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Disclaimer 
This talk is not a survey. 



Disclaimer 
This talk is not a history lesson. 



Focus  

A few widely applicable  
algorithmic techniques 

Algorithms you can  
run on an actual computer 



Part I: Differential Privacy: 
Attacks, basic definitions & algorithms 

 
Part II: Unsupervised Learning 

Technique: Singular Value Decomposition 
 

Part III: Supervised Learning 
Technique: Convex optimization 

 
Part IV: Streaming 

Technique: Streaming data structures 
 

Outline 



Releasing Data: What could go wrong? 

Wealth of examples 

One of my favorites:  
Genome-Wide Association 
Studies (GWAS) 

Trust me:  
You will like this 
even if you don’t 

like biology 



GWAS 
Typical Setup:  
1. NIH takes DNA of 1000 test 

candidates with common 
disease 

2. NIH releases minor allele 
frequencies (MAF) of test 
population at 100,000 
positions (SNPs) 

Goal: Find association between 
SNPs and disease 



Attack on GWAS data [Homer et al.] 
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Can infer membership in test group of an individual  
with known DNA from published data! 
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Interesting characteristics 

• Only innocuous looking data was released 
– Data was HIPAA compliant 

• Data curator is trusted (NIH) 
• Attack uses background knowledge (HapMap 

data set) available in public domain 
• Attack uses unanticipated algorithm 
• Curator pulled data sets (now hard to get) 
 
 



How not to solve the problem 

• Ad-hoc anonymization (e.g., replace name by 
random string) 
– Gone wrong: Netflix user data, AOL search logs, 

MA medical records, linkage attacks 
• Allow only innocuous looking statistics (e.g. 

low-sensitivity counts) 
– Gone wrong: GWAS 

• Use the wrong crypto tool (e.g., encrypt hard 
disk, securely evaluate query) 
 



Differential Privacy  
[Dwork-McSherry-Nissim-Smith-06] 

Meaningful privacy guarantee 
• handles attacks with background information 
• powerful composition properties 

 
Intuition: Presence or absence of any individual in 

the data cannot be inferred from output 



Differential Privacy  
[Dwork-McSherry-Nissim-Smith-06] 

Two data sets D,D’ are called neighboring if  
they differ in at most one data record. 

Example: D = {GWAS test population}, D’ = D – {Moritz’s DNA} 

Informal Definition (Differential Privacy): 
A randomized algorithm M(D) is differentially private 
if for all neighboring data sets D,D’ and all events S: 



Differential Privacy  
[Dwork-McSherry-Nissim-Smith-06] 

Two data sets D,D’ are called neighboring if  
they differ in at most one data record. 

Think: ε = 0.01 and eε ≈ 1+ε 

Definition (Differential Privacy): 
A randomized algorithm M(D) is ε-differentially private 
if for all neighboring data sets D,D’ and all events S: 

Example: D = {GWAS test population}, D’ = D – {Moritz’s DNA} 



Differential Privacy  
[Dwork-McSherry-Nissim-Smith-06] 

Two data sets D,D’ are called neighboring if  
they differ in at most one data record. 

Think: ε = 0.01 and eε ≈ 1+ε 
δ << 1/|D| 
 

Example: D = {GWAS test population}, D’ = D – {Moritz’s DNA} 

Definition (Differential Privacy): 
A randomized algorithm M(D) is (ε,δ)-differentially private 
if for all neighboring data sets D,D’ and all events S: 
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Definition (Differential Privacy): 
A randomized algorithm M(D) is ε-differentially private 
if for all neighboring data sets D,D’ and all events S: 



Density 

Outputs 

ratio bounded 
by exp(ε) M(D) 

M(D’) 

probability δ  

Definition (Differential Privacy): 
A randomized algorithm M(D) is (ε,δ)-differentially private 
if for all neighboring data sets D,D’ and all events S: 



Sensitivity 

Assume f maps databases to real vectors 
Definition: 
• L1-sensitivity Δ1(f) = max || f(D) – f(D’) ||1 

– maximum over all neighboring D,D’ 

• L2-sensitivity Δ2(f) = max || f(D) – f(D’) ||2 

 
Intuition: Low sensitivity implies “compatible 

with differential privacy” 



Exercise 

f maps D to (q1(D),q2(D),...,qk(D)) 

where each qi(D) is a count: 
“How many people satisfy predicate Pi?” 

L1-sensitivity?  

L2-sensitivity?  

k 

k1/2 



Laplacian Mechanism [DMNS’06] 

Given function f:  
1. Compute f(D) 
2. Output f(D) + 

Lap(Δ1(f)/ε)d 

Fact 1: Satisfies (ε,0)-differential privacy 

d-dimensional Laplace  
distribution 

Scale noise to L1-sensitivity 

Fact 2: Expected error Δ1(f)/ε in each coord. 



Laplacian Mechanism [DMNS’06] 

q(D)+Lap(1/ε) 

q(D’) +Lap(1/ε) 

q(D) q(D’) 

density 
exp(-ε|x-q(D)|) 

density 
exp(-ε|x-q(D’)|) 

Suppose D,D’ 
neighboring 

One-dimensional  
example 



Gaussian Mechanism 

Given function f:  
1. Compute f(D) 
2. Output f(D) + N(0,σ2)d 

  with σ=Δ2(f)log(1/δ)/ε 

Fact: Satisfies (ε, δ)-differential privacy 

Scale noise to L2-sensitivity 

d-dimensional Gaussian 
distribution 

Fact: Expected error Δ2(f)log(1/δ)/ε 



A5 

Composition 

A1 A2 A3 

A4 

Differential privacy  
composes: 
1. in parallel 
2. sequentially 
3. adaptively 
 



T-fold composition of 
ε0-differential privacy satisfies: 

Answer 1  
[DMNS’06]: 

 
ε0T-differential privacy 

Answer 2  
[DRV’10]: 

 
(ε,δ)-differential privacy 

 
 

 Note: for small enough ε 



Part II: 
Private SVD  

and Applications 



We meet the protagonist 

A 

A is a real n x d matrix 
thought of as n data points in d dimensions 



...and its singular value decomposition 

A 

U,V have orthonormal columns 
Σ is diagonal r x r,    r = rank(A) 

U 
Σ VT 

= 



The left factor 

U Columns u1,...,ur are the 
singular vectors of A   
 eigenvectors of the n x n  
Gram matrix AAT 

By Courant-Fisher: 

... 



Columns v1,...,vr of V are the  
eigenvectors of the d x d  
covariance matrix ATA 

VT 

Σ 
Diagonal entries  σ1,..., σr  
square roots of the nonzero 
eigenvalues of  ATA 

Notation: σi(A) = σi 

Note: Singular values are unique, 
singular vectors are not (e.g. identity matrix) 



Why compute the SVD? 

v1 v2 Principal Component Analysis 
right singular vectors  
= principal components 

Low Rank Approximation 
truncated SVD gives best low rank 
approximation in Frobenius and spectral norm 

Many more: Spectral clustering, collaborative  
filtering, topic modeling 



Differential Privacy on Matrices 

How should we define “neighboring”? 

Differ in at most one entry by at most 1 

Differ in one row by norm at most 1 

Differ in one row 

St
ro

ng
er
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y 
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aller error 



Differential Privacy on Matrices 

How should we define “neighboring”? 

Differ in at most one entry by at most 1 

• Focus in this talk, others are reasonable 

• Reasonable for sparse data with bounded coeffs 

• Many entries? Choose smaller ε. 

• Algorithms we’ll see also give other guarantees 
using different noise scaling.  



Objectives 

• Approximating the top singular vector 
– Objective: 

• Approximating k singular vectors 
– Objective: 

Goal: Minimize additive error subject to differential privacy 





Randomized Response (Input A): 
 1. N = Lap(1/ε)nxd    
 2. B = A + N       
 3. Output SVD(B)        

Input Perturbation [Warner65, 
BlumDworkMcSherryNissim05] 

aka Randomized Response (RR) 

How much error does this introduce? 

Fact: Satisfies ε-differential privacy. 



Some matrix theory 

Theorem (Weyl): Let A,N be n x d matrices. Then,  

Theorem: Let N = Lap(1/ε)nxd. Then, 



When does RR Work? 

n >> d,   d relatively small 

Run on d x d covariance matrix  

Example: 
Differentially private recommender system 
evaluated on Netflix data set [McSherryMironov09] 
Here, n = 480189 and d = 17770 



When RR doesn’t work 

Problem 1: 
n and d both large 

RR generates huge 
dense noise matrix 

Problem 2: 
matrix sparse, e.g, 

Δ ones per row 

Can we improve on RR? 

No! But we’ll do it anyway. 



Why not?  Dictator example 

1111000111111...111110011111 
0000000000000...000000000000 
0000000000000...000000000000 
0000000000000...000000000000 
0000000000000...000000000000 

  ... 
0000000000000...000000000000 

Fact: Differential 
privacy requires 
error  

v1 = top row 
(up to scaling) 

Error o(n1/2) definition of “blatant non-privacy”! 

How are we going to get around this? 

n 

n 



Beat Randomized Response (1965) 
with Power Method (1929) 



From here on 

Assume A is symmetric and n x n  

Wlog, consider:  

A 
AT 0 

0 



Recap: Power Method 

Input: n x n matrix A, parameter T 
Pick random unit vector x0 

For t = 1 to T: 
 yt = Axt-1  
 xt = yt/|yt|2 

Output xT 
 

Fact: xT converges to top SV 
for now all we care about! 



Senstivity of Matrix-Vector Product 

• Suppose A, A’ differ in one entry by 1 
• Assume x is a unit vector 

Fact: || (A-A’)x|| 2    ≤   || x||∞ 
  where ||x||∞ = maxi |xi| 



Noisy Power Method 

Input: n x n matrix A, parameters T, ε,δ > 0  
Pick random unit vector x0 

For t = 1 to T: 
 yt = Axt-1 + gt,     gt = N(0, T log(1/δ)/ε2 |xt-

1|∞)n 

 xt = yt/|yt|2 

Output xT 
 

largest squared 
entry of xt-1  
in [1/n,1] 

Fact: Satisfies (ε,δ)-differential privacy 

2 



Bounding the largest entry of xt 

Lemma [H-Roth13]: 

Can we do better? 

Let v1,...,vn be  singular vectors of A 

Easy bound : 

Put 



A pleasant surprise 
known as coherence  
of A and widely studied 

much less than n for  
real world data 

polylog(n) in  
random models 
[CandesTao09] 

Theoretically and empirically often small 

Previous lemma: 

and hence 



Performance of Power Method 

Theorem [H-Roth’13]:  
The Noisy Power Method satisfies (ε,δ)-differential  
privacy and with T = O(log(n)) steps returns a unit  
vector x  such that 
 
 
provided A satisfies “singular value separation.” 

Contrast with  
 
 

for Randomized 
Response even 

if μ(A)=1 

Theorem: Nearly matching lower  
bound for every setting of μ(A). 



Robust PCA 
[CandesLiMaWright09] 
Cope with corrupted entries 

Matrix Completion 
[CandesTao09,CandesRecht] 
Recover missing entries 

Netflix Prize 
Partial rating   
matrix released. 
Competition:  
Improve recommendation 
system by 10% 

Privacy Outcry 
Users re-identified 
[NarayananShamatikov08] 
 

Differentially Private 
Recommender System 
[McSherryMironov09] 
building on  
Randomized Response 
[BlumDworkMcSherryNissim] 
 
 

Privacy-preserving PCA 
improve RR using incoherence 
[H-Roth12,13] 

When utility and privacy benefit from the same principle 

Low  
coherence 

Other approaches 
[Chaudhuri-Sarwate-
Sinha12, Kapralov-
Talwar13] 



Generalization: Subspace Iteration 

Input: n x n matrix A symmetric, target rank k 

X0 random orthonormal matrix 

For t = 1 to T: 
– Pick Gaussian perturbation Gt 
– Yt = AXt-1 + Gt 

– Xt = Orthonormalize(Yt) 

Output XT    (approx top k singular vectors) 



Principle Angle Between Subspaces 

Let U, X subspaces of dimension k 

k=1    cos Θ(U,X)  = |UTX| 

In general    cos Θ(U,X)  = σmin(UTX) 

sin Θ(U,X)  = σmax(VTX) 
where V orthog. complement of U 

tan Θ(U,X)  = sin Θ(U,X) / cos Θ(U,X) 

U 

X 



Main Convergence Lemma 

If Gt=0 

Let U be spanned by top k singular vectors of A. 



Application 1: Spectral Clustering 
Planted multisection model: 
c clusters, intra-cluster edge probability p 
inter-cluter probability q,    q < p 

How to recover a cluster? 
Simple approach: Cheeger Cut 
1. Compute second eigenvector v2 of the graph G 
2. Sort coordinates in ascending order 
3. Pick vertices corresponding to first n/c coordinates 



Graph with n= 20,000 vertices, p = 0.2 

Application 1: Spectral Clustering 

Open Problem: 
Explore more sophisticated spectral clustering techniques. 
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Application 2: Matrix approximation 
Upper left 40 x 100 corner of a 1000 x 1000 matrix. 



Differentially Private Approximation 
One step Subspace (Non-)Iteration, noisy projection, rounding 

< 1000 
entries 
have  

changed 
out of  

1,000,000 
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In this example: Matrix has  
rank 2 and coherence 2 

making nearly exact recovery feasible 
even under differential privacy. 



Enter Graph Cuts 

• Given graph G=(V,E), cut query is a subset S of V, 
answer is EG(S,Sc) 
 

Goal: Come up with weighted graph G’ 
that satisfies differential privacy and 
approximates all cuts in G.   

S Sc 



Synthetic Data for Cuts: What’s known 

Randomized Response 
 
Error O(sn1/2) 

Johnson-Lindenstrauss 
[BlockiBlumDattaSheffet12] 
 
Error O(s1.5) 
 

Better for s << n 

MW+EM (inefficient) gives error: 

Goal: Preserve all cuts of size s 



JL Approximation of the Laplacian 

Graph Laplacian LG Cut query: 

Fact: EG is the weighted  
edge-vertex incidence matrix 

Suppose we pick random Gaussian 
matrix M and put: 

By JL Theorem, 
preserves single cut up to factor (1±α) with pr 1-β 



Adding in Privacy [BBDM12] 

Theorem [BBDM]:  
For 
the JL approximation of LH satisfies 
(ε,δ)-differential privacy.  

Additive error on one cut of size s: 



LH 

Geometric Intuition 
Sample 

Fact:           Gaussian variable with  
covariance matrix 

Sparse cuts  directions of small variance 

Mixing in (w/n)Kn gives  
variance w2 in every unit direction  

(thus hiding single edge change in G) 

LG 

LK 



End of 
Part II 

But wait, there’s more... 



Part III: 
Supervised Learning 

(Empirical Risk Minimization) 



Supervised Learning: Classification 

Fruit Classifier 

http://www.orangelt.us/info/wp-content/uploads/2010/08/OrangeLT_White_Background.jpg 
http://analyticstraining.in/blog/wp-content/uploads/2014/02/red_delicious_apple.jpg 
http://capitaldisruptivo.files.wordpress.com/2012/04/apples-and-oranges1.jpg 

Apple Orange 

http://www.orangelt.us/info/wp-content/uploads/2010/08/OrangeLT_White_Background.jpg
http://analyticstraining.in/blog/wp-content/uploads/2014/02/red_delicious_apple.jpg
http://capitaldisruptivo.files.wordpress.com/2012/04/apples-and-oranges1.jpg


Supervised Learning: Regression 



Generalized Linear Model 

• Data     Xn = {(x1, y1), (x2, y2), …, (xn, yn)} 
– (xi, yi) sampled IID from distribution D 
– data point xi is d-dimensional, label yi is real 

• Goal: predict y for new x, when (x, y) ~ D 
• Hypothesis class: H 
• Loss function: l(<w, x>; y)  

– loss of hypothesis w on (x,y) 
– assumption: y can be predicted based on a linear 

measurement of x 
– l will be convex in w 



Risk Minimization 

• The Risk Minimization Problem: 
– w* = arg minw E(x, y) ~ D [ l(<w, x>; y) ] 

• How to do that based on Xn? 
• Minimize empirical risk: 

 
 

• Uniform convergence: if everything is “nice”, 
empirical risk minimizer w  w* as n  ∞ 



Regularization 

• Often there are many solutions to the ERM 
problem 
– many hypotheses fit the data 

• Occam’s Razor: pick the “simplest” hypothesis 
• Regularized ERM: 

 
 

• Regularizer r(w): “complexity” of w 



Strong Convexity 

• Need regularizer to be strongly convex: 
– unique optimal w 
– robustness to data perturbation 
– helps privacy: output does not depend on any 

data point too much 
 



Strong Convexity 



Examples 

• SVM:  
– l(<w, x>; y) = max{0,1-y<w,x>}; 
– r(w) = 0.5|w|2 

• Logistic Regression 
– l(<w, x>; y) = log(1 – exp(-y<w,x>); 
– r(w) = 0.5|w|2 

• Ridge Regression 
– l(<w, x>; y) = (y - <w,x>)2; 
– r(w) = 0.5|w|2 

 



Private Algorithm: Output Perturbation 

 
 

 
• (ε,δ)-DP if:  

– l is 1-Lipschitz:  
             |l(<z, x>; y) - l(<w, x>; y)| ≤ |<z-w,x>| 
– |x| ≤ 1 

•  [Chaudhuri, Monteleoni, Sarwate ‘11] 

1. Compute minimizer w of Jn(w) 
2. Sample noise b ~ N(0, c(ε,δ)/λ2n2)d 
3. Output w~ = w + b 



Sensitivity Analysis 

• Intuition: strong convexity -> low sensitivity 
             X = {(x1, y1), (x2, y2), …, (xn, yn)}  
            X’ = {(x1, y1), (x2, y2), …, (x’, y’)} 
Jn(w): risk for X;                  J’n(w): risk for X’   
w: minimizer of Jn(w);       w’: minimizer of J’n(w);     
 Sensitivity: |w – w’| ≤ 2/(λn) 

 
Privacy follows as usual. 



Sensitivity Analysis Sketch 

• Optimality of w, w’ and strong convexity: 
 
 
 

• Only one data point changed: 
 

• Combine + Lipschitz-ness: 
  



Generalization Error 
• Expected risk relates to the optimal risk as: 

 
 
when λ = n-1/2. 

 
• Proof idea [Jain, Thakurta ‘13] 

– Lipschitzness:  
      
                
– <b,x> is Gaussian with variance c(ε,δ)/(λ2n2) 
– bounds Jn(w~) - Jn(w). Suffices by convergence results. 



Variants and Extensions 

• Objective Perturbation [Chaudhuri, Monteleoni, 
Sarwate ‘11], [Kifer, Smith, Thakurta ‘12], [Jain, Thakurta 
’13] 
– minimize Jn(w) + <b, w> for random Gaussian b 
– improved guarantees for “nice” data (adapts to 

convexity of the instance) 
• Analysis can be extended to: 

– ERM with more general loss function 
– Structural constraints (sparse regression) 
– But usually a dependence on d creeps in 



Other Approaches 

• Exploiting robustness 
– Private algorithms from learning algorithms robust to 

perturbations of the input 
–  [Smith, Thakurta ‘13] Private Lasso with optimal 

sampling complexity 

• Online learning: data arrives online, minimize 
regret  
–  [Jain, Kothari, Thakurta ‘12] Sensitivity analysis 
–  [Smith, Thakurta ‘13] Follow the approximate leader 

 



Part IV: 
Streaming Models 

 



The Streaming Model 

 
• Underlying frequency vector A = A [1], …, 

A[n]  
– start with A[i] = 0 for all i.  

• We observe an online sequence of updates: 
– Increments only (cash register):  

• Update is it     A[it] := A[it] + 1 
– Fully dynamic (turnstile): 

• Update is (it ,  ±1)  A[it] := A[it] ± 1 

• Requirements: compute statistics on A  
– Online, O(1) passes over the updates 
– Sublinear space, polylog(n,m) 

 

1, 4, 5, 19, 145, 14 , 5, 5, 16, 4 
+, -, +,   -,      +,   + , -, +,   -,  + 



Typical Problems 
• Frequency moments:  Fk = |A[1]|k + … + |A[n]|k 

– related: Lp norms 
• Distinct elements:   F0 = #{i: A[i] ≠ 0} 
• k-Heavy Hitters: output all i such that A[i] ≥ F1/k 
• Median:  smallest i such that A[1] + … + A[i] ≥ F1/2 

– Generalize to Quantiles  
• Different models: 

– Graph problems: a stream of edges, increments or 
dynamic 

• matchings, connectivity, triangle count 
– Geometric problems: a stream of points 

• various clustering problems 



When do we need this? 
• The universe size n is huge. 
• Fast arriving stream of updates: 

– IP traffic monitoring 
– Web searches, tweets  

• Large unstructured data, external storage: 
– multiple passes make sense 

• Streaming algorithms can provide a first rough 
approximation 
– decide whether and when to analyze more 
– fine tune a more expensive solution 

• Or they can be the only feasible solution 



A taste: the AMS sketch for F2    
[Alon Matias Szegedy 96] 

 
 
 
   
 

        
 
 
h:[n]  {± 1} is 4-wise independent: 

+ 

h(i1) = ± 1  h(i4)   h(i3)   h(i2)   

X   

 E[X2] = F2   E[X4]1/2 ≤ O(F2) 



The Median of Averages Trick 

X11 X12 X13 X14 

X21 X22 X23 X24 

X31 X32 X33 X34 

X41 X42 X43 X44 

X51 X52 X53 X54 

Average 
X1 

X2 

X3 

X4 

X5 

Median 
X 

1/α2 

ln 1/δ 

Average: reduces variance by α2. 
 
Median: reduces probability of large error to δ.  



Defining Privacy for Streams 
• We will use differential privacy. 
• The database is represented by a stream 

– online stream of transactions 
– offline large unstructured database 

• Need to define neighboring inputs: 
– Entry (event) level privacy: differ in a single update 

                               1, 4, 5, 19, 145, 14 , 5, 5, 16, 4 
                               1, 1, 5, 19, 145, 14 , 5, 5, 16, 4 

– User level privacy: replace some updates to i with updates to j  
                               1, 4, 5, 19, 145, 14 , 5, 5, 16, 4 
                               1, 4, 3, 19, 145, 14 , 3, 5, 16, 4 

– We also allow the modified updates to be placed somewhere 
else 



Streaming & DP? 

• Large unstructured database of transactions 
• Estimate how many distinct users initiated 

transactions? 
– i.e. F0 estimation 

 
• Can we satisfy both the streaming and privacy 

constraints? 
– F0  has sensitivity 1 (under user privacy) 
– Computing  F0  exactly takes Ω(n) space 
– Classic sketches from streaming may have large 

sensitivity  



Flajolet Martin Sketch for F0 
• Store a bit map B of L = O(log n) bits. 

– One computer word 
• Randomly hash update to L bits 
• Bitmap: information about least significant 1 in hashed 

values 
 
 
 
 

• Estimate: k = index of lowest 0; Output f(S) = 2k 

– k = 3; Output 8 
 

h(i1) = 01110  

0 0 0 0 0 

h(i2) = 00011  h(i3) = 10011  h(i4) = 01010  

B  0 1 0 0 0 0 1 0 1 0 1 1 0 1 0 1 1 0 1 0 



Oblivious Sketch 
• Accuracy: 

– F0/2 ≤ f(S) ≤ 2F0  with constant probability 
• Obliviousness: distribution of f(S) is entirely determined by F0 

– similar to functional privacy [Feigenbaum Ishai Malkin Nissim Strauss 
Wright 01] 

• Why it helps:  
– Pick noise ηfrom discretized Lap(1/ε) 
– Create new stream S’ to feed to f: 

• If η< 0, ignore first η distinct elements 
• If η> 0, insert elements n+1, …, n+η 

• Distribution of f(S’) is a function of max{F0 +η, 0 }: ε-DP (user) 
• Error:  F0/2 – O(1/ε)≤ f(S) ≤ 2F0 + O(1/ε) 
• Space: O(1/ε + log n)  

– can make log n w.h.p. by first inserting   O(1/ε) elements 



Continual Observation 
• In an online stream, often need to track the value of a statistic.  

– number of reported instances of a viral infection 
– sales over time 
– number of likes on Facebook 

• Privacy under continual observation [Dwork Naor Pitassi Rothblum 
10]: 
– At each time step the algorithm outputs the value of the statistic 
– The entire sequence of outputs is ε-DP (usually event level) 

• Results: 
– A single counter (number of 1’s in a bit stream) [DNPR10] 
– Time-decayed counters [Bolot Fawaz Muthukrishnan Nikolov Taft 13] 
– Online learning [DNPR10] [Jain Kothari Thakurta 12] [Smith Thakurka 

13] 
– Generic transformation for monotone algorithms [DNPR10] 



Binary Tree Technique [DPNR10], 
[Chan Shi Song 10] 

1      0    1      1    1      0     0      1 

1+0 

1 + 2 1+1 

3+2 

1 + 1 1+0 0+1 

Sensitivity of tree: log m 
 
Add Lap(log m/ε) to each node 



Binary Tree Technique 

1       0     1       1    1      0      0       1 

1+0 

1 + 2 1+1 

3+2 

1 + 1 1+0 0+1 

Each prefix: sum of log m nodes 
 
          polylog error per query 



Continuous Counter 

 
• Achieves polylog(m) error per time step 
• Simple variations: 

– the value of m is unknown 
– other statistics decomposable over time intervals 

• Improve error for time-decayed statistics: 
– vary the noise on different levels of the tree 

• Applications to online learning 
– continuous counters  track gradient of risk function 



 
Thank 
you! 
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