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Preface

Real-world applications give rise to networks that are unstructured and often comprised of several components.
Furthermore, they can support multiple dynamical processes that shape the network over time. Network science
refers to the broad discipline that seeks to understand the underlying principles that govern the synthesis, analysis
and co-evolution of networks. In some cases, the data relevant for mining patterns and making decisions comes
from multiple heterogeneous sources and streams in over time. Graphs are a popular representation for such data
because of their ability to represent di↵erent entity and relationship types, including the temporal relationships
necessary to represent the dynamics of a data stream. However, fusing such heterogeneous data into a single
graph or multiple related graphs and mining them are challenging tasks. Emerging massive data has made such
tasks even more challenging.

This workshop will bring together researchers and practitioners in the field to deal with the emerging challenges
in processing and mining large-scale networks. Such networks can be directed as well as undirected, they can be
labeled or unlabeled, weighted or unweighted, and static or dynamic. Networks of networks are also of interest.
Specific scientific topics of interest for this meeting include mining for patterns of interest in networks, e�cient
algorithms (sequential/parallel, exact/approximation) for analyzing network properties, methods and systems for
processing large networks (i.e., Map-Reduce, GraphX, Giraph, etc.), use of linear algebra and numerical analysis
for mining complex networks, database techniques for processing networks, and fusion of heterogeneous data
sources into graphs. Another particular topic of interest is to couple structural properties of networks to the
dynamics over networks, e.g., contagions.

This day long workshop will feature a keynote address, several invited talks, contributed papers, and a panel
discussion on open problems and directions for future research.
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On the Geometry and Extremal Properties of the Edge-Degeneracy Model⇤

Nicolas Kim†‡ Dane Wilburne†§ Sonja Petrović§ Alessandro Rinaldo‡

Abstract

The edge-degeneracy model is an exponential random graph
model that uses the graph degeneracy, a measure of the
graph’s connection density, and number of edges in a graph
as its su�cient statistics. We show this model is relatively
well-behaved by studying the statistical degeneracy of this
model through the geometry of the associated polytope.

Keywords exponential random graph model, degeneracy,

k-core, polytope

1 Introduction

Statistical network analysis is concerned with develop-
ing statistical tools for assessing, validating and model-
ing the properties of random graphs, or networks. The
very first step of any statistical analysis is the formal-
ization of a statistical model, a collection of probabil-
ity distributions over the space of graphs (usually, on
a fixed number of nodes n), which will serve as a ref-
erence model for any inferential tasks one may want to
perform. Statistical models are in turn designed to be
interpretable and, at the same time, to be capable of re-
producing the network characteristics pertaining to the
particular problem at hand. Exponential random graph
models, or ERGMs, are arguably the most important
class of models for networks with a long history. They
are especially useful when one wants to construct mod-
els that resemble the observed network, but without the
need to define an explicit network formation mechanism.
In the interest of space, we single out classical references
[2], [4], [9] and a recent review paper [8].

Central to the specification of an ERGM is the
choice of su�cient statistic, a function on the space
of graphs, usually vector-valued, that captures the
particular properties of a network that are of scientific
interest. Common examples of su�cient statistics are
the number of edges, triangles, or k-stars, the degree
sequence, etc; for an overview, see [8]. The choice of
a su�cient statistic is not to be taken for granted: it
depends on the application at hand and at the same time
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it dictates the statistical and mathematical behavior of
the ERGM. While there is not a general classification of
‘good’ and ‘bad’ network statistics, some lead to models
that behave better asymptotically than others, so that
computation and inference on large networks can be
handled in a reliable way.

In an ERGM, the probability of observing any given
graph depends on the graph only through the value of its
su�cient statistic, and is therefore modulated by how
much or how little the graph expresses those properties
captured by the su�cient statistics. As there is virtually
no restriction on the choice of the su�cient statistics,
the class of ERGMs therefore possesses remarkable
flexibility and expressive power, and o↵ers, at least in
principle, a broadly applicable and statistically sound
means of validating any scientific theory on real-life
networks. However, despite their simplicity, ERGMs
are also di�cult to analyze and are often thought to
behave in pathological ways, e.g., give significant mass
to extreme graph configurations. Such properties are
often referred to as degeneracy; here we will refer to it
as statistical degeneracy [10] (not to be confused with
graph degeneracy below). Further, their asymptotic
properties are largely unknown, though there has been
some recent work in this direction; for example, [6] o↵er
a variation approach, while in some cases it has been
shown that their geometric properties can be exploited
to reveal their extremal asymptotic behaviors [22], see
also [18]. These types of results are interesting not only
mathematically, but have statistical value: they provide
a catalogue of extremal behaviors as a function of the
model parameters and illustrate the extent to which
statistical degeneracy may play a role in inference.

In this article we define and study the properties
of the ERGM whose su�cient statistics vector consists
of two quantities: the edge count, familiar to and of-
ten used in the ERGM family, and the graph degen-
eracy, novel to the statistics literature. (These quanti-
ties may be scaled appropriately, for purpose of asymp-
totic considerations; see Section 2.) As we will see,
graph degeneracy arises from the graph’s core struc-
ture, a property that is new to the ERGM framework
[11], but is a natural connectivity statistic that gives a
sense of how densely connected the most important ac-
tors in the network are. The core structure of a graph



(see Definition 2.1) is of interest to social scientists and
other researchers in a variety of applications, including
the identification and ranking of influencers (or “spread-
ers”) in networks (see [14] and [1]), examining robust-
ness to node failure, and for visualization techniques for
large-scale networks [5]. The degeneracy of a graph is
simply the statistic that records the largest core.

Cores are used as descriptive statistics in several
network applications (see, e.g., [16]), but until recently,
very little was known about statistical inference from
this type of graph property: [11] shows that cores are
unrelated to node degrees and that restricting graph
degeneracy yields reasonable core-based ERGMs. Yet,
there are currently no rigorous statistical models for
networks in terms of their degeneracy. The results in
this paper thus add a dimension to our understating
of cores by exhibiting the behavior of the joint edge-
degeneracy statistic within the context of the ERGM
that captures it, and provide extremal results critical to
estimation and inference for the edge-degeneracy model.

We define the edge-degeneracy ERGM in Section 2,
investigate its geometric structure in Sections 3, 4, and
5, and summarize the relevance to statistical inference
in Section 6.

2 The edge-degeneracy (ED) model

This section presents the necessary graph-theoretical
tools, establishes notation, and introduces the ED
model. Let Gn denote the space of (labeled, undirected)

simple graphs on n nodes, so |Gn| = 2(
n
2).

To define the family of probability distributions
over Gn comprising the ED model, we first define the
degeneracy statistic.

Definition 2.1. Let G = (V,E) be a simple, undi-

rected graph. The k-core of G is the maximal subgraph

of G with minimum degree at least k. Equivalently, the

k-core of G is the subgraph obtained by iteratively delet-

ing vertices of degree less than k. The graph degeneracy
of G, denoted degen(G), is the maximum value of k for

which the k-core of G is non-empty.

This idea is illustrated in Figure 1, which shows a
graph G and its 2-core. In this case, degen(G) = 4.

Figure 1: A small graph G (left) and its 2-core (right).
The degeneracy of this graph is 4.

The edge-degeneracy ERGM is the statistical model
on Gn whose su�cient statistics are the rescaled graph
degeneracy and the edge count of the observed graph.
Concretely, for G 2 Gn let

t(G) =

✓

E(G)/

✓

n

2

◆

, degen(G)/(n� 1)

◆

,(2.1)

where E(G) is the number of edges of G. The ED model
on Gn is the ERGM {Pn,✓, ✓ 2 R2}, where

Pn,✓(G) = exp {h✓, t(G)i �  (✓)}(2.2)

is the probability of observing the graph G 2 Gn for the
choice of model parameter ✓ 2 R2. The log-partition
function  : R2 ! R, given by  (✓) =

P

G2Gn
e

h✓,t(G)i

serves as a normalizing constant, so that probabilities
add up to 1 for each choice of ✓ (notice that  (✓) < 1
for all ✓, as Gn is finite).

Notice that di↵erent choices of ✓ = (✓
1

, ✓

2

) will lead
to rather di↵erent distributions. For example, for large
and positive values of ✓

1

and ✓

2

the probability mass
concentrates on dense graphs, while negative values
of the parameters will favor sparse graphs. More
interestingly, when one parameter is positive and the
other is negative, the model will favor configurations in
which the edge and degeneracy count will be balanced
against each other. Our results in Section 5 will provide
a catalogue of such behaviors in extremal cases and for
large n.

The normalization of the degeneracy and the edge
count in (2.1) and the presence of the coe�cient

�n
2

�

in the ED probabilities (2.2) are to ensure a non-
trivial limiting behavior as n ! 1, since E(G) and
degen(G) scale di↵erently in n (see, e.g., [6] and [22]).
This normalization is not strictly necessary for our
theoretical results to hold. However, the ED model, like
most ERGMs, is not consistent, thus making asymptotic
considerations somewhat problematic.

Lemma 2.1. The edge-degeneracy model is an ERGM

that is not consistent under sampling, as in [21].

Proof. The range of graph degeneracy values when
going from a graph with n vertices to one with n + 1
vertices depends on the original graph; e.g. if there is
a 2-star that is not a triangle in a graph with three
vertices, the addition of another vertex can form a
triangle and increase the graph degeneracy to 2, but if
there was not a 2-star then there is no way to increase
the graph degeneracy. Since the range is not constant,
this ERGM is not consistent under sampling.

Thus, as the number of vertices n grows, it is important
to note the following property of the ED model, not



uncommon in ERGMs: inference on the whole network
cannot be done by applying the model to subnetworks.

In the next few sections we will study the geometry
of the ED model as a means to derive some of its
asymptotic properties. The use of polyhedral geometry
in the statistical analysis of discrete exponential families
is well established: see, e.g., [2], [4], [7], [20], [19].

3 Geometry of the ED model polytope

The edge-degeneracy ERGM (2.2) is a discrete expo-
nential family, for which the geometric structure of the
model carries important information about parameter
estimation including existence of maximum likelihood
estimate (MLE) - see above mentioned references. This
geometric structure is captured by the model polytope.

The model polytope Pn of the ED model on Gn is
the convex hull of the set of all possible edge-degeneracy
pairs for graphs in Pn. In symbols,

Pn := conv
n

(E(G), degen(G)), G 2 Gn

o

⇢ R2

.

Note the use of the unscaled version of the su�cient
statistics in defining the model polytope. In this section,
the scaling used in model definition (2.1) has little
impact on shape of Pn, thus - for simplicity of notation -
we do not include it in the definition of Pn. The scaling
factors will be re-introduced, however, when we consider
the normal fan and the asymptotics in Section 4.

In the following, we characterize the geometric
properties of Pn that are crucial to statistical inference.
First, we arrive at a startling result, Proposition 3.1,
that every integer point in the model polytope is a re-
alizable statistic. One implication of this is obtained in
conjunction with other asymptotic results discussed be-
low. Second, Proposition 3.3 implies that the observed
network statistics will almost surely lie in the relative
interior of the model polytope, which is an important
property because estimation algorithms are guaranteed
to behave well when o↵ the boundary of the polytope.
This also implies that the MLE for the edge-degeneracy
ERGM exists almost surely for large graphs. In other
words, there are very few network observations that can
lead to statistical degeneracy, that is, bad behavior of
the model for which some ERGMs are famous. That be-
havior implies that a subset of the natural parameters
is non-estimable, making complete inference impossible.
Thus it being avoided by the edge-degeneracy ERGM
is a desirable outcome. In summary, Propositions 3.3,
3.1, 3.4 and Theorem 3.1 completely characterize the
geometry of Pn and thus solve [17, Problem 4.3] for this
particular ERGM. Remarkably, this problem—although
critical for our understanding of reliability of inference
for such models– has not been solved for most ERGMs

except, for example, the beta model [20], which relied
heavily on known graph-theoretic results.

Let us consider Pn for some small values of n. The
polytope P

10

is plotted in Figure 2.

The case n = 3. There are four non-isomorphic graphs
on 3 vertices, and each gives rise to a distinct edge-
degeneracy vector:

t

 !

= (0, 0) t

 !

= (1, 1)

t

 !

= (2, 1) t

 !

= (3, 2)

Hence P
3

= conv {(0, 0), (1, 1), (2, 1), (3, 2)}. Note that
in this case, each realizable edge-degeneracy vector lies
on the boundary of the model polytope. We will see
below that n = 3 is the unique value of n for which there
are no realizable edge-degeneracy vectors contained in
the relative interior of Pn.

The case n = 4. On 4 vertices there are 11 non-
isomorphic graphs but only 8 distinct edge-degeneracy
vectors. Without listing the graphs, the edge-
degeneracy vectors are:

(0, 0), (1, 1), (2, 1), (3, 1), (3, 2), (4, 2), (5, 2), (6, 3).

Here we pause to make the simple observation that
Pn ⇢ Pn+1

always holds. Indeed, every realizable
edge-degeneracy vector for graphs on n vertices is also
realizable for graphs on n + 1 vertices, since adding
a single isolated vertex to a graph a↵ects neither the
number of edges nor the graph degeneracy.

The case n = 5. There are 34 non-isomorphic graphs
on n = 5 vertices but only 15 realizable edge-degeneracy
vectors. They are:

(0, 0), (1, 1), (2, 1), (3, 1), (3, 2), (4, 2), (5, 2), (6, 3),

(4, 1), (6, 2), (7, 2), (7, 3), (8, 3), (9, 3), (10, 4),

where the pairs listed on the top row are contained
in P

4

and the pairs on the second row are contained
in P

5

\ P
4

. Here we make the observation that the
proportion of realizable edge-degeneracy vectors lying
on the interior of the Pn seems to be increasing with n.
This phenomenon is addressed in Proposition 3.3 below.
Figure 2 depicts the integer points that define P

10

.
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Figure 2: The integer points that define the model
polytope P

10

.

The case for general n. It is well known in the theory
of discrete exponential families that the MLE exists if
and only if the average su�cient statistic of the sample
lies in the relative interior of the model polytope. This
leads us to investigate which pairs of integer points
correspond to realizable edge-degeneracy vectors.

Proposition 3.1. Every integer point contained in Pn

is a realizable edge-degeneracy vector.

Proof. Suppose that G is a graph on n vertices with
degen(G) = d  n � 1. Let Un(d) be the minimum
number of edges over all such graphs and let Ln(d) be
the maximum number of edges over all such graphs.
Our strategy will be to show that for all e such that
Un(d)  e  Ln(d), there exists a graph G on n vertices
such that degen(G) = d and E(G) = e.

First, observe that if degen(G) = d, then there
are at least d + 1 vertices of G in the d-core. Using
this observation, it is not di�cult to see that Un(d) =
�d+1

2

�

. This is the minimum number of edges required to
construct a graph with a non-empty d-core; hence, the
upper boundary of Pn consists of the points (

�d+1

2

�

, d)
for 0  d  n � 1. Further, it is clear that there is
exactly one graph (up to isomorphism) corresponding
to the edge-degeneracy vector (

�d+1

2

�

, d); it is the graph

Kd+1

+K

1

+ . . .+K

1

| {z }

n�d�1 times

,(3.3)

i.e., the complete graph on d + 1 vertices along with
n� d� 1 isolated vertices.

It is an immediate consequence of [11, Proposition
11] that Ln(d) =

�d+1

2

�

+(n�d�1) ·d. Thus, for each e

such that Un(d) =
�d+1

2

�

< e <

�d+1

2

�

+ (n� d� 1) · d =

Ln(d), we must show how to construct a graph G

on n vertices with graph degeneracy d and e edges.
Call the resulting graph Gn,d,e. To construct Gn,d,e,
start with the graph in 3.3. Label the isolated vertices
v

1

, . . . , vn�d�1

. For each j such that 1  j  e�
�d+1

2

�

,
add the edge ej by making the vertex vi such that
i ⌘ j mod n � d � 1 adjacent to an arbitrary vertex
of Kd+1

. This process results in a graph with exactly
e =

�d+1

2

�

+ j edges, and since j < (n � d � 1) · d,
our construction guarantees that we have not increased
the graph degeneracy. Hence, we have constructed
Gn,d,e. Combined with Lemma 3.1 below, this proves
the desired result.

The preceding proof also shows the following:

Proposition 3.2. Pn contains exactly

n�1

X

d=0

[(n� d� 1) · d+ 1](3.4)

integer points. This is the number of realizable edge-

degeneracy vectors for every n.

The following property is useful throughout:

Lemma 3.1. Pn is rotationally symmetric.

Proof. For n � 3 and d 2 {1, . . . , n� 1},

Ln(d)� Ln(d� 1) = Un(n� d)� Un(n� d� 1).

Note that the center of rotation is the point ((n �
1)n/4, (n � 1)/2). The rotation is 180 degrees around
that point.

As mentioned above, the following nice property of
the ED model polytope implies that the MLE for the
ED model exists almost surely for large graphs.

Proposition 3.3. Let pn denote the proportion of re-

alizable edge-degeneracy vectors that lie on the relative

interior of Pn. Then,

lim
n!1

pn = 1.

Proof. This result follows from analyzing the formula
in 3.4 and uses the following lemma:

Lemma 3.2. There are 2n�2 realizable lattice points on

the boundary of Pn, and each is a vertex of the polytope.

Proof. We know that there are 2n� 2 lattice points on
the boundary of Pn. We show that they are all vertices
of Pn. Note that these will be the only vertices of Pn,
since Pn is the closure of the convex hull of a set of



lattice points S, so if S contains any lattice points, they
will certainly all be in Pn.

First, since Pn ✓ Z+ ⇥ Z+, and (0, 0) 2 Pn for all
n, we know that (0, 0) must be a vertex of Pn. By the
rotational symmetry of Pn, (n� 1, (n� 1)n/2) must be
a vertex, too.

It is su�cient to show that�U (d) := Un(d)�Un(d�
1) satisfies �U (d) 6= �U (d� 1) for all d 2 {2, 3, . . . , n�
1}; this is because of the rotational symmetry of Pn.
Since �U (d) = d, and d 6= d�1 for any d, each point on
the upper boundary must be a vertex of the polytope.
This proves the lemma.

To prove the proposition, we then compute:

pn =

Pn�1

d=0

[(n� d� 1) · d+ 1]� (2n� 2)
Pn�1

d=0

[(n� d� 1) · d+ 1]
! 1.

3.1 Extremal points of Pn. Now we turn our at-
tention to the problem of identifying the graphs corre-
sponding to extremal points of Pn. Clearly, the bound-
ary point (0, 0) is uniquely attained by the empty graph
K̄n and the boundary point (

�n
2

�

, n� 1) is uniquely at-
tained by the compete graph Kn. The proof of Propo-
sition 3.1 shows that the unique graph corresponding
to the upper boundary point (Un(d), d) is a complete
graph on d+1 vertices union n�d�1 isolated vertices.
The lower boundary graphs are more complicated, but
the graphs corresponding to two of them are classified
in the following proposition.

Proposition 3.4. The graphs corresponding to the

lower boundary point (Ln(1), 1) of Pn are exactly the

trees on n vertices. The unique graph corresponding to

the lower boundary point (Ln(n� 2), n� 2) is the com-

plete graph on n vertices minus an edge.

Proof. First we consider graphs with edge-degeneracy
vector (Ln(1), 1). By the formula given in the proof of
Proposition 3.1, Ln(1) =

�

2

2

�

+ (n � 1 � 1) = n � 1.
A graph with degeneracy 1 must be acyclic, since
otherwise it would have degeneracy at least 2. By a
well known classification theorem for trees, an acyclic
graph on n vertices with n�1 edges is a tree. Similarly,
a graph corresponding to the lower boundary point
(Ln(n�2), n�2) has

�n�1

2

�

+(n� (n�2)�1)(n�2) =
�n
2

�

� 1 edges. There is only one such graph: the
complete graph on n vertices minus an edge.

The graphs corresponding to extremal points
(Ln(d), d) for 2  d  n � 3 are called maximally d-

degenerate graphs and were studied extensively in [3].
Such graphs have many interesting properties, but are
quite di�cult to fully classify or enumerate.

In the following theorem, we show that the lower
edge of Pn is like a mirrored version of the upper edge.
This partially characterizes the remaining maximally d-
degenerate graphs.

Theorem 3.1. Consider G(Un(d)) 2 Gn to be the

unique graph on n nodes with degeneracy d that has the

minimum number of edges, given by Un(d). Similarly,

let G(Ln(d)) ⇢ Gn be the set of graphs on n nodes with

degeneracy d that have the maximum number of edges,

given by Ln(d). Then, for all d 2 {0, 1, . . . , n� 1},

G(Un(d)) 2 G(Ln(n� (d+ 1))).

Proof. As we know, G(Un(d)) = Kd+1

+ Kn�(d+1)

.
Taking the complement,

(3.5) G(Un(d)) = Kd+1

[Kn�(d+1)

.

We only need to show that this has Ln((n�1)�d) edges
and graph degeneracy (n� 1)� d.

It is straightforward to show that (3.5) has the
right number of edges. Since G(Un(d)) has

�d+1

2

�

edges,

G(Un(d)) must have
�n
2

�

�
�d+1

2

�

= Ln((n�1)�d) edges.
As for the graph degeneracy, we know that

Kn�(d+1)

must be a subgraph of G(Un(d)) from the
last equality of (3.5). Since for any a and b we have
Ka [ Kb = Ka+b by definition of the complete graph,
and

K

1

[Kn�(d+1)

 Kd+1

[Kn�(d+1)

= G(Un(d))

by its construction, we have that Kn�(d+1)+1

is a sub-

graph of G(Un(d)), and therefore degen(G(Un(d))) �
n� (d+1). However, degen(G(Un(d))) < n� (d+1)+1
because G(Un(d)) \ Kn�(d+1)

contains no edges; i.e.,
it is impossible for Kn�(d+1)+m to be a subgraph of

G(Un(d)) for any m > 1, so degen(G(Un(d))) = n �
(d+ 1), as desired.

4 Asymptotics of the ED model polytope and

its normal fan

Since we will let n ! 1 in this section, it will be
necessary to rescale the polytope Pn so that it is
contained in [0, 1]2, for each n. Thus, we divide the
graph degeneracy parameter by n � 1 and the edge
parameter by

�n
2

�

, as we have already done in (2.1).
While this rescaling has little impact on shape of

Pn discussed in Section 3, it does a↵ect its normal fan,
a key geometric object that plays a crucial role in our
subsequent analysis. We describe the normal fan of the
normalized polytope next.

Proposition 4.1. All of the perpendicular directions

to the faces of Pn are:

{±(1,�m) : m 2 {1, 2, . . . , n� 1}}.



So, after normalizing, we get that the directions are

{±(1,� 2

↵n

) : ↵ 2 {1/(n� 1), 2/(n� 1), . . . , 1}}.

Proof. The slopes of the line segments defining each
face of Pn are 1/�U (d) = 1/d in the unnormalized
parametrization. To get the slopes of the normalized
polytope, just multiply each slope by

�n
2

�

/(n�1) = n/2.

Our next goal is to describe the limiting shape of
the normalized model polytope and its normal fan as
n ! 1. We first collect some simple facts about the
limiting behavior of the normalized graph degeneracy
and edge count.

Proposition 4.2. If ↵ 2 [0, 1] such that ↵(n� 1) 2 N
(so that ↵ parameterizes the normalized graph degener-

acy), then

lim
n!1

Un(↵(n� 1))
�n
2

� = ↵

2

.

Furthermore, due to the rotational symmetry of Pn,

lim
n!1

Ln(↵(n� 1))
�n
2

� = 1� (1� ↵)2.

Proof. By definition, Un(↵(n � 1)) = ↵2

2

n

2 + o(n).
Hence,

Un(↵(n� 1))
�n
2

� =
↵2

2

n

2 + o(n)
n(n�1)

2

! ↵

2

.

We can now proceed to describe the set limit cor-
responding to the sequence {Pn}n of model polytopes.
Let

P = cl
�

t 2 R2 : t = t(G), G 2 Gn, n = 1, 2, . . .
 

be the closure of the set of all possible realizable
statistics (2.1) from the model. Using Propositions 4.1
and 4.2 we can characterize P as follows.

Lemma 4.1. 1. Pn ⇢ P for all n and limn Pn = P.

2. Let L and U be functions from [0, 1] into [0, 1] given
by

L(x) = 1�
p
1� x and U(x) =

p
x.

Then,

P =
�

(x, y) 2 [0, 1]2 : L(x)  y  U(x)
 

.

The convex set P is depicted at the top of Figure 4.
In order to study the asymptotics of extremal

properties of the ED model, the final step is to describe

all the normals to P. As we will see in the next section,
these normals will correspond to di↵erent extremal
behaviors of the model. Towards this end, we define
the following (closed, pointed) cones

C; = cone {(1,�2), (�1, 0)} ,
C

complete

= cone {(1, 0), (�1, 2)} ,
C

U

= cone {(�1, 0), (�1, 2)} ,
C

L

= cone {(1, 0), (1,�2)} ,

where, for A ⇢ R2, cone(A) denote the set of all conic
(non-negative) combinations of the elements in A. It is
clear that C; and C

complete

are the normal fan to the
points (0, 0) and (1, 1) of P. As for the other two cones,
it is not hard to see that the set of all normal rays to
the edges of the upper, resp. lower, boundary of Pn for
all n are dense in CU , resp. CL. As we will show in
the next section, the regions C; and C

complete

indicate
directions that, for large n, of statistical degeneracy
towards the empty and complete graphs, respectively.
On the other hand CU and CL contain directions of
non-trivial convergence to extremal configurations of
maximal and minimal graph degeneracy. See Figure 3
and the middle and lower part of Figure 4.

θE

θD

Figure 3: The green regions indicate directions of
nontrivial convergence. The bottom-left and top-right
red regions indicate directions towards the empty graph
K̄n and complete graph Kn, respectively.

5 Asymptotical Extremal Properties of the ED

Model

In this section we will be describe the behavior of
distributions from the ED model of the form Pn,�+rd,
where d is a non-zero point in R2 and r a positive
number. In particular, we will consider the case in which
d and � are fixed, but n and r are large (especially
r). We will show that there are four possible types
of extremal behavior of the model, depending on d,
the “direction” along which the distribution becomes
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Figure 4: (Top) the sequence of normalized polytopes
{Pn}n converges outwards, starting from P
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in the
center. (Middle) and (bottom) are the representative
infinite graphs along points on the upper and lower
boundaries of P, respectively, depicted as graphons [15]
for convenience.

extremal (for fixed n and as r grows unbounded).
This dependence can be loosely expressed as follows:
each d will identify one and only one value ↵(d) of
the normalized edge-degeneracy pairs such that, for all
n and r large enough, Pn,�+rd will concentrate only
on graphs whose normalized edge-degeneracy value is
arbitrarily close to ↵(d).

In order to state this result precisely, we will first
need to make some elementary, yet crucial, geometric
observations. Any d 2 R2 defines a normal direction
to one point on the boundary of P. Therefore, each
d 2 R2 identifies one point on the boundary of P, which

we will denote ↵(d). Specifically, any d 2 C; is in the
normal cone to the point (0, 0) 2 P, so that ↵(d) = (0, 0)
(the normalized edge-degeneracy of the empty graph)
for all d 2 C; (and those points only). Similarly,
any d 2 C

complete

is in the normal cone to the point
(1, 1) 2 P, and therefore ↵(d) = (1, 1) (the normalized
edge-degeneracy of Kn) for all d 2 C

complete

(and those
points only). On the other hand, if d 2 int(CL), then
d is normal to one point on the upper boundary of P.
Assuming without loss of generality that d = (1, a), ↵(d)
is the point (x, y) along the curve {L(x), x 2 [0, 1]} such
that L0(x) = � 1

a . Notice that, unlike the previous cases,
if d and d

0 are distinct points in int(CL) that are not
collinear, ↵(d) 6= ↵(d0). Analogous considerations hold
for the points d 2 int(CU ): non-collinear points map to
di↵erent points along the curve {U(x), x 2 [0, 1]}.

With these considerations in mind, we now present
our main result about the asymptotics of extremal
properties of the ED model.

Theorem 5.1. Let d 6= 0 and consider the following

cases.

• d 2 int(C;).
Then, for any � 2 R2

and arbitrarily small ✏ 2
(0, 1) there exists a n(✏) such that for all n � n(✏)
there exists a r = r(✏, n) such that, for all r �
r(✏, n) the empty graph has probability at least 1� ✏

under Pn,�+rd.

• d 2 int(C
complete

).
Then, for any � 2 R2

and arbitrarily small ✏ 2
(0, 1) there exists a n(✏) such that for all n � n(✏)
there exists a r = r(✏, n) such that, for all r �
r(✏, n) the complete graph has probability at least

1� ✏ under Pn,�+rd.

• d 2 int(CL).
Then, for any � 2 R2

and arbitrarily small ✏, ⌘ 2
(0, 1) there exists a n(✏) such that for all n � n(✏, ⌘)
there exists a r = r(✏, n) such that, for all r �
r(✏, ⌘, n) the set of graphs in Gn whose normalized

edge-degeneracy is within ⌘ of ↵(d) has probability

at least 1� ✏ under Pn,�+rd.

• d 2 int(CU ).
Then, for any � 2 R2

and arbitrarily small ✏, ⌘ 2
(0, 1) there exists a n(✏) such that for all n � n(✏, ⌘)
there exists a r = r(✏, n) such that, for all r �
r(✏, ⌘, n) the set of graphs in Gn whose normalized

edge-degeneracy is within ⌘ of ↵(d) has probability

at least 1� ✏ under Pn,�+rd.

Remarks. We point out that the directions along the
boundaries of C; and C

complete

are not part of our



results. Our analysis can also accommodate those cases,
but in the interest of space, we omit the results. More
importantly, the value of � does not play a role in the
limiting behavior we describe. We further remark that
it is possible to formulate a version of Theorem 5.1 for
each finite n, so that only r varies. In that case, by
Proposition 4.1, for each n there will only be 2(n � 1)
possible extremal configurations, aside from the empty
and fully connected graphs. We have chosen instead to
let n vary, so that we could capture all possible cases.

Proof. We only sketch the proof for the case d 2
int(CL), which follows easily from the arguments in [22],
in particular Propositions 7.2, 7.3 and Corollary 7.4.
The proofs of the other cases are analogous. First, we
observe that the assumption (A1)-(A4) from [19] hold
for the ED model. Next, let n be large enough such
that d is not in the normal cone corresponding to the
points (0, 0) and (1, 1) of Pn. Then, for each such n, d
either defines a direction corresponding to the normal
of an edge, say en, of the upper boundary of Pn or d is
in the interior of the normal cone to a vertex, say vn,
of Pn. Since Pn ! P, n can be chosen large enough so
that either the vertices of en or vn (depending on which
one of the two cases we are facing) are within ⌘ of ↵(d).

Let us first consider the case when d is normal to
the edge vn of Pn. Since every edge of Pn contains
only two realizable pairs of normalized edge count and
graph degeneracy, namely its endpoints, using the result
in [22], one can choose r = r(n, ✏, ⌘) large enough so
that at least 1 � ✏ of the mass probability of Pn,�+rd

concentrates on the graphs in Gn whose normalized
edge-degeneracy vector is either one of the two vertices
in en. The claim follows from the fact that these vertices
are within ⌘ of ↵(q) For the other case in which d is
in the interior of the normal cone to the vertex vn,
again the results in [22] yield that one can can choose
r = r(n, ✏, ⌘) large enough so that at least 1 � ✏ of
the mass probability of Pn,�+rd concentrates on graphs
in Gk whose normalized edge-degeneracy vector is vn.
Since vn is within ⌘ of ↵(q) we are done.

The interpretation of Theorem 5.1 is as follows.
If d is a non-zero direction in C; and C

complete

, then
Pn,�+rd will exhibit statistical degeneracy regardless of
� and for large enough r, in the sense that it will
concentrate on the empty and fully connected graphs,
respectively. As shown in Figure 3, C; and C

complete

are fairly large regions, so that one may in fact expect
statistical degeneracy to occur prominently when the
model parameters have the same sign. The extremal
directions in CU and CL yields instead non-trivial
behavior for large n and r. In this case, Pn,�+rd will
concentrate on graph configurations that are extremal

in sense of exhibiting nearly maximal or minimal graph
degeneracy given the number of edges.

Taken together, these results suggest that care
is needed when fitting the ED model, as statistical
degeneracy appears to be likely.

6 Discussion

The goal of this paper is to introduce a new ERGM and
demonstrate its statistical properties and asymptotic
behavior captured by its geometry. The ED model is
based on two graph statistics that are not commonly
used jointly and capture complementary information
about the network: the number of edges and the graph
degeneracy. The latter is extracted from important
information about the network’s connectivity structure
called cores and is often used as a descriptive statistic.

The exponential family framework provides a beau-
tiful connection between the model geometry and its
statistical behavior. To that end, we completely charac-
terized the model polytope in Section 3 for finite graphs
and Section 4 for the limiting case as n ! 1. The
most obvious implication of the structure of the ED
model polytope is that the MLE exists almost surely
for large graphs. Another is that it simplifies greatly
the problem of projecting noisy data onto the polytope
and finding the nearest realizable point, as one need
only worry about the projection. Such projections play
a critical role in data privacy problems, as they are used
in computing a private estimator of the released data
with good statistical properties; see [9]. In fact, our ge-
ometric results imply that [11, Problem 4.5] is easier for
the ED model than the beta model based on node de-
grees, which was solved in [8]. Finally, the structure of
the polytope and its normal fan reveal various extremal
behaviors of the model, discussed in Section 5.

Note that the two statistics in the ED model sum-
marize very di↵erent properties of the observed graph,
giving this seemingly simple model some expressive
power and flexibility. In graph-theoretic terms, the de-
generacy summarizes the core structure of the graph,
within which there can be few or many edges (see [11]
for details); combining it with the number of edges pro-
duces Erdős-Renyi as a submodel.

As discussed in Section 2, di↵erent choices of the
parameter vector, that is, values of the edge-degeneracy
pair, lead to rather di↵erent distributions, from sparse
to dense graphs as both parameters are negative or
positive, respectively, as well as graphs where edge count
and degeneracy are balanced for mixed-sign parameter
vectors. Our results in Section 5 provide a catalogue
of such behaviors in extremal cases and for large n.
The asymptotic properties we derive o↵er interesting
insights on the extremal asymptotic behavior of the



ED model. However, the asymptotic properties of non-
extremal cases, that is, those of distributions of the
form Pn,� for fixed � and diverging n, remain completely
unknown. While this an exceedingly common issue with
ERGMs, whose asymptotics are extremely di�cult to
describe, it would nonetheless be desirable to gain a
better understanding of the ED model when the network
is large. In this regard, the variation approach put
forward by [6], which provides a way to resolve the
asymptotics of ERGMs in general, may be an interesting
direction to pursue in future work.
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Abstract

Mining patterns from large-scale networks, such as Peer-to-

Peer (P2P), is a challenging task, because centralization of

data is not feasible. The goal is to develop distributed min-

ing algorithms that are communication e�cient, scalable,

asynchronous, robust to peer dynamism, and which achieve

accuracy as close as possible to centralized ones. In this pa-

per, we present a collaborative classification method based

on Support Vector Machines in large scale P2P networks.

Most of the widely known P2P systems are prone to Data or

Execution skew either due to emergence of small-world net-

work topologies in their overlays, or hierarchical data place-

ments requirements. In such an inherently skewed distribu-

tion of node links and eventually data, existing approaches of

sharing local machine learning models only with immediate

neighbors may deprive a vast majority of scarcely connected

peers of knowledge that can improve their local prediction

accuracies. The main idea of the proposed approach is to

allow communication beyond the direct neighbors in a con-

trolled way that improves the classification accuracy and, at

the same time, keeps the communication cost low through-

out the network. Besides using benchmark Machine Learn-

ing datasets for extensive experimental evaluations, we have

evaluated the proposed method particularly for music genre

classification to exhibit its performance in a real application

scenario. Our collaborative classification method outper-

forms baseline approaches of model propagation by improv-

ing the overall classification performance substantially at the

cost of a tolerable increase in communication.

Keywords: Distributed, Classification, P2P, SVM, Skewed

1 Introduction

1.1 Motivation: In recent years there is an increas-
ing interest for analytical methods that perform data
mining over large-scale data distributed over the peers of
P2P networks such as eDonkey, BitTorrent and Gnutella
to support applications like distributed document classi-
fication for automatic structuring of heterogeneous col-
lections and Web directories, distributed recommenda-
tion systems, distributed intrusion detection, personal-

⇤Information Systems and Machine Learning Lab, University
of Hildesheim, Germany, {khan, schmidt-thieme}@ismll.de

†Data Scientist at a Private Organization, alexan-
dros.nanopoulos@gmail.com

ized media retrieval, online matchmaking, distributed
spam classification, and many others. Data Mining in
large-scale distributed P2P networks is a challenging
task, because centralization of data is not feasible. In
P2P networks, computing devices might be connected
to the network temporarily, communication is unreli-
able and possibly with limited bandwidth, resources of
data and computation can be distributed sparsely, and
the data collections are evolving dynamically. A scheme
which centralizes the data stored all over a P2P network
is usually not feasible, because any change must be re-
ported to the central peer (server), as it might alter the
result significantly. Therefore, the goal is to develop
distributed mining algorithms that are communication
e�cient, scalable, asynchronous, and robust to peer dy-
namism, which achieve accuracy as close as possible to
centralized ones.

Existing research in data mining for P2P networks
focuses on developing local classification or clustering
algorithms which use primitive operations, such as dis-
tributed averaging, majority voting and other aggregate
functions to combine results of local classifiers in order
to establish a consensus of classification decisions among
peers in a local neighborhood of a P2P network [16].
[6] proposed a distributed decision tree for P2P net-
works, by using distributed majority voting. Most of
these locally synchronized algorithms are reactive in a
sense that they tend to monitor every change in data
and keep track of data statistics. Recently researchers
have proposed methods to learn Support Vector Ma-
chines(SVM) classifier in Peer-to-Peer networks, based
on the idea of exchanging local SVM models with the
immediate neighbors [18],[3]

One inherent problem of the aforementioned ap-
proaches is that they do not consider P2P networks
with scale-free topology where the distribution of peer
links and the amount of data stored in peers follows the
power-law distribution, i.e. dp ⇠ x

�a where dp refers
to degree of a peer. In particular, such networks are
prone to Execution skew and Data skew. Execution
skew refers to non-uniform data access across the parti-
tions of peers, while the Data skew describes an uneven
distribution of data across these partitions. Most of
the widely known real-world P2P systems like FreeNet,
Gnutella, BitTorrent, eDonkey, FastTrack, Gia, UMM,



Phenix are prone to data or execution skew due to the
scale-free growth of network topologies in their unstruc-
tured overlays [17], [2]. Another reason of occurrence
of such skews are the hierarchical peer and data place-
ments rules or tendencies in most of these P2P net-
works, basically for e�cient query routing, scalability,
handling node dynamicity and fault-tolerance [13]. Par-
ticularly, this is the case with hierarchical P2P overlays
with multiple levels categorizing the peers according to
their heterogeneous routing roles and varying loads [12].
In such widely used network topologies a group of few
super peers from top levels serve a vast majority of reg-
ular or weak peers in the lower levels through routes
spanning multiple levels and several hops. As a result,
there are usually very few peers with many connections
and large amount of data, whereas a vast majority of
peers have few connections and very small amount of
local data. Additionally, it has been demonstrated that
the degree of a peer tends to correlate with the amount
of data this peer contains [19],[20]. This correlation can
be explained with the fact that in most hierarchical P2P
networks like KaZaA and Gnutella, peers tend to con-
nect with super-peers which o↵er faster response to data
queries with high bandwidth, and show high availabil-
ity. For example, in P2P song sharing, songs which are
very popular are shared by many peers, but only very
few peers share the vast majority of songs [11]. Since
the probability of finding a specific song is much higher
with these super-peers, they attract a lot of connections
from regular peers. On the other hand, a vast majority
of peers are free riders [9], i.e., they share almost no
or very little data, and hence are allowed fewer connec-
tions. As a consequence, such regular peers usually do
not have a su�ciently large local training data set and
are unable to generate accurate classification models.
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Figure 1: Conceptual example of P2P network with
power-law topology and model exchange

The aforementioned idea is exemplified in Figure 1,
which illustrates transitive model propagation in a

P2P network topology that is ‘scale free’. Consider
the shadowed path in Figure 1, which contain peers
{1 . . . 4}. Peer 1 is a super-peer, peer 2 has intermediate
degree, whereas peers 3 and 4 are weak peers (in
Figure 1, peers with higher degree are depicted darker
and bigger and those with lower degree are lighter
in color and smaller). With a direct propagation
scheme, each peer p exchanges its local model mp

with all its neighbors. Peer 1 shares its model m

1

with peer 2, which allows peer 2 to improve its local
model m

2

, because peer 1 is a super-peer and, thus
model m

1

is informative. However, the weak peers,
such as peer 4, would not benefit from this, because
it exchanges models only with peer 3, which is also
weak. Therefore, although a communication cost is paid
to exchange models among weak peers, there will be
no improvement in the accuracy for those weak peers
that are not connected to a super-peer. This problem
becomes more severe, as the local models of weak peers
may be originally (before any model exchange) very
inaccurate and thus classification using these models
will be meaningless (i.e., accuracy is close to random
classification). As a result, weak peers that comprise
the vast majority of a P2P network, may not be able
to perform any meaningful classification. By allowing
transitive propagation of models, local models of super-
peers (such as peer 1) will be able to reach weak peers
(such as peer 4) connected to them through paths
with length larger than one. Based on these findings,
the above mentioned approaches for model propagation
[3], [18] may not scale well in inherently scale-free P2P
networks as exchanging models only with immediate
neighbors restricts the informative knowledge from the
few high level super-peers with large number of peer
connections and data collections, to reach the vast
majority of low level regular or weak peers separated
by multiple hops. With very few connections and not
enough discriminative patterns, large number of these
regular peers are unable to learn e↵ective classifiers
despite the cost of communication for model exchange
among these peers as shown in section 4.3.

1.2 Contribution and Outline: The focus of this
paper is a collaborative classification method based on
Support Vector Machines in the decentralized hierar-
chical P2P networks considering the above mentioned
topological characteristics. We chose SVM as for many
datasets it can perform favorably against other classi-
fiers. Moreover, it is the most promising classifier based
on convex quadratic programming in which global op-
timal solutions can be obtained. We propose a tran-
sitive model exchange method (TRedSVM) to learn
SVM classifier collaboratively among the peers in the



global P2P network topology. In contrast to exist-
ing approaches [3], [18], the proposed approach takes
into account the scale-free topology of P2P networks
and allows communication in a transitive way, i.e., be-
yond immediate neighbors. This way, our method helps
not so well connected peers to receive local models
of other, better connected peers, in order to enhance
the local models of the former, and thus to substan-
tially improve classification accuracy over the entire
P2P network. Since uncontrolled transitive propaga-
tion of classification models can increase the communi-
cation cost (leading eventually to flooding the network),
TRedSVM keeps the communication in control first by
using a reduced variant of SVM called Reduced-SVM
(RSVM) [15] to learn a local classification model at each
peer and secondly but more importantly by performing
a weighted reduction of model sizes at each transitive
step. Therefore, TRedSVM is able to transitively prop-
agate most significant and compact form of knowledge
resulting in substantial increase in classification accu-
racy of the overall network while keeping the communi-
cation cost low.

In order to assess the e�ciency of TRedSVM in real
applications, we have applied it to music genre classifica-
tion problem besides using benchmark Machine Learn-
ing datasets for comparison with baseline model propa-
gation schemes and data centralization approaches. As
modern P2P systems rely on data replication to main-
tain high data availability and faster response time, we
have evaluated the proposed method with data repli-
cation based on relative popularity of data items. Our
experimental results show that TRedSVM improves the
overall classification accuracy of the network substan-
tially at the cost of tolerable increase in communication.
It also provides a reasonable trade-o↵ between commu-
nication cost and overall prediction accuracy, which al-
lows it to compare favorably against existing baseline
approaches.

The rest of the this paper is organized as follows:
Section 2 describes related work. Section 3 describes
the proposed approach of TRedSVM, followed by ex-
periments and evaluations in Section 4 and conclusions
in the end.

2 Related Work

Current state-of-the-art in P2P data mining has evolved
from earlier attempts to perform some primitive oper-
ations (average, sum, max, random sampling) in dis-
tributed setting. For example, [10] proposed a gossip-
based randomized algorithm to compute aggregates
(MAX) in an n-node overlay network. [14] presented
distributed algorithms for e↵ectively calculating basic
statistics of data using the newscast model of computa-

tion. A main goal of these works is to lay a foundation
for more sophisticated data mining algorithms and ap-
plications.

Recent approaches in P2P data mining focus on
developing local classification or clustering algorithms
which in turn make use of primitive operations such as
distributed averaging, majority voting and other aggre-
gate functions. Most representative work in this regard
is distributed decision tree induction [6], distributed K-
Means clustering [8] and distributed classification [16].
A common aspect of these approaches is that they make
use of local algorithms, which compute their result using
information from just a handful of nearby neighbors. A
major limitation of such local algorithms is that up till
now, they have been conceived only to support prim-
itive aggregate operations. A more well known local

algorithm is Majority Voting by [21]. In this algorithm,
each peer maintains its local belief of an estimate of a
global sum based on the number of nodes in that net-
work, to confirm whether a majority threshold is met.
If not then this peer needs to send messages to its neigh-
bors to re-estimate the global sum. A similar work is
published by [16] to achieve a consensus among neigh-
boring peers using distributed plurality voting. Most
of these locally synchronized algorithms are reactive in
a sense that they tend to monitor every single change
in data and keep track of data statistics in their local
neighborhood, which also requires extra polling mes-
sages for coordination.

Based on model propagation, recently another im-
portant work [18] proposed collaborative SVM model
exchange for distributed classification in P2P networks.
Local SVM models are learned on each peer and ex-
changed with immediate neighbors. All the received
models are merged to build a final classifier. A simi-
lar method is proposed in [3] by cascading SVM models
among immediate neighbors in a communication e�-
cient way. Despite the several suitable characteristics
of such methods, their major limitation is that they
consider uniform and controlled placement of peers and
data in P2P networks, and exchange local SVM mod-
els only with immediate neighbors. As discussed in
section-1, these approaches may not scale well in most
real-world P2P networks which follow a hierarchical net-
work topology with highly skewed distribution of peer
degrees.

3 Methodology: Transitive Reduced-SVM

3.1 Basic Concepts and Notations: More for-
mally, we consider an ad-hoc P2P network comprising
of a set of such k autonomous peers P = {1, 2, . . . , k}.
The topology of the P2P network is represented by a
(connected) graph G(P,E), in which each peer p 2 P is



represented by a vertex and an edge {p, q} 2 E, where
E ✓ {{p, q} : p, q 2 P}, whenever peer p is connected
to peer q. Also let Np denote the set of immediate
neighbors of p, i.e., Np = {q 2 P |q 6= p, {p, q} 2 E}.
The local training data set on a peer p is denoted as
Xp ✓ Rd+1, where d is the number of data features.
Based on the local training data set Xp, each peer p

can first build its local classification model mp. Since
exchanging classification models results in additional
communication cost, what is required is the construc-
tion of local classification models that are both accurate
and compact, i.e., they can be represented with a small
amount of information that is needed to be transmitted
between neighboring peers. To attain this, we have used
a variant of SVM called Reduced-SVM (RSVM) [15].
Compared to SVM, RSVM has been reported to be able
to reduce the number of generated support vectors sig-
nificantly while maintaining very good classification ac-
curacy. A brief description of RSVM is given in next
section. Interested readers are referred to [15] for de-
tails.

3.2 Building Local Classifier: As the initializa-
tion step of the proposed method, RSVM classification
model is built using the local training data at each peer.
For the convenience of notation, here we represent local
training data with X instead of Xp. Given is a training

set of instance-label pairs {(xj , yj)}|X|
j=1

, where xj 2 Rd

is an input vector and yj 2 {�1, 1} is the correspond-

ing class label. RSVM starts by adding the term �2

2

to the SVM objective function, and solves the following
optimization problem:

(3.1) min
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where C > 0 balances training error and the regulariza-
tion term in the objective function. The weight vector
w =

�
w

1

, w

2

, . . . , w|X|
�
is perpendicular to the hyper-

plane that separates the two classes, and � is the in-
tercept term. D is an |X| ⇥ |X| diagonal matrix such
that Djj = yj , to specify the target class of each in-
stance. K is the kernel function which computes the
dot product between input vectors in a mapping fea-
ture space. K

�
X,X

T
�
is a |X|⇥ |X| matrix such that

K

�
xi, x

T
j

�
⌘ � (xi)

T
� (xj) where � (x) maps x into a

higher (may be infinite) dimensional space. Solving this
optimization for massive data sets by computing the
full dense non-linear kernel matrix in (3.2), results in
unwieldy storage and computation overhead. To avoid

this overhead, the RSVM replaces the full kernel matrix

K

�
X,X

T
�
with the reduced one K

⇣
X, X̃

T
⌘
2 R|X|⇥r,

where X̃ consists of r random instances from X, such
that r ⌧ |X| where |X| being the number of instances in
X. Subsequently RSVM classifier is learned by solving
the following unconstrained minimization.
(3.3)
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Note that the whole problem including coe�cients w̃

of separating hyperplane and the size of subset data
X̃ used to represent this hyperplane, is reduced to a
positive definite linear system of size r. This size can
be specified by the subset-ratio ⌘ of local data X to be
used for RSVM such that r = d|X|⇥ ⌘e.

3.3 TRedSVM - Transitive Reduced-SVM
Approach The pseudo-code of the asynchronous
TRedSVM algorithm is given in Algorithm 1 and a list
of symbols used is provided in Table 1. TRedSVM starts
by learning local RSVM model mp at each peer p in
the first phase, using a predefined reduction parameter
⌘ initialized by the network for all the peers globally.
Subset-ratio ⌘ directly a↵ects the size of the resulting
modelmp, since it selects the random subset of instances
X̃p, used to learn a nonlinear hyperplane represented by
support vectors, as described in Equation (3.3). A large
value of ⌘ results in a potentially larger model size, and
vice versa. Then, each peer p using its neighbor list Np

propagates the local model mp to all immediate neigh-
bors.

Each peer p keeps a MAPp to map a model to
its sender and a local bu↵er RECp to keep received
models. Moreover for receiving models, a peer waits for
time t until models mq from all the neighbors q 2 Np

have been received. Once all the neighboring models
have been received, in the transitive phase, each peer
p reduces each of the received models mq using RSVM
with its local weighted reduction parameter ⌘p (line 25
of Algorithm 1).1 This step ensures that the size of each
of the received models is further reduced and only the
most statistically significant form reach the weak peers.
As described in Section 1, there is a strong correlation
between degrees of nodes and the size of data they carry,
in this work we have chosen the value of ⌘p weighted by
the hubness level of peer p. Each peer p is assigned to a
hubness level according to its proxy score h (p) defined

as: h (p) = (dp�µd)

�d
, where dp is degree of peer p, µd and

�d are mean and standard deviation of degrees of all

1Parameters like ⌘, ⌘p and Np are network parameters pro-
vided to each joining peer by its associated super-peer.



Table 1: List of symbols in TRedSVM

Symbol Meaning

Xp Local data at peer p
Np Neighbor list of Peer p
mp Local model of pth

peer learned using RSVM

MAPp Maps a model to its sender identifier

RECp Local bu↵er to keep received models of any peer n|n 6=
p

⌘ Subset ratio (global) of data to learn local RSVM

models

⌘p Subset ratio (local) of data for transitive reduction at

peer p defined by its hubness level

the peers in the network, respectively. Hubness levels
result by organizing the proxy scores of all peers in a
small number of groups (in our experiments we used
5 hubness levels, described in Table 2 in Section 4.1).
Hence in TRedSVM, peers with higher hubness levels
such as super-peers perform less reduction in model
size in the transitive step, so that they forward a larger
chunk of this useful information to their associated weak
peers. On the other hand, weak peers with low hubness
levels have insu�cient data to learn useful models, use
smaller ⌘p to perform larger reduction and propagate
much smaller portion of possibly redundant knowledge
as there is a high probability that super-peers may
already have the data points that a weak peer wants
to share. After reducing each of the received models
to only most significant support vectors in the second
phase, for each of these models in RECp, peer p queries
all its neighbors q where q 2 Np and q 6= n. In response,
if q does not have the queried model or has one with a
size similarity smaller than threshold �, it acknowledges
p to send this model. Otherwise, peer q sends a
decline. The optimal value of � is selected empirically
and in our experiments we used � = 50. Again, this
policy is chosen to ensure that a peer only keeps more
informative models that have been routed to it by
stronger peers. On receipt, each peer adds the model
to its bu↵er and updates the map to MAPp(n). This
process of reduction based relearning and controlled
propagation in the second phase continues at each
peer until it has received, from all the neighbors,
subsequent more stronger models which it should have
obtained. Once the propagation to and receipt from
all the neighbors is finished, each peer p merges the
instances xj in all the received models MAPp(n)|n 2 P

from q 2 Np to its local training data and learns
a final SVM model mp. Such a model propagation
scheme can also account for Peer Dynamism, i.e. peers
can join and leave the network anytime. Even if
a peer goes o✏ine, its model still exists on other
peers of the network. This factor allows maintaining
high classification accuracy by sharing models of peers
which were not present in the network at the same

time. Finally, it has to be mentioned that although
TRedSVM performs transitive propagation of models,
it is still a local algorithm, in the sense that each peer
performs computation using information provided by its
neighboring peers. Therefore, the resources required by
TRedSVM are independent of the total number of peers.

Algorithm 1 TRedSVM for Classification at peer p

Require: Local training data Xp, t=time to wait between
retraining, Np=List of neighbors, ⌘ = Subset ratio to
learn peer’s local model, ⌘p = Subset ratio defined by
hubness level to use for transitive reduction

Ensure: Updated model mp

1: mp = RSVM (Xp, ⌘)
2: MAPp := {(p,mp)}
3: REC p := ;
4: . Communication and Model update threads execute in

Parallel
5: loop{communication thread}
6: event=receive event()
7: if type(event)== OFFER MODEL then

8: (n, sizen):= args(event)
9: if |MAPp(n)| == 0 or sizen > |MAPp(n)|+� then

10: send REQUEST MODEL(n) to sender(event)
11: end if

12: else if type(event)== REQUEST MODEL then

13: n:=args(event)
14: send MODEL PARAMETERS(n,MAPp(n)) to

sender(event)
15: else if type(event)== MODEL PARAMETERS

then

16: (n,m):=args(event)
17: RECp(n):=m
18: end if

19: end loop

20: loop{Model update thread}
21: start time = current time()
22: while current time()-start time< t do
23: if exists n | |RECp(n)| > 0 then

24: Xp:=Xp \MAPp(n) [RECp(n)
25: MAPp(n):=RSVM(RECp(n),⌘p)
26: RECp(n) = ;
27: send OFFER MODEL(n, |MAPp(n)|) to all q 2 Np

28: end if

29: end while

30: mp:=RSVM(Xp,⌘)
31: use mp

32: end loop

4 Performance Evaluation

In this section, we first describe the experimental setup,
after which experimental results are presented, and
finally we discuss these results.

4.1 Experimental Setup



Topology and Simulation Environment: To
generate a multi-level hierarchical P2P network with
power law distribution of peers, we used the Barabasi-

Albert model [4] with parameters like preferential con-

nectivity and incremental growth, where a joining peer p
connects to an existing peer q with a probability given
as P (p, q) = dqP

k2V dk
, where dq is degree of existing

node q, V is the set of nodes that have already joined
the network, and

P
k2V dk is the sum of degrees of all

nodes that previously joined the network. For this pur-
pose we used the BRITE, a network topology generation
framework developed at Boston University [1]. The re-
sult is a topology represented by a weighted graph with
edge weights representing communication delays in mil-
liseconds. We evaluated our experiments with varied
number of peers ranging from 100 to 500. We did not
experiment with more peers, since it would result in un-
realistically small sizes of local data at peers and could
adversely a↵ect the performance of P2P classification
systems. For local computation at each peer and moni-
toring of message exchange, we have built our own sim-
ulator (using Java) that simulates distributed dynamic
P2P overlay trees. We have used communication de-
lays on the BRITE network graph as measurement of
time. Local computations and message exchange are
regulated with change of network state, with respect to
a common global clock of a simulator.

Experiments were conducted on a cluster of 41
machines, each with 10 Intel-Xeon 2.4GHz processors,
20GB of Ram, and connected by gigabit Ethernet. For
learning local classifiers, we used the LIBSVM ([7])
implementation of RSVM. Moreover, to compare the
number of support vectors generated by RSVM with
regular SVM, the C-SVC implementation of regular
SVM is used. For RSVM, we used the RBF kernel,
and for each data set, the hyper-parameters � and C

were empirically found using the model selection tool
provided by LIBSVM (covertype : � = 2�7, C = 2�0.1

and cod� rna : � = 2�2, C = 2�2).
Data Sets: We have used existing benchmark Ma-

chine Learning data sets which are among the largest in
the corresponding widely used repositories to evaluate
the performance of our method in comparison to the
stated baselines. In particular, we used the:

• covertype (581012⇥54, 7 classes) data set from UCI
repository, and

• cod-rna(488565 ⇥ 8, 2 classes) data set from LIB-
SVM repository [7].

• Million Song Dataset(1, 000, 000 ⇥ 33, 10 classes)
data set from Million Song Dataset website [5]

Data Distribution and Hubness Levels:
TRedSVM considers a probabilistic distribution of
training data such that size |Xp| of data on a peer
p is directly proportional to its degree dp, such that

|Xp| = |X |. dpP
d , where |X | is the size of original (cen-

tralized) data set. Figure 2 depicts the highly skewed
distribution of the sizes of local training sets among all
peers. Based on the resulting distribution of degrees

Figure 2: Data distribution among peers in TRedSVM
simulation

and data among peers, TRedSVM can consider several
hubness levels, as discussed in Section 3.3. In our eval-
uation we selected five levels ranging from super-peers
(Level-1) to weak peers (Level-5). Peers in each hubness
level used a corresponding ⌘p value assigned to their
hubness level to learn an RSVM model during the tran-
sitive propagation phase. Table 2 lists the ⌘p values
assigned to peers in each hubness level based on their
hubness score. Note that the higher the hubness level
(closer to Level-1), the higher the ⌘p value.

Table 2: Grouping of peers into hubness levels.

Hubness levelDegree of Peers Percentage of SVs

Level-1 di � 20 ⌘p = 0.1
Level-2 15  di < 20 ⌘p = 0.075
Level-3 10  di < 15 ⌘p = 0.05
Level-4 5  di < 10 ⌘p = 0.025
Level-5 di < 5 ⌘p = 0.01

4.2 Music Genre Classification: Music genre are
considered to be important metadata for retrieving
songs in the field of music information retrieval. The
Million Song Dataset (MSD) is the largest publicly
available dataset consisting of audio features and meta-
data for a million contemporary popular music tracks
[5]. But none of the songs in MSD have any genre labels.
In order to evaluate TRedSVM in a real application sce-
nario, we have employed it to the task of automatic clas-
sification of songs in MSD based on their genres. Artist
tags in MSD are used to describe genres and to extract
simple features from the tracks of these artists. To se-
lect standardized, descriptive and consistent tags, we



have chosen the following 10 tags from the top 50 most
popular MusicBrainz tags: classic pop and rock, folk,
dance and electronica, jazz and blues, soul and reggae,
punk, metal, classical, pop, hip-hop. For features, we
have used the following ones from The Echo Nest [5]
loudness, tempo, time signature, key, mode, duration,
average and variance of timbre vectors. As described in
the following section, TRedSVM significantly improves
the percentage of songs with correctly classified genres,
as compared to baseline approaches. Although existing
approaches in music information retrieval have shown
that audio features when combined with lyrics and so-
cial tags can help classifying song genre more accurately,
to account for the scope of this paper, we have only used
simple audio and timbre related features.

4.3 Experimental Results Performance of
TRedSVM is evaluated in terms of classification
accuracy and communication cost, which are the two
most significant aspects for the problem of classification
in P2P networks. Comparison is conducted against
the state-of-the-art approaches of model propagation
among neighboring peers proposed as AllCascade by [3]
and CSVM by [18]. In the results below, we refer to
these approaches as Direct Neighbors Exchange. To
illustrate an upper bound on communication cost, we
also performed experiments with the network Flooding

baseline that performs transitive propagation with-
out controlling the communication cost i.e. without
performing any reduction on propagated model. Ef-
fectiveness of transitive reduction w.r.t Flooding even
without querying for redundant model exchange among
peers, is also presented as a variant Uncoordinated-

TRedSVM. Finally, to demonstrate the e↵ectiveness of
model exchange, we also consider a baseline method
that learns a Local Model of classification without any
model exchange. In our experiments, we distributed
the test data both uniformly across all the peers as
well as using the same skewed distribution as the train
data. The results from both types of experiments did
not show any significant change in the classification
accuracy.

Network wide Classification Accuracy: We
first focus on average classification accuracy of the
whole network. Figure 3 depicts the resulting accuracy
for the four examined methods and the three data
sets. As expected, the simple baseline of Local Model

that involves no exchange of models in Figure 3), is
clearly outperformed by all other methods. TRedSVM
compares favorably to the method that involves model
exchange only among direct neighbors. As expected,
best accuracy is achieved for naive Flooding, but with
in-feasible cost of communication as discussed below.
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Figure 4: Relative communication cost of TRedSVM
compared with the methods of direct exchange and flooding

Communication Cost: Figure 4 illustrates the
communication cost incurred by the four examined
methods, since the simple baseline that involves no ex-
change of models has by definition no communication
cost. The costs are relative to each other when nor-
malized by cost of Direct Neighbors Exchange. Though
Flooding achieved best accuracy, Figure 4 clearly shows
that flooding requires a prohibitive communication cost,
when data becomes huge. Thus, it cannot comprise
a feasible method in real P2P networks. TRedSVM
requires communication cost that is substantially less
than that of flooding and only marginally larger com-
pared to the method that involves exchange of mod-
els only between direct neighbors. The cost incurred
by Uncoordinated-TRedSVM demonstrate that transi-
tive reduction, even without coordination, does actually
reduces the cost substantially as compared to simple
flooding. We have also considered to evaluate a pos-
sible scenario in which we broadcast the most accurate
model (possibly from super-peers) to all the peers in the
network. For example, for covertype data, we consid-
ered the model with best accuracy (73.3%) belonging
to a super peer. The size of this model (in terms of
number of support vectors) was 3911. This simulation
was comprised of 177 peers including the super peer in
consideration. So, broadcasting this model to 176 peers
(3911 x 176) of the network still incurred twice the rel-
ative communication cost of TRedSVM, as depicted in
Figure 4.

Classification Accuracy per Hubness Level:
To provide further insight into the performance of
TRedSVM, we compared the average classification accu-
racy of all examined approaches separately for the peers
of each hubness level. Figure 5 shows that for super-
peers (Level-1), all methods attain comparable accu-
racy. This is natural to expect, since super-peers hav-
ing adequately large training sets and thus gain noth-
ing from model exchange. This explains also the good
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Figure 5: Average classification accuracy of peers at each hubness level and for each method

performance of the simple baseline (Local Model) that
involves no exchange of models. However, for peers
at lower levels, and especially for week peers (Level-
5), TRedSVM is able to provide important improve-
ments in accuracy. It is worth to note that in the
case of the covertype data set, at weak peers (Level-
5) the simple baseline (Local Model) achieves accuracy
close to a constant classifier. The method that performs
exchange only between direct models attains accuracy
only slightly better than random. TRedSVM however
helps a vast majority of weak peers to improve their
accuracy as much as possible, as shows the comparison
with the upper bound of the flooding method.

Accuracy Communication Cost Trade-o↵:
Finally, we examine the impact of parameter ⌘ at each
transitive step in TRedSVM. Figure 6 depicts in a com-
bined way prediction accuracy and communication cost
with respect to the percentage of support vectors used
in RSVM. As expected, communication cost increases
steadily with increasing ⌘ values. Prediction accuracy
also increases with increasing ⌘ values but only up to a
threshold (⌘ = 10 for covertype and cod-rna data), after
which accuracy becomes steady. This clearly shows the
intuition behind the principle we follow in TRedSVM,
i.e., the need to keep the size of exchanged models un-
der control, because otherwise communication cost in-
creases rapidly without any gain in accuracy.

Due to space limitation, we could not include our
experimental results for data replication and data and
model centralization schemes, which also exhibit the
e↵ectiveness of the proposed method. These results
will be provided in the extended version of paper or
as appendix if required.

5 Discussion and Conclusion

The first important conclusion from the presented ex-
perimental results is that for the P2P systems whose
topology follows a skewed distribution of peer degrees
and data, the transitive propagation of TRedSVM helps
the vast majority of weak peers to substantially improve
their classification accuracy. Without any exchange
of models between peers (simple baseline called Local
Model) or with a restricted exchange (Direct Neighbors
Exchange), weak peers have no good chances to receive
informative models from stronger peers that have large
number of informative instances. In model propagation
approaches of distributed classification in P2P networks,
trade-o↵ between prediction accuracy and communica-
tion cost is crucial and a challenging reality. Results in
Figure 3 and Figure 4 illustrate lower and upper bounds
on accuracy and communication cost, respectively. Di-

rect Neighbors Exchange exhibits a lower bound on com-
munication cost, while Flooding resulted in an upper
bound on prediction accuracy. TRedSVM fitted quite
well in these two bounds by incurring slightly larger
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Figure 6: How prediction accuracy and communication cost varies with respect to ⌘ (Colored)

communication cost than the lower bound, and smaller
by large magnitudes than in-feasible naive flooding.
Moreover, controlling the model sizes with respect to ⌘p

at transitive steps is a useful idea, since after a certain
threshold of model size, accuracy is not improved fur-
ther and communication cost is paid without a reason,
as illustrated in Figure 6. Therefore, the optimization
of the trade-o↵ between accuracy and communication
cost makes TRedSVM scalable in large P2P networks.
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Abstract

In many graph applications, the structure of a graph
changes dramatically as a function of time. Such appli-
cations require temporal analytics to fully characterize
the underlying data. Significant research into scalable
analytics of static graphs (where the structure remains
fixed) on High Performance Computing (HPC) systems
has enabled new capabilities, but solutions for scalable
analysis of temporal graphs are lacking. We present
our ongoing work to annotate a scale-free graph in dis-
tributed memory with temporal metadata to model a
time dependent graph. We demonstrate time dependent
graph analytics, and provide initial scalability results on
a data-intensive HPC cluster.

Our approach allows an edge to have local access to
its temporal metadata and thus facilitates algorithms to
make various temporal decisions, e.g., either to accept or
discard the current edge at current time. We performed
experiments with large scale internet tra�c flows ex-
tracted from CAIDA datasets on a data-intensive HPC
Cluster (Catalyst at LLNL). Using this dataset, graph
representation, and the HavoqGT [1] framework, we
successfully implemented and evaluated time dependent
Connected Vertices, Single Source Shortest Path (TD-
SSSP) and Betweenness Centrality. Finally, Between-
ness Centrality was used to test the scalability of frame-
work to 128 compute nodes of Catalyst.

Keywords: Time Dependent Graph, Graph Analytics,
Distributed Graph, HPC.

1 Introduction

Time dependent graphs, also referred to as temporal
graphs or time varying graphs, include temporal infor-
mation in addition to the topological structure. Edges
in time dependent graphs may not continuously ex-
ist and are a function of time, unlike static graphs
where only a single topological structure exists. Systems
with dynamic topological structure are commonly rep-
resented as aggregated graphs, e.g., as weighted graphs
where weights are assigned as number of times edges
occur, or the percentage of total time the edge exists.
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The aggregated representation is used, in part, because
many tools are available for analyzing static graphs,
while there is an absence of solutions for large tempo-
ral graphs. A recent review of temporal networks [2]
discusses the importance and methods to analyze the
temporal structure and model for understanding its im-
pact on the behavior of the dynamical systems.

Analytics on time dependent graphs has been ap-
plied in many fields. Some examples include manage-
ment and planning of complex networks [3, 4], design-
ing strategies for containing the spread of malware in
mobile devices [5], analysis of the circadian patterns of
Wikipedia editorial activity to estimate the geograph-
ical distribution of editors [6]. With temporal infor-
mation, existing graph analytics can be processed with
respect to some global time parameters such as Start

time, the time at which a traversal begins from a ver-
tex and/or Waiting time, the upper bound on the time
a traversal can halt in a vertex before continuing its
traversal to its neighbors as shown in [7]. As an exam-
ple, time dependent single source shortest path (TD-
SSSP) in a road network could yield optimal start time
for a fuel e�cient travel from a source to destination
including amount of time to wait in a city before pro-
ceeding to the next. Also, the temporal information can
be utilized to benefit towards other purposes, e.g., de-
caying weights, establishing probabilities with time. In
this work we experimented with similar analytics with
respect to these time parameters in large scale-free dis-
tributed graphs as an illustration of the capability of
the framework we have developed.

Significant research in the HPC community has
focused on the analysis of large static graphs [8, 9, 10],
fueled in large part by the introduction of the Graph500
benchmark [11]. Much of this work has focused on
processing the largest graph topology possible, on some
of the world’s largest supercomputers. However, little
attention has been given to the processing of graph
metadata (annotations on vertices and edges) or the
temporal nature of many graph datasets.

This work extends HavoqGT [1] to add temporal
metadata to the edges in the existing partitioned-graph
topology and analyze the resulting metadata-annotated
graph with various time dependent algorithms. We aim
to demonstrate a new set of capabilities for analyzing



large scale temporal graphs on modern HPC clusters, by
performing scaling studies with existing time dependent
analytics. Our main contributions in this work are:

1. Extending the capability in HavoqGT to sup-
port implementation of time dependent graph al-
gorithm;

2. Demonstrate temporal graph analytics across two
example time parameters – traversal start and wait
time;

3. Show initial scalability results of the extended
HavoqGT for time dependent algorithms on a HPC
cluster.

2 Related Work

Algorithmic optimizations to compute time-dependent
algorithms such as shortest paths over large graphs by
Ding et al. [7] suggest the need for faster computation
for temporal graph analysis. A use case study by Cat-
tuto et al. [18] shows the model of a time-varying so-
cial network as a property graph in the Neo4j graph
database that focuses on database-type queries based on
time, rather than algorithms for graph analytics such as
time dependent SSSP. A distributed programming ap-
proach by Simmhan et al. [19] uses temporally iterative
BSP model on more specific time-series graphs where
edge parameters change in time more frequently (than
topology). Han et al. [20] proposes time-locality aware
in-memory layouts for snapshots of temporal graphs
for optimal performance on batch-scheduling of graph
computations. However, the paper states that benefits
of suggested optimizations are not prominent in more
network-constrained environments. In our work, we use
our edge based-partitioning with distributed delegates
to partition edges (duplicating for each time duration
it exists) and use asynchronous visitor model to design
graph analytics to execute on distributed-memory HPC
systems.

Related research into e�cient multithreaded be-
tweenness centrality by Madduri et al. [12], and
distributed-memory breadth-first search [8, 9, 10] have
focused on algorithm specific implementations and op-
timizations for static graphs on HPC Systems. Ad-
ditionally, recent frameworks like PowerGraph [14],
GraphLab [15], Pregel [16], GraphX [17] illustrate their
use only on large static graphs. In this work, we extend
an existing framework, HavoqGT, designed for graph
analytics on HPC systems, for use on large scale time-
depending graphs.

Table 1: Visitor Procedures and State

pre visit

Performs a preliminary evaluation of
the state and returns true if the
visitation should proceed.

visit Main visitor procedure

operator >

Greater than comparison used to
locally prioritize the visitor in a max
heap priority queue.

vertex

Stored state representing the vertex
to be visited.

3 Background

3.1 HavoqGT. HavoqGT (Highly Asynchronous
Visitor Queue Graph Toolkit) [1] is a framework de-
veloped based on our previous work [21, 22, 23]. It
presents a new graph partitioning technique and compu-
tation model that distributes the storage, computation
and communication for high-degree vertices (hubs) in
large scale-free graphs by creating vertex delegates, hub
vertices replicated at each partition, co-located with the
edges’ target to achieve a partitioned graph that reduces
communication with the neighbors of hub-vertices and
allows faster parallel traversal. It also provides the dis-
tributed framework that allows implementation of algo-
rithms using an asynchronous visitor abstraction to be
run in parallel and distributed environments on large
scale-free graphs.

This work uses the distributed asynchronous vis-
itor queue abstraction from HavoqGT to provide the
parallelism and to create a data-driven flow of compu-
tation. Traversal algorithms are created using a visitor
abstraction, which allows an algorithm designer to de-
fine vertex-centric procedures to execute on traversed
vertices with the ability to pass visitor state to other ver-
tices [23]. This abstraction requires certain visitor pro-
cedures and state to be defined in the visitor as shown
in Table 1. Algorithm implementations presented in
this paper follow this abstraction. When an algorithm
needs to traverse to another vertex, it dynamically cre-
ates a new visitor and pushes it into the visitor queue.
When an algorithm begins, an initial set of visitors are
pushed on the queue and the framework’s driver invokes
the traversal which runs the asynchronous traversal to
completion.

Our previous work [23] showed that HavoqGT pro-
vided excellent scalability on large scale-free static
graphs up to 131K cores of the IBM BG/P, and out-
performed the best known Graph500 performance on
BG/P Intrepid. In this work, we build upon this ex-
isting scalable framework to provide graph analytics for
time dependent graphs.



3.2 Datasets. To experiment with the time depen-
dent graphs, we required a dataset representative of
time varying large scale-free graphs. The CAIDA [24]
dataset consist of ⇠8 TB of publicly available large
anonymized passive tra�c traces and packet header
traces saved per direction per server collected over 39 1-
hour periods. As packets represent finer-granularity in
network communication mostly governed by the under-
lying protocol, higher abstraction of network communi-
cation i.e. the connection is more likely to represent and
resemble numerous other real-world graphs.

Flows between two communicating sockets were de-
rived by binning the packets exchanged between sockets
by their start time into fixed-sized time windows. All
packets communicated between two sockets in a defined
time window form a flow. As shown in Figure 1, Packet
1 and Packet 2 are combined to form a flow as both
of these packets fall within the 0.0001s time window.
A fixed timeout value from the start time of the first
packet was used to gather a flow’s packets (described
below):

Definition 3.1. A flow from X to Y, between two

communicating socket’s X and Y, corresponds to all the

packets pi transmitted from X to Y, where i = m to n

(m  n) and pi is ordered in non-decreasing start time,

such that

1. start time (pm) is the flow

0
s start time

2. end time (pn) � start time (pm)  timeout, and

3. start time (pn+1) > (start time (pm) + timeout)

Applying this algorithm with timeout of 0.0001s,
we generated ⇠141 billion flows with the ⇠8 TB CAIDA
datasets. The generated flow files were split into smaller
chunks, and stored on a Lustre distributed filesystem.

3.3 Time Dependent Single Source Shortest
Path. A SSSP in a weighted graph (with time delay
edge weight) is a query requesting the shortest time path
from a source vertex to all the other vertices. In a time
dependent graph, the SSSP is influenced largely by the
current timestamp of the graph traversal because edges
(unlike in time independent graphs) exists as a function
of time.

In TD-SSSP, the arrival time at destination vertices
depends on when the traversal begins at the source
vertex, referred to as the traversal start time. Traversal
may arrive to a vertex at di↵erent times because edges
that exist at one point in time of traversal can be
di↵erent (might not exist or have di↵erent edge weights)
at another point in time of traversal at the same parent
in current path. The notion of the traversal waiting

time on a vertex further adds to the dynamic behavior
of the traversal by having a potential to provide more

Figure 1: Figure showing how two packets are merged
to form the flow. Flow begins with the first packet
and then collects all the subsequent packets until the
timeout. Notice that the parameters size and packet
count are accumulated over all the packets in the flow.
Also the start and the end time of the flow merge the
time intervals of each packets into one interval.

(sometimes optimal) choices of path with the wait. As
an example, the edge delay of a flow, the time required
for the flow to reach the destination IP, at time t2 in
addition to the waiting time in the current IP can be
less than the edge delay at any other time t1 ( and
t1 < t2). So, TD-SSSP answers queries of finding the
optimal start time and wait time that minimizes the
total traversal cost.

3.4 Temporal Betweenness Centrality. Between-
ness Centrality is the measure of the extent to which
a vertex in a graph is important or central, with re-
spect to its presence on the shortest path between pairs
of other vertices [25]. The betweenness centrality of a
vertex is the ratio of the number of shortest paths be-
tween pairs of other vertices passing through that vertex
to the total number of shortest paths between pairs in
the graph. Temporal Betweenness Centrality measures
the importance of the vertex in the temporal shortest
paths between pairs of other vertices i.e. the tempo-
ral betweenness for a vertex on a given time interval is
the sum of the proportion of all the temporal shortest
paths through that vertex to the total number of tem-
poral shortest paths over all pairs of vertices for each
time interval in the given time interval. This algorithm
relies on calculation of the temporal shortest path across



pairs at di↵erent time interval, as described in Section
3.3.

4 Distributed Time Dependent Graph
Construction

To process a time dependent graph in HavoqGT, the
graph must be ingested from a raw unpartitioned input
source. The input is an unordered edge list with edge
metadata and temporal information. In two passes, we
first partition the graph topology and second, decorate
the graph with the corresponding metadata.

The graph topology is partitioned using the dis-
tributed delegate techniques described in [23]. The
edge list of the input graph is provided to the frame-
work using the source and destination IP pair from the
metadata list. Several communication phases occur dur-
ing the partitioning phase to partition and balance the
topology. We avoid bundling the edge with its metadata
during the partitioning process, which could unneces-
sarily increase the communication volume. Instead, in
the second pass edge metadata is directly sent to the
edge’s final location using the asynchronous visitor ab-
straction.

Using the asynchronous visitor model, a visitor is
created for each edge metadata and pushed into the
global visitor queue, which pushes the visitor to the
partition owning the source vertex of the edge, thus
relaying the metadata to the outgoing edge of the
corresponding vertex. However, for the high out-degree
vertices which have been delegated, not all edges can be
located on a single partition. In such case, the controller
broadcasts the edge metadata to hub delegates and
registers it to outgoing edge of the delegate in the
partition that owns the edge for that metadata.

In our experiments, we successfully ingested 1.35
billion edges (one hour CAIDA flows) on the Catalyst
cluster in around 5 minutes using 32-compute nodes and
24 processes per node. The raw edge input typically
resides on a shared resource such as a distributed
Lustre file system, sometimes causing large performance
variations depending on current load.

5 Distributed Graph Analytics

In this section, we show how we use multiple, temporal-
metadata entries per edge to represent a time depen-
dent graph, and show implementation details of time
dependent single source shortest path (TD-SSSP) and
betweenness centrality (TD-BC).

5.1 Time Dependent Graphs. Each flow presents
packets sent from one socket to the other for a time
interval [a start time, an end time). Figure 1 shows a
typical flow with its start and end time along with other

Figure 2: An example time dependent graph over three
time intervals

parameters describing it(e.g., total size transferred in
the flow is 2908). Two communicating sockets can have
di↵erent flows between them at di↵erent time intervals.
We use flows to combinely represent edges and their
metadata. The communication from a socket to the
other (link) in the flow represents the directed edge and
all the other parameter including time interval in the
flow represents the metadata for that edge.

Let us denote the i-th flow passes from socket
ui to vi and its start time and end time are ts

i

and tf
i respectively and define [0, T ] as the global

time interval of the dataset i.e. there is no flow
with end time beyond time T. Then, ei = (ui, vi),
the i-th edge, represents link in i-th flow and mi =�
si = ts

i
, fi = tf

i
, otheri

�
, the metadata for the i-th

edge contains all the other information for the i-th flow,
where ui is the source vertex, vi is the destination
vertex , si is the start time of edge i, fi is the finish
time of edge i and otheri represents other parameters
involved in the flow. Let (Ts, Tf ) be any time interval
window. If M (Ts, Tf ) is the set of metadata such
that Ts  start time(mi 2 M (Ts, Tf ))  Tf , then
the edge corresponding to each metadata mi forms a
set of edges E (Ts, Tf ) that exists in this time interval
(Ts, Tf ). Thus, the graph GhTs, Tf i (V,E (Ts, Tf ))
represents the time dependent graph in time interval
(Ts, Tf ). So, di↵erent sets of graph topology with
di↵erent edge parameters at each edges can be seen for
0  Ts < Tf  T .

Figure 2 shows an example of a time dependent
graph modeled from multi-metadata per edge. If M(0,



Figure 3: Plot of number of connected vertices from a single source with respect to the change in start time
experimented over di↵erent waiting time. Time independent traversal from this source has 133 connected vertices
while the time dependent traversal creates significant variation that is further a↵ected by the waiting time spent
on each vertex.

t1) = {m1, m3, m5} , M(t1, t2) = {m1, m4, m6 }
and M(t2, t3) = {m2, m7, m8} are three sets of
metadata over time series 0, t1, t2 and t3, then three
graphs are obtained at those time-intervals as shown
in Figure 2 as G1, G2 and G3. V0D and V0C form
the distributed partitioned hub vertex generated by the
graph construction method discussed in [23] , with V0C

the controller and V0D the delegate.

5.2 Algorithms Implementation Details. The
addition of temporal metadata on the graph topology
supports implementation of various time dependent al-
gorithm in HavoqGT. We discuss the implication of the
temporal information in the graph with respect to the
connectedness of a single vertex and show two algorithm
implementations, time dependent single source short-
est path algorithm and temporal betweenness centrality.
Our framework simplifies the design of algorithms for
time dependent algorithms to be run on HPC systems
by providing a programming abstraction. Algorithms
shown below highlights the use cases of such abstrac-
tion along with the local access of the large temporal
information to achieve scalable graph analytics on large
time dependent graphs.

5.2.1 Connected Vertices. A time dependent ver-
sion of connected components is used to count connected
vertices from a single source for di↵erent start times
and waiting times. Waiting time is the maximum time
a traversal can wait at each vertex before visiting its
neighbors; it can vary the range of traversable edges that
has significance in planning route in complex networks.
The plot in Figure 3 shows the connected vertices from
a single source in the CAIDA data. The count of con-
nected vertices remains constant in the time-flattened
version of our graph (traditional static graph model).
In the time dependent graph, the start time and the
waiting time has significant impact on the count. Be-
ginning the traversal at a later time showed compara-
tively greater connectivity for waiting time 1-15 mins,
which in context of TD-SSSP could yield in a shorter
arrival time at the destination due to wider range of
path choices.

5.2.2 Time Dependent Single Source Shortest
Path. We use a label correcting approach to compute
the time dependent single source shortest path (TD-
SSSP) which records the shortest arrival time at each
vertex, and traverses the neighbors that exist between
arrival time and arrival time + waiting time.



The TD-SSSP begins by visiting the outgoing edges
of a source vertex that exist within the start-time
and waiting-time. The timestamp of traversed edges
determines the new arrival time at neighboring vertices.
The TD-SSSP visitor is shown in Algorithm 1. When
visiting a vertex at a specific arrival time, it uses the
following three conditions: (a) If the arrival time at the
current vertex is less than the last recorded smallest
arrival time, record this time as the shortest arrival
time (Alg. 1, line 5); (b) Only visit the vertex if the
new arrival time is registered (Alg. 1, line 8); (c) Only
traverse the neighbors that exist for waiting time period
after the arrival time at this vertex (Alg. 1, line 15).

Algorithm 1 Time Dependent Single Source Shortest
Path
1: visitor state : vertex vertex to be visited

2: visitor state : arrival time  path arrival time

3: visitor state : parent path parent

4: procedure pre visit(vertex data)
5: if arrival time < vertex data.arrival time then
6: vertex data.arrival time arrival time

7: vertex data.parent parent

8: return true

9: end if
10: return false

11: end procedure

12: procedure visit(graph, visitor queue)
13: for all ei Œout edges(graph, vertex) do
14: metadata edges metadata(ei)
15: not earlier  arrival time + waiting time

16: � metadata.start time

17: not later  arrival time < metadata.end time

18: edge exists not earlier and not later

19: if edge exists == true then
20: new arrival time metadata.end time

21: new visitor  td sssp visitor ( ei.target

22: , new arrival time, vertex)

23: visitor queue.push(new visitor)
24: end if
25: end for
26: end procedure

27: procedure operator>( td sssp visitor a,
td sssp visitor b )

28: return a.arrival time > b.arrival time

29: end procedure

We also record the parent of each vertex in the
shortest path found from the source to this vertex, thus
forming a shortest path tree from the source. This tree

yields the earliest arrival time from the source to each
vertex and also the actual waiting time spent at each
vertex in the shortest path from the source.

5.2.3 Temporal Betweenness Centrality. We
identified two major steps in evaluating the unnormal-
ized but exact betweenness centrality: a) Computing
temporal shortest path between all pairs, and b) Accu-
mulating the count per vertex of the number of times
the vertex is traversed in a path from the leaves of the
shortest path tree of a source to its root per source. We
extended the TD-SSSP ( 5.2.2 ) to start the traversal
from all the vertices and kept the record of the temporal
shortest path from each source. Next, we employed a
distributed recursive algorithm in HavoqGT to process
the TD-SSSP data per source to obtain the count of
shortest paths through each vertex.

The recursive algorithm starts with computing the
out-degree of each vertex per shortest path tree from
a single source. This out-degree count per shortest
path tree will help us identify whether or not all the
children of a vertex have been processed so that it can
decide if the path count collected so far is the complete
count to pass it up to its parent. For each source,
we start traversal from all vertices in source’s shortest
paths that have no children. The vertex’s parent is
then traversed and its child count decremented by one
(Alg. 2, line 5) which signifies of a completed traversal at
that child. The count passed from that child represents
total number of shortest paths that go through that
child and thus is added to the total count of shortest
path through this node (Alg. 2, line 6). The parent will
check to see if its child count is zero (Alg. 2, line 7).
If not, it terminates that traversal and returns (Alg. 2,
line 10). Eventually, one of its children will come back
to this parent and set the child count to zero at which
point, the parent starts its traversal towards its parent
(Alg. 2, line 8).

6 Experimental Results

All our experiments have been executed on 150 Ter-
aFLOP/s Catalyst, Linux HPC Cluster located on
Lawrence Livermore National Laboratory. The results
are based on application of experimental distributed
graph analytics on one-hour period CAIDA flows having
1.35 billion edges (⇠190GB).

Figure 3 summarizes the results obtained from
traversing the time dependent CAIDA graph from an
example single source to record its connectivity to other
vertices at various start time and waiting time. The
variation in connectivity at various start time (plot-
ted as x-axis in Figure 3) is further analyzed for di↵er-
ent waiting time. Globally assigned waiting time for a



Algorithm 2 Temporal Betweenness Centrality
1: visitor state : vertex vertex to be visited

2: visitor state : source source of the traversal

3: visitor state : count shortest path count

4: procedure pre visit(vertex data)
5: vertex data [source] .child count 

vertex data [source] .child count� 1
6: vertex data [source] .shortest path count 

vertex data [source] .shortest path count

+count

7: if vertex data [source] .child count == 0 then
8: return true

9: else
10: return false

11: end if
12: end procedure

13: procedure visit(graph, visitor queue)
14: parent SSSP [source] .parent of (vertex)
15: source data vertex data [source]
16: count source data.shortest path count

17: new visitor  bc visitor (parent, source, count)
18: visitor queue.push (new visitor)
19: end procedure

traversal shows significant e↵ect in changing the results
of various well-known graph algorithms and thus im-
pacts the computation time correspondingly. The vari-
ation shown in Figure 3 shows the reality of the under-
lying data more accurately than the time aggregated
version which would always treat the connectivity the
same across all time ranges.

6.1 Temporal Betweenness Centrality. The un-
normalized temporal betweenness centrality value of
four example vertices with respect to the path wait-
ing time is shown in Figure 4. With the experimented
CAIDA dataset, the plotted vertices show an increas-
ing trend in BC value with increasing waiting time at
vertex, as greater waiting time can make more neigh-
bors traversable. The implication of such results can
be to find vertices with maximum increasing trend of
becoming central within a desired time range.

The computation time of temporal betweenness
centrality is shown in Figure 5. The performance varies
greatly as a function of traversal start-time and waiting-
time. The variance for a range of start times is shown
using 64-compute nodes of the Catalyst cluster. For
each waiting-time value (x-axis), 20 di↵erent starting-
times are shown by the variance bars. As the waiting-
time is increased, the traversal complexity increases as

Figure 4: Plot of unnormalized exact Betweenness
Centrality of four example vertices for varying waiting
time of the shortest path traversal for a fixed starting
time of traversal.

Figure 5: Plot of variance of the computation time for
exact betweenness centrality executed on 64 compute
nodes for traversal start time within first 20 minutes of
the test data with respect to waiting time period from
half-an-hour to the full hour. Intuitively, more com-
putation is required for higher waiting time at earlier
start times as more neighboring edges are available as
we begin early and wait longer.



Figure 6: Plot of variance of computation time across
various start time with respect to the number of com-
pute nodes used to process the time dependent exact
betweenness centrality.

the number of eligible paths increases.
Finally, Figure 6 shows the result of testing strong

scaling of the betweenness centrality executed on the
Catalyst cluster. Variation in computation time with
respect to di↵ering start times was computed for an
infinite waiting time in order to test the scalability of
this framework. The computation time decreases with
an increasing number of compute nodes, and scales near-
linearly up to approximately 32 compute nodes. This
strong-scaling limit is not uncommon for distributed
graph analytics. In our future work, we will investigate
weak-scaling to larger datasets.

7 Summary

We presented our ongoing work to annotate a scale-free
graph in distributed memory with temporal metadata
to model a time dependent graph. With the increased
capability of our distributed framework for high per-
formance temporal graph analytics, HavoqGT, we have
shown implementations for multiple important graph
analytics on time dependent graphs. We provide ini-
tial scalability results on a data-intensive HPC cluster
for temporal algorithms using two global time parame-
ters start-time and waiting-time, to provide analysis on
time dependent graphs derived from CAIDA datasets.
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Abstract

Graph edge sparsification, or filtering a substantial
number of edges in a methodical manner, has several
graph analysis-related uses. In this paper, we present
GSK, a new problem formulation for graph edge
sparsification based on the knapsack problem. We
show that several prior methods for edge sparsification
can be expressed as instances of the proposed GSK
problem. We implement a fast linear-time approxima-
tion scheme to solve the GSK optimization problem.
We also present a preliminary empirical evaluation of
GSK-based sparsification strategies, comparing them
to prior methods on a collection of test graphs.

Keywords: sparsification, knapsack, edge centrality.

1 Introduction

We present a simple formulation for graph sparsification
based on the 0/1 knapsack problem. Informally, the
0/1 knapsack problem can be stated as follows: given
a collection of items, each with an associated weight
and value, the goal is to choose a subset of the items
such that the cumulative value of the chosen items is
maximized, and the total weight of the selected subset
of items is less than or equal to a user-specified weight
budget. The main idea of our GSK formulation is to
treat each edge in the graph as an item and to asso-
ciate weights and values to them, so that sparsification
strategies can be appropriately defined.

When sparsifying a graph, we would like to preserve
structural or statistical properties of the original graph
as much as possible, but reduce the number of edges.
We assume that the vertex set V remains the same.
Let G̃(V, Ẽ) denote the graph after sparsification. We
would like to minimize the loss of information, modeled
by an appropriate loss function L(G, G̃). Since the set
of vertices is unchanged, we may write minL(G, G̃)
as max f(Ẽ) for some function f . User-defined edge
weights or costs {ce | e 2 E} provide fine-grained control
over whether an edge should be included or not. A
user-specified knapsack cost upper bound W can also
be set appropriately, in the same units as c, to control

the sparsity of the simplified network. When f is a
linear function, i.e., associating a set of profits or values
{pe | e 2 E} with edges, graph sparsification can be
written as a linear knapsack problem:

(GSK) max
Ẽ✓E

X

e2Ẽ

pe subject to
X

e2Ẽ

ce  W.

A natural way to use this problem formulation would be
to set profits to computed global or local edge centrality
values. Edge centrality values attempt to quantitatively
rank edges. Sparsification using the above knapsack
formulation would then mean filtering low centrality
edges, while satisfying user-specified linear constraints.

This paper makes the following contributions: In
Section 2, we show that a number of prior edge sparsifi-
cation methods can be expressed as special cases of the
problem (GSK). We implement a fast solution strategy
for this problem, discussed in Section 3. In Section 4,
we perform a preliminary exploration of the design space
enabled by our knapsack formulation, by encoding pairs
of complementary edge centrality values as profits and
costs. We also empirically evaluate these sparsification
strategies and the performance of our solver on several
test graph instances in Section 5.

2 Transforming Prior Methods to GSK

Graph edge sparsification is performed for a variety of
reasons. We briefly discuss the motivation for each of
the following strategies, and then describe how they can
be recast as instances of our proposed knapsack-based
problem.

2.1 Backbone Extraction. A large collection of re-
lational data sets can be modeled as weighted graphs.
Backbone extraction refers to the problem of determin-
ing a reduced representation of the original network
with fewer edges. The backbone highlights the structure
of the network and preserves key characteristics. Ser-
rano et al. [23] propose a method to extract backbones
from weighted graphs. First, edge weights are normal-
ized locally. Let zij denote the weight of edge hi, ji.
The weight is changed to wij = zij/

P
{k|hi,ki2E} zik.



The denominator is the sum of the weights of all edges
connected to vertex i. In case of undirected graphs, each
edge is considered twice, and weights are normalized ac-
cording to vertices i and j separately. In the next step, a
statistical test against a null model of a normalized edge
weight distribution is used to determine edges that are
statistically significant. The null model assumes that
normalized edge weights of a degree-k vertex are pro-
portional to random assignments of k sub-intervals from
[0, 1]. Under this null model, the probability of observ-
ing an edge with normalized weight of at least wij is

↵ij
def
= 1� (k� 1)

R wij

0 (1� x)k�2dx. A local significance
level ↵ is selected, and if ↵ij < ↵, the observed edge
is considered to be statistically significant and retained.
Other edges are filtered.

Foti et al. [9] consider a related approach using
a non-parametric statistical test. The same weight
normalization step is performed, but the statistical test
is replaced by ↵ij = 1 � 1

di

P
{k|hi,ki2E} 1{wik  wij}.

Here, 1{·} denotes the indicator function, which equals
1 if the expression in the bracket is true, and 0 otherwise.
di denotes the degree of vertex i. ↵ij is considered to
be the probability of empirically observing an edge with
normalized weight at least wij locally at vertex i. These
two backbone extraction methods can be viewed as a
special case of the knapsack problem:

max
Ẽ✓E

X

i2V

X

hi,ji2Ẽ

(↵� ↵ij).

The above problem can be considered a Lagrangian
relaxation of problem (GSK), and with no constraints.
This problem can be easily solved by selecting edges
with positive profits, i.e., ↵� ↵ij > 0.

2.2 Similarity Filters for Clustering. Satuluri et
al. [22] use edge sparsification as a preprocessing step
to enhance scalability of graph vertex clustering algo-
rithms. The goal is not to sacrifice the quality of clus-
tering results with the sparsified graph. Each edge hi, ji
is evaluated based on the similarity of vertices i and j.
Similarity is defined using the Jaccard score:

Jacij =
|N(i) \N(j)|
|N(i) [N(j)| ,

where N(i) refers to the set of neighboring vertices of i.
The authors propose two sparsification schemes based
on the Jaccard score. The global similarity method first
ranks each edge in the network using Jac; then the top
s% edges ranked by Jac are retained in the sparsified
network. Therefore, the global similarity method could
be viewed as problem (GSK) with unit edge weights,

i.e., a edge cardinality constraint:

max
Ẽ✓E

X

e2Ẽ

Jace subject to |Ẽ|  W.

In addition to filtering edges globally, the authors also
consider ranking edges locally at each vertex similar
to [23] and [9]. Starting with a network of the same
vertex set and an empty edge set, for each vertex i 2 V ,
the top dd↵i e (exponent ↵ 2 (0, 1)) of the incident edges
in the original network ranked by similarity score Jacij
are added back. The intuition is that similar vertices are
more likely to reside in the same cluster, and so intra-
cluster edges are retained. This problem can be viewed
as an unconstrained knapsack problem by setting the
profit values of edges that are to be filtered to zero, and
the profit values for the edges to be retained to their
Jaccard scores. We could impose additional filtering
constraints to complement this local similarity filter, as
we will discuss in Section 4.

2.3 Local Degree Filter. Lindner et al. [19] re-
cently evaluate a degree-based sparsification strategy.
Similar to the Local Similarity filter method, each edge
is first rated using a score function, and then a filter-
ing threshold is applied locally at each vertex. For each
edge hi, ji incident on vertex i, the score function Degij
chosen here is the degree of vertex j. For each vertex i,
the top-ranked dd↵i e of attached edges are retained. The
motivation behind using vertex degree for filtering is to
preserve key graph vertices, or hub vertices, after spar-
sification. Analogous to the Local Similarity method,
this method can be written as a special unconstrained
case of problem (GSK).

2.4 Other Related Sparsification Methods.
Graph sparsification has been studied in several dif-
ferent contexts. Cut sparsifiers [3, 10] aim at creating
a graph with the same set of vertices, but with fewer
edges, such that every cut on the graph is preserved
up to a multiplicative factor. Spectral sparsifiers by
Spielman and Teng [28] is another well-known line of
work. The goal here is to preserve the spectral prop-
erties of the graph Laplacian. Bonchi et al. [5] define
the problem of activity-preserving graph simplification.
Their approach requires additional information on ac-
tivity traces in the network. The goal is to preserve
observed activity traces while simplifying the graph.

A recent paper by Wilder and Sukthankar [29]
formulates a sparsification method for social networks
which aims to preserve the stationary distribution of
random walks. Their method can be expressed as a
nonlinear optimization problem with linear knapsack



constraints [6, 24]:

max
Ẽ✓E

f(Ẽ) subject to
X

e2Ẽ

ce  W.(GSK-NL)

Optimization problems of the form (GSK-NL) have
been studied and applied to other problems related
to network analysis. Leskovec et al. [18] studied the
problem of selecting a subset of vertices in a network
for sensor placement under budget constraints. This
application could also be viewed as a vertex-filtering
based graph sparsification problem.

3 A Fast Approximation Scheme

In this section, we discuss our implementation of a fast
approximation algorithm for the 0/1 knapsack problem.
Note that the sparsification methods discussed in the
prior section – backbone extraction [23, 25], Local Sim-
ilarity Filter [22], and Local Degree Filter [19] – are
straightforward to implement and do not need to be
solved under the knapsack formulation. We want to
create a general sparsification framework that permits
global or local edge centrality-based filtering, with the
flexibility of introducing user-defined linear constraints.

Given integer profits and weights, the problem
(GSK) can be solved exactly in pseudopolynomial time
using a dynamic programming-based scheme [2, 7, 13].
However, this approach is prohibitively expensive for
large graphs, and in our sparsification scenarios, it
is not guaranteed that profits and weights are inte-
gers. Approximation algorithms for the 0/1 knap-
sack problem and variants have been studied exten-
sively [1, 8, 11, 12, 14, 16, 20, 21]. There are two main
kinds of approximation algorithms for knapsack: fully-
polynomial time approximation schemes (FPTAS) that
can achieve a result that is 1�✏ of the optimal value for
all input error tolerance values ✏ [11, 12, 16, 21]; linear-
time greedy approximation algorithms that have ap-
proximation quality guarantees as a fixed percentage of
the optimal value [1, 8, 20]. The complexity of FPTAS
algorithms is independent of the knapsack cost bound
W , but polynomial in the number of items. In this sec-
tion, we apply a greedy approximation algorithm based
on [1, 14, 18] and explain how it can be implemented in
O(|E|) time. We assume that the profits {pe|e 2 E}
and the costs {ce|e 2 E} are precomputed.

The commonly-used greedy approximation method
for the knapsack problem [1,8,14] starts with an empty
set EF

0 , and expands EF
k to EF

k+1 = EF
k [ {eFk } by

adding the edge eFk that gives the maximal “e�ciency”,

eFk = max
e2E\EF

k

pe
ce

,

until reaching the kF such that
PkF�1

i=0 ceFi  W <

PkF

i=0 ceFi . Selecting [
kF�1
i=0 eFi or {eFkF } that corresponds

to max{
PkF�1

i=0 peFi , peFkF
} gives a 2-approximation to

the knapsack problem [1, 8, 14]. However, in the
context of graph simplification formulation (GSK), if

peF
kF

>
PkF�1

i=0 peFi , constructing a simplified graph

G̃ = (V, {eFkF }) with just a single edge {eFkF } may not
be really usable in the context of graph sparsification.
However, since the linear objective f(Ẽ) =

P
e2Ẽ pe is

a submodular function with f(EA [ {e}) � f(EA) =
f(EB [ {e}) � f(EB) = pe, the greedy algorithm for
submodular function maximization under knapsack con-
straints [15,18] could be applied here. Analogous to ex-
panding the edge set based on the greedy e�ciency rule,
the greedy profit rule initializes EP

0 = ; and selects ePk
in the kth iteration that gives the largest profit:

ePk = max
e2E\EP

k

pe

until the iteration kP such that adding ePkP will
exceed the knapsack weight constraint in problem
(GSK). Leskovec et al. [18] show that using

max{
PkF�1

i=0 peFi ,
PkP�1

i=0 pePi } results in a solution that

is at least 1
2 (1 � 1/e) of the optimal solution for gen-

eral non-decreasing submodular functions. Hence, this
result is applicable to problem (GSK) as well. The case
of a single edge being retained is unlikely to occur for
graphs we consider and when using edge centrality mea-
sures such as the Jaccard score.

The edge sets {eFi }k
F�1

i=0 and {ePi }k
P�1

i=0 can be de-
termined by sorting {pe}e2E and {pe/ce}e2E . A faster
method that avoids sorting is to use the weighted medi-
ans.Given a list of profits {pe|e 2 E} and nonnegative
costs {ce|e 2 E}, define the weighted median profit to
be the profit p⇤ 2 {pe|e 2 E} such that

X

e:pe>p⇤

ce < W 
X

e:pe�p⇤

ce.

Similarly, let fe = pe/ce, and define the weighted median

e�ciency to be the f⇤ 2 {fe|e 2 E} satisfying

X

e:fe>f⇤

ce < W 
X

e:fe�f⇤

ce

Using a slight modification of the selection sort
algorithm, we can find the weighted medians p⇤ and f⇤

in O(|E|) time [4, 7, 14]. After obtaining the weighted

medians p⇤ and f⇤, the set {eFi }k
F�1

i=0 and {ePi }k
P�1

i=0 of
selected edges can be decided in two passes over the
set of all edges. We describe this procedure for the
greedy profit strategy. Let EP denote the set of edges
selected by the greedy profit rule. In one pass over E,



we partition the edges into {e | pe > p⇤}, {e | pe = p⇤}
and {e | pe < p⇤}. All edges in {e | pe > p⇤} can
be added safely to EP and all edges in {e | pe < p⇤}
can be disregarded by the greedy rule. During the first
pass, the remainder weight R = W �

P
e:pe>p⇤ ce is

computed. The second pass over {e | pe = p⇤} can
be performed in arbitrary order until the remainder
weight R is exhausted. Therefore, the running time is
O(|E|). The greedy e�ciency rule can be implemented
in a similar manner. The pseudocode for the full solver
is provided in Algorithm 1.

Algorithm 1 Pseudocode for the GSK problem solver.

Input: G(V,E), profits {pe|e 2 E}, costs {ce|e 2 E},
weight constraint W .
Output: Ẽ
1: EP  ;
2: S(P) 0 . greedy profit rule solution value
3: R(P) W . remainder weight
4: Set p⇤ to computed weighted median profit
5: Initialize array T (P)
6: for e 2 E do . O(|E|)
7: if pe > p⇤ then

8: add e to EP

9: S(P) S(P) + pe
10: R(P) R(P)� ce
11: else if pe = p⇤ then

12: add e to T (P)

13: add e 2 T (P) to EP until R(P) is exhausted
14: for e 2 E do

15: Compute e�ciency fe  pe/ce

16: EF  ;
17: S(F) 0 . greedy e�ciency rule solution value
18: R(F) W . remainder weight
19: Set f⇤ to computed weighted median e�ciency
20: Initialize array T (F)
21: for e 2 E do . O(|E|)
22: if fe > f⇤

then

23: add e to EF

24: S(F) S(F) + pe
25: R(F) R(F)� ce
26: else if fe = f⇤

then

27: add e to T (F)

28: add e 2 T (F) to EF until R(F) is exhausted
29: if S(P) � S(F) then
30: return EP

31: else

32: return EF

4 Constructing New Sparsification Schemes

We now discuss approaches to set the edge profits
{pe | e 2 E} and costs {ce | e 2 E} in the GSK
formulation. We have two goals in mind: First, the
profits should attempt to preserve a structural property.

Algorithm 2 DistributeCentrality

Input: network G(V,E), centrality {s(u)|u 2 V }
Output: edge scores {s(u, v)|u 2 V, hu, vi 2 E}
1: if G is undirected then

2: for e 2 E do

3: u, v  end points of e
4: create directional edges hu, vi and hv, ui
5: for u 2 V do

6: for 8hu, vi attached to u do

7: s(u, v) 
⇣
d(v)/

P
hu,zi2E

d(z)
⌘
s(u)

Second, we want to reuse precomputed vertex/edge
centrality scores or other information available apriori
in order to set the edge costs. For example, in case of
online social network analysis, suppose the PageRank
scores for each vertex have been already computed.
How can we use this information to sparsify the graph
and perform additional network analysis tasks? Ideally,
we might wish that after sparsification, the set of
top-ranked vertices using PageRank remains the same,
and additionally other properties such as clustering
coe�cient distribution or community structure are also
preserved. More generally, given a set of precomputed
vertex centrality scores {s(u) | u 2 V }, we devise a
heuristic to construct a set of edge scores {s(u, v) | u 2
V, hu, vi 2 E}. If our primary interest is to preserve the
centrality rankings, then the edge scores could be used
directly as profits. Otherwise, the edge scores could
be transformed into costs, which would discriminate
the edges based on their contribution to the vertex
centralities in the original network.

We propose using a simple method for constructing
edge scores that works on both directed and undirected
graphs. For directed graphs, on each vertex u 2 V , the
centrality score s(u) is distributed among its outgoing
(or incoming) edges {hu, vi 2 E}. Each outgoing edge
e = hu, vi obtains a fraction of s(u), proportional to
d(v)/

P
hu,zi2E d(z). The intuition for distributing the

centrality scores on outgoing edges is that the influence
of a vertex is more likely to propagate along its high-
degree neighbors. For undirected graphs, we duplicate
each edge e 2 E to create two directed links hu, vi and
hv, ui. This operation enlarges size of the knapsack
decision variables from |E| to 2|E|. After solving
problems (GSK), an edge e is retained in the simplified
network if at least one of hu, vi and hv, ui is selected in
the knapsack solution. We summarize this process of
assigning edge scores in Algorithm 2.

Let DPRij denote the score on edge hi, ji when
Algorithm 2 is applied to generate edge scores based
on PageRank. Since DPRij 2 (0, 1], 1 � DPRij could



be used as edge costs, so that a weak edge in the
sense of contribution to PageRank has a large cost in
problem (GSK). We extend the Jaccard score-based
Local Similarity method and Global Similarity methods
of Satuluri et al. [22] to use (1 � DPRij) as edge costs,
and enforcing constraints

X

i2V

X

hi,ji2Ẽ

(1� DPRij)  W,

where W is a user-supplied parameter. W is set to be a
percentage of 2|E|, since

P
i2V

P
hi,ji2E(1 � DPRij) =

2|E| � 1. We also devise a new method that uses
DPRij as the profit for edge hi, ji, and enforces the unit-
cost constraint

P
i2V

P
hi,ji2Ẽ 1  W . The motivation

of this method is to preserve the vertices with top
PageRank scores after sparsification.

Table 1: Graphs used in empirical evaluation.

Name |V | (⇥106) |E| (⇥106)

com-Amazon [30] 0.335 0.9
com-DBLP [30] 0.32 1.05
com-Youtube [30] 1.13 3
roadNet-CA [17] 1.97 5.53
as-Skitter [17] 1.7 11
com-LiveJournal [30] 4 34.68
com-Orkut [30] 3.07 117

5 Empirical Evaluation

In this section, we empirically evaluate six sparsification
methods that can be expressed in the form of either
problem (GSK) or its simpler unconstrained version.
We used seven sparse graphs from the Stanford large
network dataset collection SNAP [26], listed in Table 1.
We implemented the approximate knapsack solution
scheme in C+ and verified correctness with several test
instances. The six sparsification methods considered
are summarized in Tables 2 and 3. All experiments
were run on a single server of Cyberstar, a Penn State
compute cluster. The server we run our programs on
is a dual-socket quad-core Intel Nehalem system (Intel
Xeon X5550 processor) with 32 GB main memory.

5.1 Solver Performance. We evaluate performance
of the solver for the problem (GSK). Unlike the exact
pseudopolynomial dynamic programming approach, the
running time of Algorithm 1 is independent of the user-
supplied weight parameter W and the actual settings
for the edge profits {pe|e 2 E} and costs {ce|e 2 E}.
We computed the execution time of the solver for the
seven graphs in Table 1. The graph sizes di↵er by nearly
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Figure 1: Solver running time on various graphs.

two orders of magnitude, going from com-Amazon to
com-Orkut. Figure 1 gives the running times. As the
number of graph edges increases, the execution time ap-
pears to increase linearly. This empirical evaluation is
one way of demonstrating the practical e�cacy of the
solver. Note that this figure only gives the solver execu-
tion time, and does not include the time taken to com-
pute profits and costs. Our current implementations for
PageRank and Jaccard scores are straightforward and
untuned. For com-DBLP, the running times of JLPR for
PageRank computation (costs), Jaccard score compu-
tation (profits), and the greedy approximation are 0.21,
2.28, and 2.1 seconds, respectively.

5.2 Comparing Sparsification Methods. We now
apply the solver to the six problem formulations in Ta-
bles 2 and 3. In addition, we sparsify the graphs us-
ing uniform random edge (RE) sampling as a baseline.
The abbreviations used in the figures correspond to the
methods in Tables 2 and 3. The knapsack bound W
is user-supplied. We set the problem parameters to
achieve various sparsification ratios of |Ẽ|/|E|. We use
three structural properties to evaluate the sparsification
schemes: vertex degree distribution, top-ranked Page-
Rank vertices and average clustering coe�cient. We use
Spearman’s rank correlation coe�cient [27] to compute
correlation between vertex degree rankings in the spar-
sified graph and in the original graph. This value will be
close to 1 if the degree rankings are highly correlated.
For PageRank, we evaluate the methods based on the
proportion of the top 10% PageRank-ordered vertices
in the original graph that are preserved after sparsifi-
cation. We report experimental results on com-Amazon,
com-DBLP, com-Youtube and com-LiveJournal.



Table 2: Problem (GSK)-based graph sparsification strategies used in empirical evaluation.

Label p(i, j) Constraint Motivation

JLPR 1
di

P
{k|hi,ki2Ẽ} 1{Jacik  Jacij}

P
i2V

P
hi,ji2Ẽ(1� DPRij)  W local similarity + PageRank

JGPR Jacij
P

i2V

P
hi,ji2Ẽ(1� DPRij)  W similarity + PageRank

PR DPRij
P

i2V

P
hi,ji2Ẽ 1  W PageRank

JG Jacij
P

i2V

P
hi,ji2Ẽ 1  W similarity [22]

Table 3: Unconstrained sparsification strategies used in empirical evaluation.

Label p(i, j) Motivation

DL retain top dd↵i e edges ranked by Degij locally hub vertices [19]
JL retain top dd↵i e edges ranked by Jacij locally local similarity [22]
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Figure 2: Spearman’s rank coe�cient of degree for the original graph and sparsified graph, at various sparsification
thresholds.

Figure 2 plots the Spearman’s correlation for vertex
degree rankings at various sparsification ratios. There
is no single method that consistently outperforms oth-

ers. In [19], the authors perform a similar experiment,
for vertex degree ranking using Spearman’s rank corre-
lation coe�cient, over a large collection of social net-
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Figure 3: The fraction of vertices that overlap in the top 10% PageRank-ordered vertex sets in the original and
the sparsified graph, at various sparsification thresholds.
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Figure 4: Comparing Jaccard similarity-based sparsifier performance on the com-LiveJournal graph.



works. Their results show that DL and RE consistently
outperform JL. In our experiments, RE, PR, DL, and
JLPR all perform qualitatively similarly on the social
network com-LiveJournal. However, the performance
diverges on the other graphs. PR’s performance is also
noteworthy: it performs significantly worse than RE for
com-Amazon and com-DBLP, but better than all methods
for com-Youtube.

Results showing the overlap ratio of top 10%
PageRank-ordered vertices after applying a sparsifica-
tion method are shown in Figure 3. As expected, PR
consistently outperforms the other methods, since in
PR, the edge profit DPR is based on the vertex PageRank
scores. DL and JLPR give similar results for the overlap
ratio in all four graphs, and slightly underperform PR.
JGPR sparsification significantly distorts the top 10%
PageRank-ordered vertex set in all experiments.

The comparison of JL, JLPR, JG, and JGPR on the
Spearman’s correlation of degrees and the overlap ratio
of top 10% PageRank vertices are displayed in Figure 4.
For all the graphs, the di↵erence between JL and JLPR,
and the di↵erence between JG and JGPR is very small.
Hence we do not show JL and JG results in Figures 2
and 3.

We report the deviation of average clustering coe�-
cient Ave-CC from the original graph after sparsification
on com-DBLP and com-Amazon in Figure 5. The devia-
tion is computed as Ave-CC(G̃)�Ave-CC(G). The aver-
age clustering coe�cients for com-DBLP and com-Amazon

are 0.6324 and 0.3967, respectively. These two graphs
have the largest average clustering coe�cient among the
ones listed in Table 1. Surprisingly, PR causes the least
deviation of average clustering coe�cient on com-DBLP.
JLPR and JGPR, which aim to preserve intra-cluster
edges, produce positive deviations at some sparsification
thresholds on com-Amazon. RE reduces the average clus-
tering coe�cient linearly on decreasing the number of
retained edges, an observation also pointed out in [19].

6 Conclusions and Future Work

In this work, we explore using the knapsack problem for
graph edge sparsification. Sparsifying large graphs aids
in graph visualization and serves as a speedup technique
for graph computations such as community detection
and centrality analysis. Our proposed knapsack-based
sparsification permits both global and local centrality-
based edge filtering, and additionally lets us specify
fine-grained linear constraints. We implement a greedy
linear-time approximation solution scheme for this prob-
lem. Our preliminary empirical evaluation looks at two
new formulations and compares them to known edge
sparsification strategies using three criteria. We plan
to perform a detailed empirical evaluation in future

work, by expanding the collection of input graphs, the
evaluation criteria (studying sparsification impact on
other topological properties; studying impact of greedy
solver on sparsification quality), and the methods cho-
sen (include advanced sampling-based methods, as well
as other new knapsack problem combinations). We will
also attempt to identify cases where a general nonlinear
submodular function can be approximated as a piece-
wise linear function. For cases where such approxima-
tions are possible, our knapsack solver can be readily
used. We also hope to demonstrate, in future work, use
of our sparsification schemes for scalable graph visual-
ization and as a general speedup strategy.
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Abstract

Link prediction, or predicting the likelihood of a link
in a knowledge graph based on its existing state is a
key research task. It di↵ers from a traditional link pre-
diction task in that the links in a knowledge graph are
categorized into di↵erent predicates and the link predic-
tion performance of di↵erent predicates in a knowledge
graph generally varies widely. In this work, we propose
a latent feature embedding based link prediction model
which considers the prediction task for each predicate
disjointly. To learn the model parameters it utilizes a
Bayesian personalized ranking based optimization tech-
nique. Experimental results on large-scale knowledge
bases such as YAGO2 show that our link prediction ap-
proach achieves substantially higher performance than
several state-of-art approaches. We also show that for a
given predicate the topological properties of the knowl-
edge graph induced by the given predicate edges are
key indicators of the link prediction performance of that
predicate in the knowledge graph.

1 Introduction

A knowledge graph is a repository of information about
entities, where entities can be any thing of interest such
as people, location, organization or even scientific top-
ics, concepts, etc. An entity is frequently characterized
by its association with other entities. As an example,
capturing the knowledge about a company involves list-
ing its products, location and key individuals. Simi-
larly, knowledge about a person involves her name, date
and place of birth, a�liation with organizations, etc.
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Resource Description Framework (RDF) is a frequent
choice for capturing the interactions between two enti-
ties. A RDF dataset is equivalent to a heterogeneous
graph, where each vertex and edge can belong to di↵er-
ent classes. The class information captures taxonomic
hierarchies between the type of various entities and re-
lations. As an example, a knowledge graph may identify
Kobe Bryant as a basketball player, while its ontology
will indicate that a basketball player is a particular type
of athlete. Thus, one will be able to query for famous
athletes in the United States and find Kobe Bryant.

The past few years have seen a surge in research
on knowledge representations and algorithms for build-
ing knowledge graphs. For example, Google Knowledge
Vault [6], and IBMWatson [9] are comprehensive knowl-
edge bases which are built in order to answer questions
from the general population. As evident from these
works, it requires multitude of e↵orts to build a domain
specific knowledge graph, which are, triple extraction
from nature language text, entity and relationship map-
ping [25], and link prediction [21]. Specifically, triples
extracted from the text data sources using state of the
art techniques such as OpenIE [8] and semantic role la-
beling [5] are extremely noisy, and simply adding noisy
triple facts into knowledge graph destroys its purpose.
So computational methods must be devised for deciding
which of the extracted triples are worthy of insertion
into a knowledge graph. There are several considera-
tions for this decision making: (1) trustworthiness of
the data sources; (2) a belief value reported by a natu-
ral language processing engine expressing its confidence
in the correctness of parsing; and (3) prior knowledge of
subjects and objects. This particular work is motivated
by the third factor.

Link prediction in knowledge graph is simply a ma-
chine learning approach for utilizing prior knowledge of
subjects and objects as available in the knowledge graph
for estimating the confidence of a candidate triple. Con-
sider the following example: given a social media post “I
wish Tom Cruise was the president of United States”, a
natural language processing engine will extract a triple



(“Tom Cruise”, “president of”, “United States”). On
the other hand, a web crawler may find the fact that
“Tom Cruise is president of Downtown Medical”, result-
ing in the triple (“Tom Cruise”, “president of”, “Down-
town Medical”). Although we generally do not have any
information about the trustworthiness of the sources,
our prior knowledge of the entities mentioned in this
triples will enable us to decide that the first of the above
triples is possibly wrong. Link prediction provides a
principles approach for such a decision-making. Also
note that, once we decide to add a triple to the knowl-
edge graph, it is important to have a confidence value
associated with it.

As we use a machine learning approach to compute
the confidence of triple facts, it is important that we
quantitatively understand the degree of accuracy of our
prediction [28]. It is important, because for the same
knowledge graph the prediction accuracy level varies
from predicate to predicate. As an example, predict-
ing one’s school or workplace can be a much harder
task than predicting one’s liking for a local restaurant.
Therefore, given two predicates “worksAt” and “likes”,
we expect to see widely varying accuracy levels. Also,
the average accuracy levels vary widely from one knowl-
edge graph to another. The desire to obtain a quanti-
tative grasp on prediction accuracy is complicated by
a number of reasons: 1) Knowledge graphs constructed
from web text or using machine reading approaches can
have a very large number of predicates that make man-
ual verification di�cult [6]; 2) Creation of predicates,
or the resultant graph structure is strongly shaped by
the ontology, and the conversion process used to gener-
ate RDF statements from a logical record in the data.
Therefore, same data source can be represented in very
di↵erent models and this leads to di↵erent accuracy lev-
els for the same predicate. 3) The e↵ectiveness of knowl-
edge graphs have inspired their construction from every
imaginable data source: product inventories (at retail-
ers such as Wal-mart), online social networks (such as
Facebook), and web pages (Google’s Knowledge Vault).
As we move from one data source to another, it is crit-
ical to understand what accuracy levels we can expect
from a given predicate.

In this paper, we use a link prediction 1 approach
for computing the confidence of a triple from the prior
knowledge about its subject and object. Many works ex-
ist for link prediction [11] in social network analysis [4],
but they di↵er from the link prediction in knowledge
graph; for earlier, all the links are semantically similar,
but for the latter based on the predicates the semantic

1We use link prediction and link recommendation interchange-
ably.

of the links di↵ers widely. So, existing link prediction
methods are not very suitable for this task. We build
our link prediction method by borrowing solutions from
recommender system research which accept a user-item
matrix and for a given user-item pair, they return a
score indicating the likelihood of the user purchasing
the item. Likewise, for a given predicate, we consider
the set of subjects and objects as a user-item matrix
and produce a real-valued score to measure the confi-
dence of the given triple. For training the model we use
Bayesian personalized ranking (BPR) based embedding
model [23], which has been a major work in the rec-
ommendation system. In addition, we also study the
performance of our proposed link prediction algorithm
in terms of topological properties of knowledge graph
and present a linear regression model to reason about
its expected level of accuracy for each predicate.

Our contributions in this work are outlined below:

1. We implement a Link Prediction approach for
estimating confidence for triples in a Knowledge
Graph. Specifically, we borrow from successful
approaches in the recommender systems domain,
adopt the algorithms for knowledge graphs and
perform a thorough evaluation on a prominent
benchmark dataset.

2. We propose a Latent Feature Embedding based link
recommendation model for prediction task and uti-
lize Bayesian Personalized Ranking based optimiza-
tion technique for learning models for each pred-
icate (Section 4). Our experiments on the well
known YAGO2 knowledge graph (Section 5) show
that the BPR approach outperforms other compet-
ing approaches for a significant set of predicates
(Figure 1).

3. We apply a linear regression model to quantita-
tively analyze the correlation between the predic-
tion accuracy for each predicate and the topological
structure of the induced subgraph of the original
Knowledge Graph. Our studies show that metrics
such as clustering coe�cient or average degree can
be used to reason about the expected level of pre-
diction accuracy (Section 5.3, Figure 2).

2 Related Work

There is a large body of work on link prediction in
knowledge graph. In terms of methodology, factoriza-
tion based and related latent variable models [3, 7, 13,
22, 25], graphical model [14], and graph feature based
method [17,18] are considered.

There exists large number of works which focus
on factorization based models. The common thread



among the factorization methods is that they explain
the triples via latent features of entities. [2] presents a
tensor based model that decomposes each entity and
predicate in knowledge graphs as a low dimensional
vector. However, such a method fails to consider the
symmetry property of the tensor. In order to solve this
issue, [22] proposes a relational latent feature model,
RESCAL, an e�cient approach which uses a tensor
factorization model that takes the inherent structure of
relational data into account. By leveraging relational
domain knowledge about entity type information, [3]
proposes a tensor decomposition approach for relation
extraction in knowledge base which is highly e�cient
in terms of time complexity. In addition, various other
latent variable models, such as neural network based
methods [6, 27], have been explored for link prediction
task. However, the major drawback of neural network
based models is their complexity and computational
cost in model training and parameter tuning. Many of
these models require tuning large number of parameters,
thus finding the right combination of these parameters
is often considered more of an art than science.

Recently graphical models, such as Probabilistic
Relational Models [10], Relational Markov Network [29],
Markov Logic Network [14, 24] have also been used for
link prediction in knowledge graph. For instance, [24]
proposes a Markov Logic Network (MLN) based ap-
proach, which is a template language for defining po-
tential functions on knowledge graph by logical formula.
Despite its utility for modeling knowledge graph, issues
such as rule learning di�culty, tractability problem, and
parameter estimation pose implementation challenge for
MLNs.

Graph feature based approaches assume that the
existence of an edge can be predicted by extracting
features from the observed edges in the graph. Lao and
Cohen [17,18] propose Path Ranking Algorithm (PRA)
to perform random walk on the graph and compute the
probability of each path. The main idea of PRA is to
use these path probabilities as supervised features for
each entity pair, and use any favorable classification
model, such as logistic regression and SVM, to predict
the probability of missing edge between an entity pair
in a knowledge graph.

It has been demonstrated [1] that no single ap-
proach emerges as a clear winner. Instead, the merits
of factorization models and graph feature models are
often complementary with each other. Thus combin-
ing the advantages of di↵erent approaches for learn-
ing knowledge graph is a promising option. For in-
stance, [20] proposes to use additive model, which is
a linear combination between RESCAL and PRA. The
combination results in not only decrease the training

time but also increase the accuracy. [15] combines a la-
tent feature model with an additive term to learn from
latent and neighborhood-based information on multi-
relational data. [6] fuses the outputs of PRA and neural
network model as features for training a binary classi-
fier. Our work strongly aligns with this combination
approach. In this work, we build matrix factorization
based techniques that have been proved successful for
recommender systems and plan to incorporate graph
based features in future work.

3 Background and Problem Statement

Definition 3.1. We define the knowledge graph as a
collection of triple facts G = (S, P,O), where s 2 S
and o 2 O are the set of subject and object entities and
p 2 P is the set of predicates or relations between them.
G(s, p, o) = 1 if there is a direct link of type p from s to
o, and G(s, p, o) = 0 otherwise.

Each triple fact in knowledge graph is a statement
interpreted as “A relationship p holds between entities
s and o”. For instance, the statement “Kobe Bryant is a
player of LA Lakers” can be expressed by the following
triple fact (“Kobe Bryant”, “playsFor”, “LA Lakers”).

Definition 3.2. For each relation p 2 P , we define
Gp(Sp, Op) as a bipartite subgraph of G, where the
corresponding set of entities sp 2 Sp, op 2 Op are
connected by relation p, namely Gp(sp, op) = 1.

Problem Statement: For every predicate p 2 P and
given an entity pair (s, o) in Gp, our goal is to learn
a link recommendation model Mp such that xs,o =
Mp(s, o) is a real-valued score.

Due to the fact that the produced real-valued score
is not normalized, we compute the probability Pr(yps,o =
1), where yps,o is a binary random variable that is true
i↵ Gp(s, o) = 1. We estimate this probability Pr using
the logistic function as follows:

(3.1) Pr(yps,o = 1) =
1

1 + exp(�xs,o)

Thus we interpret Pr(yps,o = 1) as the probability
that a vertex (or subject) s in the knowledge graph G
is in a relationship of given type p with another vertex
(or the object) o.

4 Methods

In this section, we describe our model, namely La-
tent Feature Embedding Model with Bayesian Personal-
ized Ranking (BPR) based optimization technique that
we propose for the task of link prediction in a knowl-
edge graph. In our link prediction setting, for a given
predicate p, we first construct its bipartite subgraph



Gp(Sp, Op). Then we learn the optimal low dimen-
sional embeddings for its corresponding subject and ob-
ject entities sp 2 Sp, op 2 Op by maximizing a ranking
based distance function. The learning process relies on
Stochastic Gradient Descent (SGD). The SGD based
optimization technique iteratively updates the low di-
mensional representation of sp and op until convergence.
Then the learned model is used for ranking the unob-
served triple facts in descending order such that triple
facts with higher score values have a higher probability
of being correct.

4.1 Latent Feature Based Embedding Model
For each predicate p, the model maps both its corre-
sponding subject and object entites sp and op into low-
dimensional continuous vector spaces, say Up

s 2 IR1⇥K

and V p
o 2 IR1⇥K respectively. We measure the compati-

bility between subject sp and object op as dot product of
its corresponding latent vectors which is given as below:

(4.2) xs
p

,o
p

= (Up
s )(V

p
o )

T + bpo

where Up 2 IR|S|⇥K , V p 2 IR|O|⇥K , and bp 2
IR|O|⇥1. |S| and |O| denote the size of subject and
object associated with predicate p respectively. K is
the number of latent dimensions and bpo 2 IR is a bias
term associated with object o. Given predicate p, the
higher the score of xs

p

,o
p

, the more similar the entities
sp and op in the embedded low dimensional space, and
the higher the confidence to include this triple fact into
knowledge base.

4.2 Bayesian Personalized Ranking
In collaborative filtering, positive-only data is known
as implicit feedback/binary feedback. For example,
in the eCommerce platform, some users only buy but
do not rate items. Motivated by [23], we employ
Bayesian Personalized Ranking (BPR) based approach
for model learning. Specifically, in recommender system
domain, given user-item matrix, BPR based approach
assigns the preference of user for purchased item with
higher score than un-purchased item. Likewise, under
this context, we assign observed triple facts higher
score than unobserved triple facts in knowledge base.
We assume that unobserved facts are not necessarily
negative, rather they are “less preferable” than the
observed ones.

For our task, in each predicate p, we denote the
observed subject/object entity pair as (sp, o+p ) and
unobserved one as (sp, o�p ). The observed facts in our
case are the existing link between sp and op given Gp

and unobserved ones are the missing link between them.
Given this fact, BPR maximizes the following ranking

based distance function:

(4.3)
BPR = max

⇥
p

P
(s

p

,o+
p

,o�
p

)2D
p

ln�(xs
p

,o+
p

� xs
p

,o�
p

)� �⇥
p

|| ⇥p ||2

where Dp is a set of samples generated from the
training data for predicate p, Gp(sp, o+p ) = 1 and
Gp(sp, o�p ) = 0. And xs

p

,o+
p

and xs
p

,o�
p

are the predicted

scores of subject sp on objects o+p and o�p respectively.
We use the proposed latent feature based embedding
model shown in Equation 4.2 to compute xs

p

,o+
p

and
xs

p

,o�
p

respectively. The last term in Equation 4.3 is a
l2-norm regularization term used for model parameters
⇥p = {Up, V p, bp} to avoid overfitting in the learning
process. In addition, the logistic function �(.) in
Equation 4.3 is defined as �(x) = 1

1+e�x

.
Notice that the Equation 4.3 is di↵erentiable, thus

we employ the widely used SGD to maximize the objec-
tive. In particular, at each iteration, for given predicate
p, we sample one observed entity pair (sp, o+p ) and one
unobserved one (sp, o�p ) using uniform sampling tech-
nique. Then we iteratively update the model param-
eters ⇥p based on the sampled pairs. Specifically, for
each training instance, we compute the derivative and
update the corresponding parameters ⇥p by walking
along the ascending gradient direction.

For each predicate p, given a training triple
(sp, o+p , o

�
p ), the gradient of BPR objective in Equa-

tion 4.3 with respect to Up
s , V

p
o+ , V

p
o� , b

p
o+ , b

p
o� can be

computed as follows:
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We obtain the following using similar chain rule
derivation.

(4.5)
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Next, the parameters are updated as follows:

(4.9) Up
s = Up

s + ↵⇥ @BPR

@Up
s

(4.10) V p
o+ = V p

o+ + ↵⇥ @BPR

@V p
o+

(4.11) V p
o� = V p

o� + ↵⇥ @BPR

@V p
o�

(4.12) bpo+ = bpo+ + ↵⇥ @BPR

@bpo+

(4.13) bpo� = bpo� + ↵⇥ @BPR

@bpo�

where ↵ is the learning rate.

4.3 Pseudo-code and Complexity Analysis
The pseudo-code of our proposed link prediction model
is described in Algorithm 1. It takes the knowledge
graph G and a specific target predicate p as input and
generates the low dimensional latent matrices Up, V p,
bp as output. Line 1 constucts the bipartite subgraph of
predicate p, Gp given entire knowledge graph G. Line 2-
3 compute the number of subject and object entities as
m and n in resultant bipartite subgraph Gp respectively.
Line 4 generates a collection of triple samples using
uniform sampling technique. Line 5-7 initialize the
matrices Up, V p, bp using Gaussian distribution with
0 mean and 0.1 standard deviation, assuming all the
entries in Up, V p and bp are independent. Line 8-14
update corresponding rows of matrices Up, V p, bp based
on the sampled instance (sp, o+p , o

�
p ) in each iteration.

As the sample generation step in line 4 is prior to the
model parameter learning, thus the convergence criteria
of Algorithm 1 is to iterate over all the sampled triples
in Dp.

Given the constructed Gp as input, the time
complexity of the update rules shown in Equa-
tions 4.9 4.10 4.11 4.12 4.13 is O(cK), where K is
the number of latent features. The total computational
complexity of Algorithm 1 is then O(|Dp| · cK), where
|Dp| is the total size of pre-sampled triples shown in line
4 of Algorithm 1.

Algorithm 1 Bayesian Personalized Ranking Based
Latent Feature Embedding Model

Input: latent dimension K, G, target predicate p
Output: Up, V p, bp

1: Given target predicate p and entire knowledge graph
G, construct its bipartite subgraph, Gp

2: m = number of subject entities in Gp

3: n = number of object entities in Gp

4: Generate a set of training samples Dp =
{(sp, o+p , o�p )} using uniform sampling technique

5: Initialize Up as size m⇥K matrix with 0 mean and
standard deviation 0.1

6: Initialize V p as size n⇥K matrix with 0 mean and
stardard deviation 0.1

7: Initialize bp as size n⇥1 column vector with 0 mean
and stardard deviation 0.1

8: for all (sp, o+p , o
�
p ) 2 Dp do

9: Update Up
s based on Equation 4.9

10: Update V p
o+ based on Equation 4.10

11: Update V p
o� based on Equation 4.11

12: Update bpo+ based on Equation 4.12
13: Update bpo� based on Equation 4.13
14: end for
15: return Up, V p, bp

5 Experiments and Results

This section presents our experimental analysis of the
Algorithm 1 for thirteen unique predicates in the well
known YAGO2 knowledge graph [12]. We construct a
model for each predicate and describe our evaluation
strategies, including performance metrics and selection
of state-of-the-art methods for benchmarking in section
5.1. We aim to answer two questions through our
experiments:

1. How does our approach compare with related work
for link recommendation in knowledge graph?

2. For a predicate p, can we reason about the link
prediction model performance Mp in terms of the
structural metrics of the bipartite graph Gp?

Table 1 shows the statistic of various YAGO2
relations used in our experiments. # Subjects and #
Objects represent the number of subject and object
entities associated with its corresponding predicate.
The last column shown in Table 1 shows the number
of facts for each relation in YAGO2. We run all the
experiments on a 2.1 GHz Machine with 4GB memory
running Linux operating system. The algorithms are
implemented in Python language along with NumPy
and SciPy libraries for linear algebra operations. The



(a) HR Comparison among di↵erent link
recommendation methods

(b) ARHR Comparison among di↵erent
link recommendation methods

(c) AUC Comparison among di↵erent link
recommendation methods

Figure 1: Link Recommendation Comparison on YAGO2 Relations

(a) Graph Density and HR (b) Graph Density and ARHR (c) Graph Density and AUC

(d) Graph Average Degree and HR (e) Graph Average Degree and ARHR (f) Graph Average Degree and AUC

(g) Clustering Coe�cient and HR (h) Clustering Coe�cient and ARHR (i) Clustering Coe�cient and AUC

Figure 2: Quantitative Analysis Between Graph Topology and Link Recommendation Model Performance



Relation # Subjects # Objects # of Facts in YAGO2

Import 142 62 391
Export 140 176 579

isInterestedIn 358 213 464
hasO�cialLanguage 583 214 964

dealsWith 131 124 945
happenedIn 7121 5526 12500

participatedIn 2330 7043 16809
isConnectedTo 2835 4391 33581

hasChild 10758 12800 17320
influence 8056 9153 25819

wroteMusicFor 5109 21487 24271
edited 549 5673 5946
owns 8330 24422 26536

Table 1: Statistics of Various Relations in YAGO2
Dataset

software is available online for download 2.

5.1 Experimental Setting
For our experiment, in order to demonstrate the per-
formance of our proposed link prediction model, we use
the YAGO2 dataset and several evaluation metrics for
all compared algorithms. Particularly, for each relation,
we split the data into a training part, used for model
training, and a test part, used for model evaluation. We
apply 5-time leave one out evaluation strategy, where for
each subject, we randomly remove one fact (one subject-
object pair) and place it into test set Stest and remain-
ing in the training set Strain. For every subject, the
training model will generate a size-N ranked list of rec-
ommended objects for recommendation task. The eval-
uation is conducted by comparing the recommendation
list of each subject and the object entity of that subject
in the test set. Grid search is applied to find regular-
ization parameters, and we set the values of parameters
used in section 4.2 as �s = �o+ = �o� = 0.005. For
other model parameters, we fix learning rate ↵ = 0.2,
and number of latent factors K = 50 respectively. For
parameter in model evaluation, we set N = 10.

In order to illustrate the merit of our proposed
approach, we compare our model with the following
methods for link prediction in a knowledge graph. Since
the problem we solve in this paper is similar to the one-
class item recommendation [23] in recommender system
domain, we consider the following state-of-the-art one-
class recommendation methods as baseline approaches
for comparison.

1. Random (Rand): For each relation, this method
randomly selects subject-object entity pair for link
recommendation task.

2
https://sites.google.com/site/baichuanzhangpurdue/

sample-code-and-dataset

2. Most Popular (MP): For each predicate in
knowledge base, this method presents a non-
personalized ranked object list based on how often
object entities are connected among all subject en-
tities.

3. MF: The matrix factorization method is proposed
by [16], which uses a point-wise strategy for solving
the one-class item recommendation problem.

During the model evaluation stage, we use three
popular metrics, namely Hit Rate (HR), Average Recip-
rocal Hit-Rank (ARHR), and Area Under Curve (AUC),
to measure the link recommendation quality of our pro-
posed approach in comparison to baseline methods. HR
is defined as follows:

(5.14) HR =
#hits

#subjects

where #subjects is the total number of subject en-
tities in test set, and #hits is the number of subjects
whose object entity in the test set is recommended in the
size-N recommendation list. The second evaluation met-
ric, ARHR, considering the ranking of the recommended
object for each subject entity in knowledge graph, is de-
fined as below:

(5.15) ARHR =
1

#subjects

#hitsX

i=1

1

pi

where if an object of a subject is recommended for
connection in knowledge graph which we name as hit
under this scenario, pi is the position of the object in the
ranked recommendation list. As we can see, ARHR is a
weighted version of HR and it captures the importance
of recommended object in the recommendation list.

The last metric, AUC is defined as follows:

(5.16)
AUC = 1

#subjects

P
s2subjects

1
|E(s)|

P
(o+,o�)2E(s) �(xs,o+ > xs,o�)

Where E(s) = {(o+, o�)|(s, o+) 2 Stest \ (s, o�) 62
(Stest [ Strain)}, and �() is the indicator function.

For all of three metrics, higher values indicate better
model performance. Specifically, the trivial AUC of a
random predictor is 0.5 and the best value of AUC is 1.

5.2 YAGO2 Relation Prediction Performance

Figure 1 shows the average link prediction per-
formance for YAGO2 relations using various meth-
ods. Our proposed latent feature embedding approach

https://sites.google.com/site/baichuanzhangpurdue/sample-code-and-dataset
https://sites.google.com/site/baichuanzhangpurdue/sample-code-and-dataset


shows overall improvement compared with other algo-
rithms on most of relations in YAGO2. For instance,
for all the YAGO2 predicates used in the experiment,
our proposed model consistently outperforms MF based
method, which demonstrates the empirical experience
that pairwise ranking based method achieves much
better performance than pointwise regression based
method given implicit feedback for link recommenda-
tion task. Compared with Popularity based recommen-
dation method MP, our method obtains better perfor-
mance for most predicates. For example, predicates
such as “participate”,“connect”,“hasChild”, and “influ-
ence”, our proposed model achieves more than 10 times
better performance in terms of both HR and ARHR.
However, for several predicates such as “import”, “ex-
port”, and “language”, MP based method performs the
best among all the competing methods. The good per-
formance of MP is owing to the semantic meaning of
specific predicate. For instance, “import” represents
Country/Product relation in YAGO2, which indicates
the types of its subject and object entities are geo-
graphic region and commodity respectively. For such
a predicate, most popular object entities such as food,
cloth, fuel are linked to most of the countries, which
helps MP based method obtain good link recommenda-
tion performance.

5.3 Analysis and Discussion

Figure 1 shows that the link prediction model per-
formance widely varies from predicate to predicate in
the YAGO2 knowledge base. For example, the HR
of predicate “dealsWith” is significantly better than
“own”. Thus it is critical that we quantitatively under-
stand the model performance across various relations in
a knowledge graph. Recall from the Problem State-
ment that given a predicate p, our model Mp only ac-
counts for the bipartite subgraphGp. Motivated by [19],
we study the impact of resultant graph structure of Gp

on the performance of Mp.
For each predicate p, we compute several graph

topology metrics on its bipartite subgraph Gp such as
graph density, graph average degree, and clustering co-
e�cient. Figure 2 shows the quantitative analysis be-
tween graph structure and link prediction model per-
formance of each predicate. In each subfigure, x-axis
represents the computed graph topology metric value
of each predicate and y-axis denotes our proposed link
prediction model performance in terms of HR, ARHR,
and AUC. Each cross point shown in blue represents
one specific YAGO2 predicate used in our experiments.
Then we developed a linear regression model to under-
stand the correlation between link prediction model per-

formance and each graph metric. For each linear regres-
sion curve shown in red color, we also report its slope,
intercept, and correlation coe�cient (rvalue) to capture
the association trend.

From Figure 2, both graph density and graph aver-
age degree show strong positive correlation signal with
proposed link prediction model as demonstrated by
rvalue. As our approach is inspired by collaborative
filtering for recommender systems that accept a user-
item matrix as input, for resultant graph of each predi-
cate, higher graph density indicates higher matrix den-
sity in user-item matrix, which naturally leads to better
recommendation performance in recommender system
domain. Similar explanation can be adapted to graph
average degree. For the clustering coe�cient, it shows
strong negative correlation signal with link prediction
model performance. For instance, in terms of AUC, the
rvalue is around �0.69. As clustering coe�cient (cc)
is the number of closed triples over the total number
of triples in graph, smaller value of cc indicates lower
fraction of closed triples in the graph. Based on the
transitivity property of a social graph, which states the
friends of your friend have high likelihood to be friends
themselves [26, 30], it is relatively easier for link pre-
diction model to predict (i.e.,hit) such link with open
triple property in the graph, which leads to better link
prediction performance.

6 Conclusion and Future Work

Inspired by the success of collaborative filtering algo-
rithms for recommender systems, we propose a latent
feature based embedding model for the task of link pre-
diction in a knowledge graph. Our proposed method
provides a measure of “confidence” for adding a triple
into the knowledge graph. We evaluate our implementa-
tion on the well known YAGO2 knowledge graph. The
experiments show that our Bayesian Personalized Rank-
ing based latent feature embedding approach achieves
better performance compared with two state-of-art rec-
ommender system models: Most Popular and Matrix
Factorization. We also develop a linear regression model
to quantitatively study the correlation between the per-
formance of link prediction model itself and various
topological metrics of the graph from which the models
are constructed. The regression analysis shows strong
correlation between the link prediction performance and
graph topological features, such as graph density, aver-
age degree and clustering coe�cient.

For a given predicate, we build link prediction mod-
els solely based on the bipartite subgraph of the origi-
nal knowledge graph. However, as real-world experience
suggests, the existence of a relation between two entities
can also be predicted from the presence of other rela-



tions, either direct or through common neighbors. As
an example, the knowledge of where someone studies
and who they are friends with is useful to predict possi-
ble workplaces. Incorporating such intuition as “social
signals” into our current model will be the prime can-
didate for an immediate future work. Another future
work would be to update the knowledge graph based
on the newer facts that become available over time in
streaming data sources.
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