaluation Details:

CHF
| - CHF Onset Prediction
Top 50 Ranked Classifier ‘ Results
Symptoms (AUC)
Clinical
Notes

CHF: affecting 1 out of 5 adults

in US; most costly in CMS
Framingham, 1971 - 50s, 60s




Applications in Health Informatics

e Patient Similarity Learning
e Risk Factor Identification
== Clinical Pattern Detection

May 1st-4th, 2013 SDM 2013, Austin, Texas
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Diagnostic Endorine Procedures (11)
Lens and Cataract Procedures (15)
Destruction of Lesion of Retina and Choroid (17)
Diagnestic Procedures on Eye (18) 5
Other Inraocular Therapeutic Procedures (20)
Diagnostic Cardiac Catheterization, Coronary Arteriography (47)
Other Yascular Catheterization, Not Heart (54)
Upper Gastrointerstinal Endoscopy, Biopsy (70)
Colonogscopy and Biopsy (76)
Proctoscopy and Anorectal Biopsy (77) 10
Incision and Drainage, Skin nd Subcutaneous Tissue (168
Debridemertof Wound, Infectionor Burn(169)
Conlrast Arteriogram of Fermoral and LowerExtremity Arteries (190)
Electroencephalogram (EEG)(199)
Cardiac Stress Tests(201° 15
Electrocardiogram (202)
Traction,Splints, and Other Wound Care (214]
Ophthalmalogic and Ontalagic Diagnosis and Treatment{220)
Laboratory -Chemistry and Hematology (233)
Medications {Injections, Infusion and Other Forms)(240) 20 -
GLYCO#HEMOGLOBIN 41 CGIHEMOGLOBIN.TOTA
LDL#CHOLESTEROL.IN LDL#TOTAL LDL-C DIRECT
PCP
NEPHROLOGY
OPHTHALMOLOGY 25
CARDIOLOGY
NELROLOGY
PODIATRY
ENDOCRINOLOGY
PULMDNOLOGY 30

CPTs

SPEC

Fei Wang, Noah Lee, Jianying Hu, Jimeng Sun, Shahram Ebadollahi. Towards Heterogeneous Temporal Clinical Event Pattern
Discovery:A Convolutional Approach. KDD 2012.

Fei Wang, Noah Lee, Jianying Hu, Jimeng Sun, Shahram Ebadollahi. A Framework for Mining Signatures from Event
Sequences and Its Applications in Healthcare Data. TPAMI 2012.




Temporal Patterns in Longitudinal
Patient Records

Pattern| Patternll

events

time

#flay 1st-4th, 2013 SDM 2013, Austin, Texas
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One-Side Convolution

Definition  (One-Side Convolution). The one-side convolution of F € R™™™ and g € R is an n x t matrix with

t
(Fxg)i; = Zk=1 9i—k+1Fik

Notethat g; =0ifj < 0orj >t and Fi, =0ifk > m.

events

time

events

time
#lay 1st-4th, 2013 SDM 2013, Austin, Texas

IIn
1
o



events

One-Side Convolutional NMF

F

\_

(min J ,’
ag l

s.t. ‘v’; =1,--- R

F) > 0, g’g)

=0

\_

c i
J=> ds (A ©X., A ©

c=1

'

1

ce=1 r=

R
(ZF(’)* g )) +)\12||F(7)||1 +)\222”g s

da(A, B)

1 58—
- mzij (45 + (B -1)B - pA, B

Definition (3-divergence ) The [3-divergence between two matrices A and B with the same size is

#lay 1st-4th, 2013

SDM 2013, Austin, Texas
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Multiplicative Updates

(r)
i

gt

C toAB-1Y 3_9 n(53)
jasQ (ZC—I Zi 1 AL AC’JYCz gca ket )
ik B—1 (7)
EC—]. Z_] ]_A YPC?_) CJ k41 +A1

<(Z
— G

. n(5)
ZJ IAJ 1y yB- ZFZ_] A+1>
Zi:lz:j 1ACUY3 1FJ ka1 T A2

C;J C‘l_] C‘l_‘}

#flay 1st-4th, 2013

SDM 2013, Austin, Texas
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An Evaluation Case
Cases:
1st CHF
Start date End date diagnosis date
12 months 6 months
(training) (hold off)
| )

Predictionperiod

Training period

Last record date

Controls:
Start date End date
Diagnosed with 12 months 6 months
Non-CHF heart disease (training) (hold off) .
| 1 )
| I
Prediction period

Training period

SDM 2013, Austin, Texas

#ay 1st-4th, 2013



Bag-of-Pattern Representation

[1311]

[0 2 1 2]

[03 10]

eslay 1st-4th, 2013 SDM 2013, Austin, Texas
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Results

Averaged AUC

0.68

0.66 i

0.64

itle

0.62 /

Axis T
o
(@)}

0.58

0.56

0.54

édlay 1st-4th, 2013 SDM 2013, Austin, Texas

=0= Random Forest
«@=SVM

Logistic Regression



Outline

* Introduction

* Overview of the Technologies

* Applications in Health Informatics
== Applications in Social Informatics

* Conclusions and Future Works



Applications in Social Informatics

== Finding Complex User Patterns
* (Matrix-based) Anomaly Detection
* Influence and Virus Propagation



Finding Commonality: Center-Piece Subgraph Discovery
[Tong+ KDDO6, VLDB06, TKDE13]

* Given: a graph W, and a query set
* Find: the most central node (wrt the query set)

®

Q: Who is the most central node

wrt the black nodes?
(e.g., master-mind criminal, common
advisor/collaborator, etc)

~O-Or



Center-Piece Subgraph Discovery
[Tong+ KDDOG6, VLDB0O6, TKDE13]

Input: original graph Output: CePS

A
SR

Q: How to find hub for nodes A, B, C?
Our Solution: Max (Prox(A, Red) x Prox(B, Red) x Prox(C, Red))




R. Agrawal

P i

V. Vapnik

DBLP co-authorship network:
-400,000 authors, 2,000,000 edges
Code at: http://www.cs.cmu.edu/~htong/soft.htm

74



4 Corinna 5
Cortes

DBLP co-authorship network:
-400,000 authors, 2,000,000 edges
Code at: http://www.cs.cmu.edu/~htong/soft.ntm

75



Negation: CePS - Initial Result

[ICDMO08, CIKMO9]

,Text Mining
2

Sean
Rebecca Slattery
Hutchinson )
1 \
Xuerui GR;Vid_
ani
Andrew Wang 1
Mccallum 4
Jian Zhang
John D. 2 \
Laffterty

Statistics

CePS between “Andrew Mccallum® and "Yiming Yang”



Negation: CePS — After Feedback

[ICDMO08, CIKMO9]

Andrew 7 Michael I. 6 Rong 1
9 Ng Jordan 1 Jin
Andrew 2 John D.
Mccallum Laffterty
1 2
Fernando Xiaojin Jian Zhan
C.N. Pereira Zhu g

CePS between “Mccallum” and “Yang”, avoiding “Mitchell”

entire ‘Text’ connection gone, and more connections on ‘Statistics’




Legends:
’ : Anonymous accounts

@ : Anonymous banks

transaction patterns?
(e.g., money-laundering ring)

» [.5% of U.S. adults lost money for financial fraud
> 50%+ US corporations lost >= $500,000

= e.g., Enron ($70bn) [Albrecht+ 2001]
> Total cost of financial fraud: $1trillion [Ansari 2006]




Input _ \;Query Graph : Output
|

.@ ' W4. Best-Effort

I Pattern Match

‘ Accountant

.Manager . .
Q: How to find matching subgraph?

A: Proximity![Tong+ KDD 2007 b]



G-Ray: How to?

matching node

12 — 13 \
. ~
matchlngn/ode *matching node K \‘

o g
.mg node .

Goodness = Prox (12, 4) x Prox (4, 12) x
Prox (7, 4) x Prox (4, 7) x

Prox (11, 7) x Prox (7, 11) x

Prox (12, 11) x Prox (11, 12)

May 1st-4th, 2013 SDM 2013, Austin, Texas 80



Effectiveness: star-query

Databases

r
pons
<

People

¥ ¥
Intelligent Agent Bio-medical

Query Result

May 1st-4th, 2013 SDM 2013, Austin, Texas

81
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Team Replacement [tong+ som12b, wips12

Problem Definitions

» Given: (1) A social network A; (2) The skill indicator for each
person S; (3) a Team T; and (4) A team member;

*Find: A “best” alternate t to replace /'s role in the team T.

Current 'f'eam T

Q: Who is the best alternative of '5'in T ?

A: Team-Aware Similarity!
May 1st-4th, 2013 SDM 2013, Austin, Texas 82
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Team Replacement
Key Observation: Graph Kernel 2> Team-Aware Similarity

t = argmax; ;a7 Ker(A(T.7). A(Tiy—j, Tig—;))

Our Contributions: A Family of Fast Algorithms for Random
Walk based Graph Kernel.

Eia_ct —— ‘
Time Complexity Time Complexity o
(Our methods) (Existing methods) ; Scales to
13,579
nodes
Normalized, O(n2r#+rS+mr) ;
unlabelled o e 2 -
100 2000 4000 6000 8000 13579 100 1000 2000 4000
Unnormalized O(nr+r2+mr) O(n3) Numberof Nodes efficiency Number o Nodes
’ unlabelled HEP-TH Oregon
. 2044164 o Ark-U [ Ark-U+ [ Ark-L | Ark-U [ Ark-U+ [ Ark-L
Normalized, O(d,n ri+ro+mr) O(mZig) 0.999 0.999 0.999 | 0.998 0.999 0.999
labelled 0.077 0.999 0.095 | 0.950 0.990 0.980
_ _ 0.962 0.999 * 0.939 0.999 x
Unnormalized O(dnn2r4+r5+mr) O(m2lF) 0.952 0.099 % 0.934 0.999 %
Iabe"ed 0.946 0.998 * 0.928 0.999 *
accuracy

Complexity Comparison Empirical Evaluations
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g Sense-Making of Marked Nodes [akoglu+ spm 2013

e

. Bonnie_E._John

I Bonnie_E._John
Quen_Horng_Chau . Scott_E._Hudson

B Scon_E._HudSson A . Shumin_Zhai
. Christos_Faloutsos . CNy . ELE®: Faloutsos . Brad_A._Myers igai
- - Brad_A._Myers Il Abigail_Sellen . _A._My . Abigail_Sellen
H._V._Jagadish H._V._Jagadish Tim_Regan
O B Wiliam_Buxton B William_Buxton -9
) \ Steve_Bent . . . St Benf
David_J._DeWi pve_bentorc
. 513 - Rakesh_Agrawal . James_A._Landay ) . . David/J)._Deivit . James_A.| Landay
. Ravin_Balakrishnan . Rakesh_Agrawal . .
B Ravin_Balakrishnan
. Jeffrey_F._Naughton z SWAIN
B Hiroshi_ishii . Jeffrey_F._Naughton L
I surajit_Chaudhuri - Hiroshi_Ishii
: W _surajit_Chaudhuri
. Michael_J._Carey . Hector_Garcia-Molina
B Raghu_Ramakrishnan . Michael_J._Caréy . Hector_Garcia-Molina
. Gerhard_Weikum . Raghu_Ramakrishnan

. Gerhard_Weikum

(a) Too many connections? (c) Our sol.: ‘right’ connections
B oo £ -> better sense-making

. Scott_E._Hudson
I shumin_zhai

. Christos_Faloutsos

I Brad_A._Myers I Abigail_Sellen
. H._V_Jagadish I Wwilliam_Buxton [ ) : — '
T et o e + right’ connections = most succinct

S el 2y to describe marked nodes
B surajit_Chaudhuri B

‘ . Michael_J._Carey . Hector_Garcia-Molina

. Raghu_Ramakrishnan
. Gerhard_Weikum

b) Too few connections? + Effective Abproximate Alaorithms
L. Akoglu, J. Vreeken, H. Tong, D. Chau, N. Tatti, and C. Faloutsos: Mining Connection Pathways

+ MDL-based formulation, NP-Hard

for Marked Nodes in Large Graphs. SDM 2013



Applications in Social Informatics

* Finding Complex User Patterns
==) (Matrix-based) Anomaly Detection
* Influence and Virus Propagation



E

B89 raph Anomalies by Low-Rank
ApEroximation
“ A Typical Procedure: Low-rank matrices Residual matrix

| _—
Graph =9 Adj]. Matrix A = A =@+@

l community l &nomalies

) Conference

',' 1 1 0|0
\ 1 11010

‘;:, 1 1 0 0 — G: Conf Group

301 11
/
i
d 0 0 1 1 F author group
. 0| 0| 1 1

Adjacency matrix: A R: abnormal connection

Author Conference

An lllustrative Example

Q: How to get the low-rank matrix approximations?

May 1st-4th, 2013 SDM 2013, Austin, Texas 86
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%raph Anomalies by Low-Rank
ApEroximation

Typical Procedure: Low-rank matrices Residual matrix

/
Graph =9 Adj]. Matrix A = A =@+@

| l community l &nomalies

Conference

110

1
1
1
0

—_ a0 0 0

‘ ouny g

0|1

Adjacency matrix: A R: abnormal connection

Author Conference

An lllustrative Example
Q: How to get the low-rank matrix approximations?

Al: Example-based LRA
A2: Non-negative Residual Matrix Factorization

87



Al: Example-Based LRA

* Why Not SVD, PCA? both transform data into
some abstract space (specified by a set basis)

— Interpretability problem
— Loss of sparsity (space cost)
— Efficiency (time cost)
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Al: Example-

 Example-based projection: use actual rows and
columns to specify the subspace

* Given a matrix A&GR™" find three matrices C& R™x¢, U&

R, R& R™ ", such that | |A-CUR]| | is small

n

n
AL
s N

] »

C

},

——

C
* Two recent variants:
— CMD: removing duplicates

— Colibri: removin
U is the pseudo-inverse of X: U= X=(UT U )! UT

H. Tong, S. Papadimitriou, J. Sun, P.S. Yu, C. Faloutsos: Colibri: fast mining of large static and dynamic graphs. KDD 2008
J. Sun, Y. Xie, H. Zhang, C. Faloutsos: Less is More: Compact Matrix Decomposition for Large Sparse Graphs. SDM 2007
P. Drineas, R. Kannan, M.W. Mahoney: Fast Monte Carlo Algorithms for Matrices II: Computing a Low-Rank Approximation to a Matrix. SIAM

J. Comput. (SITAMCOMP) 2006

Based LRA -- CUR/CX
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SVD

CMD
[Sun+ 2007]

May 1st-4th

A Pictorial Comparison

A Y: William Cohen

2"d singular vecto.r

1st singular vector

X: Philip Yu
>
A\ Y: William Cohen
o ©O
O
o) @)
@)
o @)
X: Philip Yu
>

A\ Y: William Cohen

# of copies o ©
CUR
[Drineas+ 2005]
X: Philip Yu
>
A Y: William Cohen
o O
o o
o O Colibri-S
O O  [Tong+ 2008]
L ©O
X: Philip Yu

>



Performance

e Accuracy

e Same 91%+

e Time

e 12x of CMD 0%}

e 28x of CUR
e Space

e ~1/3 of CMD ™|

Comparison

— CUR

100%

80%

40%

e ~10% of CUR ol e

May 1st-4th, 2013

~

SVD

— CUR

me

SVD

Colibri

Colibri Time

Space

91



A2: Non-negative Residual MF

* Observations: anomalies € —> actual activities
* Examples: popularity contest, port scaner, etc
e NrMF formulation

o . 2 , :
argming ¢ nxt @ WasillF — Weighted Frobenius Form

Common in Any MF | Z<A</-./J - F(i. :)G<:../>>Weight

=1 7=1

Unique in NrMF RAaSl 5 on-negative residual

H. Tong, C. Lin: Non-Negative Residual Matrix Factorization with Application to Graph Anomaly
Detection. SDM 2011
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Visual Comparisons

] [] L[] [ I
0
riginal NrMF SVD Original NrMF SVD
O (G tha 3,10, 0 Ty 0 . O ot e o 0 0
i iFRR g iR R : i EREYIEE = ' '
20fi% {1 emanani wii; 8 1aime] 20 20 ’ 20 fuy rem 4 20 20 oy
R E BRI et e R L e .
a0k ERATH WIER i) 40 0 Of ] wof JENIRELIZAE . 40
o st | imsc
60 [z iEfaidal Hillitd 1iiBkg 60 60 60 ymees 60 60y .. -l
& !l'-" !I l! HP W 18 e . “_!‘, . . S
HEREER R R b T e P
B0y pgoge eyt e 80 80 : BOF: gas~sn iggmest 2= i 00 80
S inRih g ik _ i g i
J0o b= et wi e ® G 100 too AR INERG £ R 100 )
0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80
Original Adjacency Matrix nmf SVD Original Adjacency Matrix nrmf SVD
(a) strange connection (b) port scanning
0 0 CrEyamnnEam| O 0
5 0 RSN REIIATCIEBNE
.o oe H % Kkt
20 20 20 W 39 oesamay| 20 20
i W0l il
x - i B R IE
40 40 40: DO o T I'Ilﬁ "Mool WH T 40 40
. . SRR | () RN L
i} i B 135 R R
80 80 ' 80 ¥ jidgeiiiaminami| 80 80
el Gl Sl ER s REE
. . A AL - HAR L R 15
0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80 0 20 40 60 80
Original Adjacency Matrix nrmf SVD Original Adjacency Matrix nrmf SVD
(c) ddos (d) bipartite core

May 1st-4th, 2013 SDM 2013, Austin, Texas 93



Applications in Social Informatics

* Finding Complex User Patterns
* (Matrix-based) Anomaly Detection
== |[nfluence and Virus Propagation



An Example: Flu/Virus Propagation
&Sick aHealthy
1: Sneeze to neighbors

' Contact
2 Some neighbors - Sick

& b 3: Try to recover
Q: How to minimize infected population?

- Q1: Understand tipping point
- Q2: Affecting algorithms

May 1st-4th, 2013
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Why Do We Care:
g Police 'beat a 16-year-old girl' / \ Aug 5, 09:30:12 "data request"”
: ) EEIE

Tweets/hour

7th August 8th Augusl. Aug 5, 09:53:00 "Fw: data request"

How the rumour unfolded

At 4:30am, the story shows no signs of slowing.
@brendadada links to a YouTube video - now
removed - which is apparently a news report
suggesting a 16-year-old girl approached police
to ask questions at which point they ‘set upon
her with batons’

Aug 6, 14:21:53 "Fw: Fw: data request”

http://bit.ly/qUpiUH "16-year-old girl
approached police to ask questions -
and they 'set upon her with batons'."

Email Fwd in Organization

#tottenham
@brendadada
Aug 23:14 Influence of the tweet Relation to the rumour x
\—— more influential  suppot @ @ @ @ opposiion @ @ @ @ query C DO @ comment B D O O Shared computers with weak ]
passwords may get infected by
less influential recent recent recent recent

Rumor Prop on Twitter in UK riots

10% credit 1 7% 'X il

I 8. T
FTEPRER 4 Wy

133

Computers with a proper password policy,
current securty updates, antvirus or security
software, and secured shares are protected
from infection of this worm

2y
= Removable devices, such
-, as Extemal Hard Drives
> “ and USB sticks, may get
& \ infected by the worm
.
e

|
I /

R & / Worm:Win32/Conficker attempts to make
. AUMOrOUS CONNOCIONS 10 COMPUIES ACrosS the
bor——siy ~ | network, seeking systems that do not have
=) current security updates, or have open shares,

- removable media, or weak passwords

o Computers with open shares Computers without the latest security
e i el may getinfected by the worm updates may get infected by the
worm

Viral Marketing SDM 2013, Austin, Texas Malware Infection e




- Q1: Understand tipping point £
- Q2: Affecting algorithms B: Prob (g — & 5%)
SIS Model (e.g., Flu) 5: Prob (9_, & )

Theorem [Chakrabarti+ 2003, 2007]:
IfA x (B/5) < 1; no epidemic
for any initial conditions

oljey uonIayu|

Time Ticks

0 5 10 15 20 25 30 35 40

A: largest eigenvalue of the graph (~ connectivity of the graph)

B, O : virus parameters (~strength of the virus)
Generalize to ~ 25 other models; to partial immunity; to dynamic networks




- Q1: Understand tipping point
- Q2: Affecting algorithms

Why is A So Important?
* A 2 Capacity of a Graph:

(T AFT)F ——— A

AN

e

(a)Chain(A, = 1.73) (b)Star(A, =2) (c)Clique(A, = 4)

Larger A = better connected

May 1st-4th, 2013 SDM 2013, Austin, Texas 98



- Q1: Understand tipping point
- Q2: Affecting algorithms

Minimizing Propagation: Immunization
Given: a graph A, virus prop model and budget k;
*Find: k ‘best’ nodes for immunization. Q@

&

SARS costs 700+ lives: $40+ Bn: H1N1 costs Mexico $2.3bn



- Q1: Understand tipping point
- Q2: Affecting algorithms

Minimizing Propagation: Immunization

Given: a graph A, virus prop model and budget k;
*Find: k ‘best’ nodes for immunization. @

SARS costs 700+ lives: $40+ Bn: H1N1 costs Mexico $2.3bn



- Q1: Understand tipping point
- Q2: Affecting algorithms

Optimal Method

* Select k nodes, whose absence creates the
largest drop in A

S =argmax, A-A S
©

Original Graph: £ Without {2, 6}: A,

May 1st-4th, 2013 SDM 2013, Austin, Texas 101



- Q1: Understand tipping point
- Q2: Affecting algorithms

Optimal Method

e Select k nodes, whose absence creates the
largest drop in A

n
e But we need O([k m) in time Largest eigenvalue
! y w/o subset of nodes S

— Example: 1,000 nodes, with 10,000 edges

* |t takes 0.01 seconds to compute A
* It takes 2,615 years to find best-5 nodes !

Theorem: (Tong+ CIKM 2012)

Find Optimal k-node Immunization is NP-Hard



- Q1: Understand tipping point EE=
- Q2: Affecting algorithms

Netshield to the Rescue

Theorem: (Tong+ 2010)

(1) A- A =SV(S)= 50 2AU(1)2-5, o5 Alif)uli)u()

4 [0).16) A
0

=A-(F+F’ (J)*[ ]
]
A U =AX U A, =A-u’ Eu/(u’u)+O(| E|?)

= A-2u’ Fu+2u’ Eu+O(| E|?)
k = A=(Zies 2AU(i)?-3 jesAlLf)uli)u(f))+O( | EW

-
!

u(l): eigen-score

Footnote: u(i) ~ PageRank(i) ~ in-degree(i)



- Q1: Understand tipping point
}- Q2: Affecting algorithms
Netshield to the Rescue

Theorem: (Tong+
(1) A- A =Sv(S)=3 )




Theorem: (Tong+ ICDM 2010)
(1) A - A=SV(S)= 3 s 2AU(i)?-3, es Al uli)u())
(2) Sv(S) is sub-modular (+monotonically non-decreasing)

| ]

Corollary: (Tong+ ICDM 2010)

(3) Netshield is near-optimal (wrt max Sv(S))
(4) Netshield is O(nk’+m)

 Example: 1,000 nodes, with 10,000 edges

— Netshield takes < 0.1 seconds to find best-5 nodes |
— ... as opposed to 2,615 years

Footnote: near-optimal means Sv(S




(better)
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Comparison of Immunization

Log(fraction of infected nodes)
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Hospital Infection Controlling
(US-Medicare Network)

Y

Out Method

Current Method
Red: Infected Hospitals after 365 days

Using a variant of Netshield (adapting to partial immunity)

B.A. Prakash, L. Adamic, T. lwashynaz, H. Tong and C. Faloutsos: Fractional Immunization in Networks. SDM 2013.



- Q1: Understand tipping point
- Q2: Affecting algorithms

Maximizing Propagation: Edge Addition
[Tong+ CIKM 2012]

*Given: a graph A, virus prop model and budget K;
*Find: add k ‘best’ new edges into A.

* By 15t order perturbation, we have
A -A=Gv(S)=c Y, culi,)v(,)

Left eigen-score  Right eigen-score
of source of target

* So, we are done =2 need O(n’-m) complexity

Low Gv /

May 1st-4th, 2013 ngh GV SDM 2013, Austin, Texas 108




- Q1: Understand tipping point
- Q2: Affecting algorithms

Maximizing Propagation: Edge Addition
A -A=Gv(S)=c 3, . uli,)v(j,)
* Q: How to Find k new edges w/ highest Gv(S) ?

* A: Modified Fagin’s algorithm
k #2: Sorting k+d
| . Targets by v |

#3: !j ]
k Search
Search
- +
[ space k+d ——

#1: Sorting ‘ | B

Sources by u

Time Complexity: O(m+nt+kt?), t = max(k,d) W :existing edge



e - Q1: Understand tipping point

City College

of NewYork - QZ AﬁeCtlng a|gOrItth

Maximizing Propagation: Evaluation
Log (Infected Ratio)
-2

K-EdgeAdd

(better)

1

w

a
T

Original

i
a
T

CompDelete

4010.0 ?0100
Time Ticks

0 1000 2000 3000
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Influence & Virus Propagation: Summary
* Goal: Guild Dissemination by Opt. Link Structure

* Theory: Opt. Dissemination = Opt. A
* Algorithms:

— Netshield to Minimize Dissemination
— NetGel to Maximize Dissemination

* More on This Topic
— Beyond Link Structure (content, attribute) [WWW11]
— Beyond Full Immunity [SDM13b]
— Higher Order Variants [CIKM123]
— Equivalence (node deletion vs. edge deletion) [CIKM12a]
— Immunization on Dynamic Graphs [PKDD10] 11
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Conclusion

* Recent Advances in Applied Matrix
Technologies

— Low rank approximation
— Sparse learning
— Large scale learning

* Applications in healthcare informatics
* Applications in social informatics
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backup
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Research Qs: Can we identify users across social networks?
Matrices: rows/columns: people; entries: friendship

Matrix Tools: graph alignment
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Diagnostic Endorine Procedures (11)

Lens and Cataract Procedures (15)

Destruction of Lesion of Retina and Choroid (17)

Diagnostic Procedures on Eye (18)

Other Inraocular Therapeutic Procedures (20)

Diagnostic Cardiac Catheterization, Coronary Arteriography (47)
Other Yascular Catheterization, Not Heart (54)

Upper Gastrointerstinal Endoscopy, Biopsy (70)

Colonoscopy and Biopsy (76)

Proctoscopy and Anorectal Biopsy (77) 10 [

Incision and Drainage, Skin nd Subcutaneous Tissue (168
Debridemnertof Wound, Infectionor Burn (169)
Contrast Atteriogram cf Ferroral and LowerExtrermity Arteries (190)
Elsctroencephalogramm (EEG)(199)

Cardiac Sress Tests(201: 15
Elechrocardiogram (202)
Traction,Splints, and Other Wound Care (214,
Ophthalmolagic and Ortalogic Diagnosis and Treatment(220)
Laboratory -Chemistry and Hematology (233)

Medications (Injections, Infusion and Other Forms) (240) 20
LY CO#HEMOGLOBIN 41 CIHENMOGLOBIN.TOTA
LDL#CHOLESTEROL.IN LDL#TOTAL LDL-C DIRECT

PCP
NEPHROLOGY

OPHTHALMOLOGY 25

CARDIOLOGY
NEUROLOGY
PODIATRY
ENDOCRINOLOGY
PULMDNOLOGY 30

Patient 1D (100008)

Matrices in Healthcare

CPTs

LABS

PCP

SPEC

« CPT
* Date of Service

«ICD9
+« HCC
+ Date of Service

Diagnosis

s Labresults

* Breakdown by age
and sex groups

@-}4-
' S

* Age
+ Gender

* Date of test °
Demography -r ;

+ Days of Supplies

How to identify clinically similar patients?

How to utilize EMR data to perform
predictive modeling?

How to characterize the progression
course of a specific disease?

SDM 2013, Austin, Texas 116



43 Recent Advance #3: Prox. on H. Networks

RWR: Path w/ Different Length » Meta Path: Path w/ Different Types

Y. Sun, B. Norick, J. Han, X.Yan, P.S. Yu, and X. Yu: Integrating Meta-Path Selection with User-Guided Object Clustering in

Heterogeneous Information Networks.KDD'12

Y. Sun, J. Han, X. Yan, P. S. Yu, and T. Wu: PathSim: Meta Path-Based Top-K Similarity Search in Heterogeneous Information

Networks. PVLDB 2011
K. Chiang, N. Natarajan, A. Tewari, |. S. Dhillon: Exploiting longer cycles for link prediction in signed networks. CIKM 2011
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Recent Advance #4: Scale-Up

: ; . | Indexing Stage :
I | ﬂ ﬂ o ' '
15 | I
1 vip N |
Vb | - i = !
R n ’ I
I Raw graph Graph clustering Block compression GBASE :
: (optional) |

| Browsing
Ranking Global queries

| I
[ I
| !
| I

I, { | = |
: Finding community | "y Targeted queries v Hﬂ R |®HH I
[ | | I
| ‘ !
[ I
[ I
[ I
[ I

Anomaly detection

Visualization Graph core operations Unified query

Graph applications Execution engine

Query Stage

U. Kang, H. Tong, J. Sun, C. Lin, C. Faloutsos: GBASE: a scalable and general graph management system. KDD 2011
U. Kang, C. Tsourakakis, C. Faloutsos: PEGASUS: mining peta-scale graphs. KAIS 2011
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Recent Advance #4: Scale-Up

9000
RAW 1 35 KR-NNB —+— L
120000 [ [NNB C— _ srpaller- 8000 r| ER-NNB .
NZB 3 i 2 7000 || ER-NZB o il
—~ 100000 2 KR-NZB -y
2 8 6000 | 1
& 80000 ¢ ® 5000 | )
N £
® 60000 f @ 4000 ¢ .
£ g 3000 | .
S 40000 | 50x e <
smaller smaller = & 2000 r 1
20000 H H H 1 1000 - )
KR-2B ER-2B YahooWeb 40M 282M 1146M 1977M
Data Number of edges
Storage Savmgs Scalablllty (size of graph)
2000 | T
1600 RAW —— 3.6x 1 1800 NNB _
X% NNB faster K% - NZB e 1
c 1400 1\  CzB === I € 1600 - AT B
n 4 i L
< 1000 | ?as)t(er 1 £ 1200 |
— - [0) —
£ 800 | ; | £19%
= : = 800 |-
g faster =
4007 5 400 4
X 200 - 200 — @ e 3
1-Nh 2-Nh Egonet 10 20 30 40 50 60 70
Targeted Query Number of machines

Running Time Savings Scalability (# of Machine)

U. Kang, H. Tong, J. Sun, C. Lin, C. Faloutsos: GBASE: a scalable and general graph management system. KDD 2011

U. Kang, C. Tsourakakis, C. Faloutsos: PEGASUS: mining peta-scale graphs. KAIS 2011



Learning W: minF(w) = [[w||* + XY h(pr — pa)

City College
of NewYork

ld
 w: the parameter to learn ‘ v :
* h:loss function to penalize the violation (2 o
o | 1) . )

0.8
0.7

s ® O
0.5

0.4

0.3 V3

0.2

0.1 X

U

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Loss

positive examples
negative examples

Pi<Ps Pr=Pqs P~ Py

s: be the center node; I: destination; d: no-link
edge strength a,, =1 (u,v) = exp(-w'¥,)

» (Features of node u,; Features of node v, Features of edge (u,v)
Thanks to Jure Leskovec: Social Media Analytics (KDD 'l1 tutorial)

feature vector ¥




Prox (deleted) >> Prox (absent) !

Footnote:
- Red pair: deleted”;
- Blue pair: “"absent”

May 1st-4th, 2013 SDM 2013, Austin, Texas 121
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Experimental setting

— Node:
* Age; Gender; Degree

— Edge:

* Age of an edge; Communication; Profile visits; Co-tagged photos

— Decision trees and logistic regression:

* Above features + 10 network features (PageRank, common
friends)

— AUC and precision at Top20

Thanks to Jure Leskovec: Social Media Analytics (KDD 'l tutorial)
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Results: Facebook Iceland

Learning Method AUC | Prec@?20

P redict Random Walk with Restart || 0.81725 6.80

future friends Adamic-Adar 0.81586 7.35
. Common Friends 0.80054 7.35

— Adamic-Adar Degree 0.58535 3.05
already works DT: Node features 0.59248 2.38
great DT: Network features 0.76979 5.38
.. DT: Node+Network 0.76217 5.86

— Logistic DT: Path features 0.62836 2.46
regression also DT: All features 0.72986 5.34
strong LLR: Node features 0.54134 1.38

_ SRW oi light LR: Network features 0.80560 7.56
SRVV BIVES SHig LR: Node+Network 0.80280 7.56
Improvement LR: Path features 0.51418 0.74
LR: All features 0.81681 7.52

SRW: one edge type 0.82502 6.87

SRW: multiple edge types 0.82799 7.57

Thanks to Jure Leskovec: Social Media Analytics (KDD 'l tutorial)
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Results: Co-authorship

. Learning Method AUC [ Prec@20

* Arxiv Hep_Ph Random Walk with Restart || 0.63831 341
collaboration Adamic-Adar 0.60570 3.13
network: Common Friends 0.59370 3.11
— Poor performance pegree 000022 S0
: DT: Node features 0.60961 3.54

of unsupervised DT: Network features 0.59302 3.69
methods DT: Node+Network 0.63711 3.95

— Logistic regression  DT: Path features 0.56213 1.72
and decision trees  DT: All features 0.61820 3.77
don’t work to well  LR: Node features 0.64754 3.19

: LR: Network features 0.58732 3.27

— SRW gives 10% LR: Node-+Network 0.64644 3.81
boos in Prec@20 1R path features 0.67237 2.78
LR: All features 0.67426 3.82

SRW: one edge type 0.69996 4.24

SRW: multiple edge types 0.71238 4.25

Thanks to Jure Leskovec: Social Media Analytics (KDD 'l tutorial)
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adj.

Proximity matrix:

Q=(l-cW)~’
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Graph Anomalies by Proximity
[Sun+ ICDM 2005]

normal .- Norron(gélty chre |
2 P = Bl genuine
i \_T/ : ‘| 0.03k I injected ||
\ N/ !
.| - g L
N~ ’ abnormd! %
e <7 o
Tl 0.02
/’\_ <.
’_/‘\b_ K \ 0.015¢
il i
YN i 0.01}
\ | /.L--__ '/
N — 0.005}

0
CA

AP IMDB

Normality Score = Average proximity among neighbors
- Essentially tries to find bridging nodes/edges

J. Sun, H. Qu, D. Chakrabarti, C. Faloutsos: Neighborhood Formation and Anomaly Detection in

Bipartite Graphs. ICDM 2005
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Graph Anomalies by Proximity

Query Graph

Transaction Network

Given: a query graph (pattern)
Find: best matching subgraph

Blue Node: anonymous account; Purple Node: Anonymous banks; Edge: Transaction

H. Tong, C. Faloutsos, B. Gallagher, T. Eliassi-Rad: Fast best-effort pattern matching in large
attributed graphs. KDD 2007




Graph Anomalies by Belief

Propagation

create 2 types of userss

?

* Trade mostly with
honest users

* Looks legitimate
Fraudster

* Trade mostly with
accomplices

e Don’t trade with

other fraudsters S

Node: account; Edge: Positive Rating. (Graph constructed from e-bay on-line auction data)

S. Pandit, D. H. Chau, S. Wang, C. Faloutsos: Netprobe: a fast and scalable system for fraud
detection in online auction networks. WWW 2007: 201-210




