
MLRec 2016

2nd International Workshop on Machine Learning

Methods for Recommender Systems

May 2016, Miami, Florida, USA

In Conjunction with
16th SIAM International Conference on Data Mining (SDM 2016)

1

Workshop Chairs

Jiayu Zhou, Michigan State University
Deguang Kong, Samsung Research America
George Karypis, University of Minnesota

Publicity Chair

Shiyu Chang, University of Illinois at Urbana-Champaign

Website Chair

Zhangyang Wang, University of Illinois at Urbana-Champaign

Program Committee

Shiva Kasiviswanathan, Samsung Research America
Shengbo Guo, Facebook
Yao Wu, Simon Fraser University
Lei Cen, Purdue University
Jianpeng Xu, Michigan State University

Invited Speakers

Tina Eliassi-Rad, Rutgers University
Julian McAuley, University of California, San Diego
Hanghang Tong, Arizona State University
Hongxia Jin, Samsung Research America

2

Overview

The MLRec 2016 workshop aims to bring the attention of researchers to
the various data mining and machine learning methods for recommender
systems.

Since the introduction of recommender system, there are a lot of machine
learning and data mining algorithms designed for effective and efficient rec-
ommendation. To name a few, the matrix factorization techniques are widely
used to model the latent space in which users and items interact with each
other. The factorization machine uses bilinear regression models to capture
the non-linear interactions among the user features and item features. In
the past years, researchers have utilized many machine learning techniques
such as online learning, metric learning, sparse learning, multi-task learning
also to foster the development of recommender systems.

This workshop focuses on applying novel as well as existing machine
learning and data mining methodologies for improving recommender sys-
tems. Indeed there are many established conferences such as NIPS and
ICML that focus on the study of theoretical properties of machine learn-
ing algorithms. On the other hand, the recent developed conference ACM
RecSys focuses on different aspects of designing and implementing recom-
mender systems. We believe that there is a gap between these two ends, and
this workshop aims at bridging the recent advances of machine learning and
data mining algorithms to improving recommender systems. Since many
recommendation approaches are built upon data mining and machine learn-
ing algorithms, these approaches are deeply rooted in their foundations. As
such, there is an urgent need for researchers from the two communities to
jointly work on 1) what are the recent developed machine learning and data
mining techniques that can be leveraged to address challenges in recom-
mender systems, and 2) from challenges in recommender systems, what are
the practical research directions in the machine learning and data mining
community.

We encourage submissions on a variety of topics, including but not lim-
ited to:

1. Novel machine learning algorithms for recommender systems, e.g., new
content aware recommendation algorithms, new algorithms for matrix
factorization handling cold-start items.

2. Novel approaches for applying existing machine learning algorithms,
e.g., applying bilinear models, sparse learning, metric learning, neural
networks and deep learning, for recommender systems.

3

3. Novel optimization algorithms and analysis for improving recommender
systems, e.g., parallel/distributed optimization techniques and efficient
stochastic gradient descent.

4. Industrial practices and implementations of recommendation systems,
e.g., feature engineering, model ensemble, and lessons from large-scale
implementations of recommender systems.

We believe that advancements on these topics will benefit a variety of
algorithm and application domains.

Acknowledgments

We appreciate the efforts of the Program Committee for their comments
and feedback on the submissions.

Table of Contents

• Semi-supervised Collaborative Ranking with Push at Top
Iman Barjaste, Rana Forsati, Abdol Esfahanian and Hayder Radha

• A Scalable People-to-People Hybrid Reciprocal Recommender Using
Hidden Markov Models
Ammar Alanazi and Michael Bain

• Modeling Trust for Rating Prediction in Recommender Systems
Anahita Davoudi and Mainak Chatterjee

• Towards Automatic Ranking the Mobile App Risks via Heterogenous
Privacy Indicators
Deguang Kong, Lei Cen and Hongxia Jin

4

Semi-supervised Collaborative Ranking with
Push at Top

Iman Barjasteh†∗, Rana Forsati‡∗, Abdol-Hossein Esfahanian‡, Hayder Radha†
†Department of Electrical and Computer Engineering, Michigan State University
‡Department of Computer Science and Engineering, Michigan State University

{forsati,esfahanian}@cse.msu.edu, {barjaste,radha}@msu.edu

Abstract

Existing collaborative ranking based recommender
systems tend to perform best when there is enough
observed ratings for each user and the observation is
made completely at random. Under this setting rec-
ommender systems can properly suggest a list of rec-
ommendations according to the user interests. How-
ever, when the observed ratings are extremely sparse
(e.g. in the case of cold-start users where no rating
data is available), and are not sampled uniformly at
random, existing ranking methods fail to effectively
leverage side information to transduct the knowl-
edge from existing ratings to unobserved ones. We
propose a semi-supervised collaborative rank-
ing model, dubbed S2COR, to improve the quality
of cold-start recommendation. S2COR mitigates the
sparsity issue by leveraging side information about
both observed and missing ratings by collaboratively
learning the ranking model. This enables it to deal
with the case of missing data not at random, but to
also effectively incorporate the available side informa-
tion in transduction. We experimentally evaluated
our proposed algorithm on a number of challenging
real-world datasets and compared against state-of-
the-art models for cold-start recommendation. We
report significantly higher quality recommendations
with our algorithm compared to the state-of-the-art.

1 Introduction

Due to the popularity and exponential growth of
e-commerce and online streaming websites, a com-
pelling demand has been created for efficient recom-
mender systems to guide users toward items of their
interests (e.g. products, books, movies) [1]. In col-
laborative filtering (CF) methods such as matrix fac-
torization [12], where the aim is to accurately predict

∗These authors contributed equally to this work.

the ratings, the latent features are extracted in a way
to minimize the prediction error measured in terms
of popular performance measures such as root mean
square error (RMSE). In spark contrast to CF, in col-
laborating ranking (CR) models [12, 7, 29, 8], where
the goal is to rank the unrated items in the order
of relevance to the user, the popular ranking mea-
sures such as as discounted cumulative gain (DCG),
normalized discounted cumulative gain (NDCG), and
average precision (AP) [11] are often employed to col-
laboratively learn a ranking model for the latent fea-
tures.

Recent studies have demonstrated that CR mod-
els lead to significantly higher ranking accuracy over
their traditional CF counterparts that optimize rat-
ing prediction. This is important considering the fact
that what we really care in recommendation is not
the actual values of ratings, but the order of items
to be recommended to a specific user. Therefore, the
error measures such as RMSE are often hopelessly
insufficient, as they place equal emphasis on all the
ratings. Among ranking models, the methods that
mainly concentrate on the top of the list have received
a considerable amount of attention, due to the higher
probability of examining the top portion of the list of
recommendations by users. Therefore, the introduc-
tion of ranking metrics such as push norm or infinite
norm [19, 3, 7, 13], sparked a widespread interest in
CR models and has been proven to be more effective
in practice [28, 7].

Although CR models for recommender systems has
been studied extensively and some progress has been
made, however, the state of affairs remains unset-
tled: the issue of handling cold-start items in ranking
models and coping with not missing at random as-
sumption of ratings are elusive open issues. First,
in many real world applications, the rating data are
very sparse (e.g., the density of the data is around 1%
for many publicly available datasets) or for a subset
of users or items the rating data is entirely missing

1

(knows as cold-start user and cold-start item prob-
lem, respectively) [21]. Second, collaborative filter-
ing and ranking models rely on the critical assump-
tion that the missing ratings are sampled uniformly
at random. However, in many real applications of rec-
ommender systems, this assumption is not believed to
hold, as invariably some users are more active than
others and some items are rated by many people while
others are rarely rated [27]. These issues have been
investigated in factorization based methods, nonethe-
less, it is not straightforward to adapt them to CR
models and are left open [7].

In this paper, we introduce a semi-supervised col-
laborative ranking model, dubbed S2COR , by leverag-
ing side information about both observed and missing
ratings in collaboratively learning the ranking model.
In the learned model, unrated items are conserva-
tively pushed after the relevant and before the irrel-
evant items in the ranked list of items for each in-
dividual user. This crucial difference greatly boosts
the performance and limits the bias caused by learn-
ing only from sparse non-random observed ratings.

To build the intuition on how incorporating miss-
ing ratings in S2COR is beneficial in handling cold-
start problem and mitigating data sparsity issue, we
note that in many real world applications the avail-
able feedback on items is extremely sparse, and there-
fore the ranking models fail to effectively leverage the
available side information in transdcuting the knowl-
edge from existing ratings to unobserved ones. This
problem becomes especially eminent in cases where
surrogate ranking models such as pairwise models are
used due to their computational virtues, where the
unobserved ratings do not play any role in learning
the model. As a result, by leveraging rich sources
of information about all items, one can potentially
bridge the gap between existing items and new items
to overcome the cold-start problem.

Turning to the non-random sampling issue of ob-
served ratings, we note that the non-randomness is
observing the ratings creates a bias in learning the
model that negatively impacts the future predictions
and may degrade the resulting recommendation ac-
curacy if ignored. Therefore, the nature of missing
ratings has to be modeled precisely as to obtain cor-
rect results. To reduce the effect of bias, the pro-
posed ranking model takes a conservative approach
and pushes the items with unknown ratings to the
middle of ranked list, i.e., after the relevant and be-
fore the irrelevant items. This is equivalent to as-
suming a prior about the unknown ratings which is
believed to perform well as investigated in [9].

We conduct thorough experiments on real datasets
and compare our results with the state-of-the-art

models for cold-start recommendation to demon-
strate the effectiveness of our proposed algorithm in
recommendation at the top of the list and mitigating
the data sparsity issue.

Organization. This paper is organized as follows.
We briefly review related work in Section 2. We es-
tablish the notation and formally define the prob-
lem in Section 3. In Section 4, we propose the semi-
supervised collaborative ranking model with a push
at the top of the list. We empirically evaluate the
proposed method in Section 5, and conclude in Sec-
tion 6.

2 Related Work

Collaborative ranking for recommendation.
The last few years have seen a resurgence in collab-
orative ranking centered around the technique of ex-
ploiting low-rank structures, an approach we take as
well. Several approaches to CR have recently been
proposed that are mainly inspired by the analogy
between query-document relations in IR and user-
item relations in recommender systems. The PMF-
based approach [4] uses the latent representations
produced by matrix factorization as user-item fea-
tures and learns a ranking model on these features.
CofiRank [30] learns latent representations that min-
imize a ranking-based loss instead of the squared er-
ror. ListRankMF [23] aims at minimizing the cross
entropy between the predict item permutation prob-
ability and true item permutation probability. In [13]
a method for Local Collaborative Ranking (LCR)
where ideas of local low-rank matrix approximation
were applied to the pairwise ranking loss minimiza-
tion framework is introduced.

Cold-start recommendation with side informa-
tion. Due in part to its importance, there has been
an active line of work to address difficulties associ-
ated with cold-start users and items, where a com-
mon theme among them is to exploit auxiliary infor-
mation about users or items besides the rating data
that are usually available [24]. A feature based regres-
sion ranking model for predicting the values (rates)
of user-item matrix in cold-start scenarios by lever-
aging all information available for users and items is
proposed in [17]. The kernelized matrix factoriza-
tion approach studied in [31], which incorporates the
auxiliary information into the MF. In [20] joint fac-
torization of the user-item and item-feature matrices
by using the same item latent feature matrix in both
decompositions is utilized.

2

Recommendation with not missing at random
ratings. Substantial evidence for violations of the
missing at random condition in recommender systems
is reported in [16] and it has been showed that incor-
porating an explicit model of the missing data mech-
anism can lead to significant improvements in pre-
diction performance.The first study of the effect of
non-random missing data on collaborative ranking is
presented in [15]. In [25] an EM algorithm to opti-
mize in turn the factorization and the estimation of
missing values.

3 Preliminaries

In this section we establish the notation used
throughout the paper and formally describe our prob-
lem setting.

Scalars are denoted by lower case letters and vec-
tors by bold face lower case letters such as u. We use
bold face upper case letters such as M to denote ma-
trices. The Frobenius norm of a matrix M ∈ Rn×m is

denoted by ‖M‖F, i.e, ‖M‖F =
√∑n

i=1

∑m
j=1 |Mij |2

and its (i, j)th entry is denoted by Ai,j . The trace
norm of a matrix is denoted by ‖M‖∗ which is de-
fined as the sum of its singular values. The transpose
of a vector and a matrix denoted by u> and U>, re-
spectively. We use [n] to denote the set on integers
{1, 2, · · · , n}. The set of non-negative real numbers
is denoted by R+. The indicator function is denoted
by I[·]. For a vector u ∈ Rp we use ‖u‖1 =

∑p
i=1 |ui|,

‖u‖2 =
(∑p

i=1 |ui|2
)1/2

, and ‖u‖∞ = max1≤i≤p ui to
denote its `1, `2, and `∞ norms, respectively. The
dot product between two vectors u and u′ is denoted
by either 〈u,u′〉 or u>u′.

In collaborative filtering we assume that there is
a set of n users U = {u1, · · · , un} and a set of
m items I = {i1, · · · , im} where each user ui ex-
presses opinions about a set of items. The rat-
ing information is summarized in an n × m matrix
R ∈ {−1,+1, ?}n×m, 1 ≤ i ≤ n, 1 ≤ j ≤ m where the
rows correspond to the users and the columns corre-
spond to the items and (p, q)th entry is the rate given
by user up to the item iq. We note that the rating
matrix is partially observed and it is sparse in most
cases. We are mainly interested in recommending a
set of items for an active user such that the user has
not rated these items before.

4 Transductive Collaborating
Ranking

We now turn our attention to the main thrust of the
paper where we present our transductive collabora-
tive ranking algorithm with accuracy at top by ex-
ploiting the features of unrated data. We begin with
the basic formulation and then extend it to incorpo-
rate the unrated items. The pseudo-code of the re-
sulting learning algorithm is provided in Algorithm 1.

4.1 A basic formulation

We consider a ranking problem, where, given a
set of users U and known user feedback on a set of
items I, the goal is to generate rankings of unob-
served items, adapted to each of the users’ prefer-
ences. Here we consider the bipartite setting in which
items are either relevant (positive) or irrelevant (neg-
ative). Many ranking methods have been developed
for bipartite ranking, and most of them are essentially
based on pairwise ranking. These algorithms reduce
the ranking problem into a binary classification prob-
lem by treating each relevant/irrelevant instance pair
as a single object to be classified [14].

As mentioned above, most research has concen-
trated on the rating prediction problem in CF where
the aim is to accurately predict the ratings for the
unrated items for each user. However, most applica-
tions that use CF typically aim to recommend only a
small ranked set of items to each user. Thus rather
than concentrating on rating prediction we instead
approach this problem from the ranking viewpoint
where the goal is to rank the unrated items in the
order of relevance to the user. Moreover, it is desir-
able to concentrate aggressively on top portion of the
ranked list to include mostly relevant items and push
irrelevant items down from the top. Specifically, we
propose an algorithm that maximizes the number of
relevant items which are pushed to the absolute top
of the list by utilizing the P-Norm Push ranking mea-
sure which is specially designed for this purpose [19]
.

For simplicity of exposition, let us first consider
the ranking model for a single user u. Let X+ =
{x+

1 , · · · ,x+
n+
} and X− = {x−1 , · · · ,x−n−} be the set

of feature vectors of n+ relevant and n− irrelevant
items to user u, respectively. We consider linear rank-
ing functions where each item features vector x ∈ Rd
is mapped to a score w>x . The goal is to find pa-
rameters w for each user such that the ranking func-
tion best captures past feedback from the user. The
goal of ranking is to maximize the number of rele-
vant items ranked above the highest-ranking irrele-
vant item. We cast this idea for each user u individ-

3

Algorithm 1 S2COR

1: input: λ ∈ R+: the regularization parameter,
and {ηt}t≥1: the sequence of scalar step sizes

2: Initialize W0 ∈ Rn×d
3: Choose an appropriate step size
4: for t = 1, . . . , T do
5: Compute the sub-gradient of Gt ∈ ∂L(Wt) us-

ing Eq. (??)
6: [Ut,Σt,Vt]← SVD(Wt−1 − 1

ηt−1
Gt))

7: Wt ← Ut

[
Σ− λ

ηt−1
I
]
+

V>t
8: end for
9: output:

ually into the following optimization problem:

min
w∈Rd

1

n+

n+∑

i=1

I
[
〈w,x+

i 〉 ≤ max
1≤j≤n−

〈w,x−j 〉
]

(1)

where I[·] is the indicator function which returns 1
when the input is true and 0 otherwise, n+ and n−

are the the number of relevant and irrelevant items
to user u, respectively.

Let us now derive the general form of our objec-
tive. We hypothesize that most users base their de-
cisions about items based on a number of latent fea-
tures about the items. In order to uncover these la-
tent feature dimensions, we impose a low-rank con-
straint on the set of parameters for all users. To
this end, let W = [w1,w2, · · · ,wn]> ∈ Rn×d de-
note the matrix of all parameter vectors for n users.
Let I+i ⊆ {1, 2, . . . ,m} and I−i ⊆ {1, 2, . . . ,m} be
the set of relevant and irrelevant items of ith user,
respectively. The overall objective for all users is for-
mulated as follows:

F(W) = λ‖W‖∗

+
n∑

i=1

 1

|I+i |
∑

j∈I+i

I

[
〈wi,xj〉 ≤ max

k∈I−i
〈wi,xk〉

]
,

(2)
where ‖ · ‖∗ is the trace norm (also known as nuclear
norm) which is the sum of the singular values of the
input matrix.

The objective in Eq. (2) is composed of two terms.
The first term is the regularization term and is intro-
duced to capture the factor model intuition discussed
above. The premise behind a factor model is that
there is only a small number of factors influencing
the preferences, and that a user’s preference vector is
determined by how each factor applies to that user.
Therefore, the parameter vectors of all users must lie

in a low-dimensional subspace. Trace-norm regular-
ization is a widely-used and successful approach for
collaborative filtering and matrix completion. The
trace-norm regularization is well-known to be a con-
vex surrogate to the matrix rank, and has repeatedly
shown good performance in practice [26, 6]. The sec-
ond term is introduced to push the relevant items of
each user to the top of the list when ranked based on
the user parameter vector and item features.

The above optimization problem is intractable due
to the non-convex indicator function. To design prac-
tical learning algorithms, we replace the indicator
function in (2) with its convex surrogate. To this
end, define the convex loss function ` : R 7→ R+ as
`(x) = [1− x]+. This is the widely used hinge loss in
SVM classification (see e.g., [5]) 1. This loss function
reflects the amount by which the constraints are not
satisfied. By replacing the non-convex indicator func-
tion with this convex surrogate leads to the following
tractable convex optimization problem:

F(W) = λ‖W‖∗

+
n∑

i=1

 1

|I+i |
∑

j∈I+i

`
(
〈wi,xj〉 − ‖X−i wi‖∞

)

(3)
where X−i = [x1, . . . ,xn−

i
]> is the matrix of features

of n−i irrelevant items in I−i and ‖ · ‖∞ is the max
norm of a vector.

4.2 Semi-supervised collaborative
ranking

In this part, we extend the proposed ranking idea
to learn both from rated as well as unrated items.
The motivation of incorporating unrated items comes
from the following key observations. First, we note
that commonly there is a small set of rated (either
relevant or irrelevant) items for each user and a large
number of unrated items. As it can be seen from
Eq. (2), the unrated items do not play any role in
learning the model for each user as the learning is
only based on the pair of rated items. When the fea-
ture information for items is available, it would be
very helpful if one can leverage such unrated items
in the learning-to-rank process to effectively leverage
the available side information. By leveraging both

1We note that other convex loss functions such as expo-
nential loss `(x) = exp(−x), and logistic loss `(x) = log(1 +
exp(−x)) also can be used as the surrogates of indicator func-
tion, but for the simplicity of derivation we only consider the
hinge loss here.

4

types of rated and unrated items, we can compen-
sate for the lack of rating data. Second, the non-
randomness in observing the observed ratings creates
a bias in learning the model that may degrade the re-
sulting recommendation accuracy. Therefore, finding
a precise model to reduce the effect of bias introduced
by non-random missing ratings seems essential.

To address these two issues, we extend the basic
formulation in Eq. (2) to incorporate items with miss-
ing ratings in ranking of items for individual users.
A conservative solution is to push the items with un-
known ratings to the middle of ranked list, i.e., after
the relevant and before the irrelevant items. To do
so, let I◦i = I \

(
I+i ∪ I−i

)
denote the set of items un-

rated for user i ∈ U . We introduce two extra terms
in the objective in Eq. (2) to push the unrated items
Ii◦ below the relevant items and above the irrelevant
items, which yilelds the following objective:

L(w) =
1

|I+i |
∑

i∈I+i

`

(
〈w,xi〉 ≤ max

j∈I−i
〈w,xj〉

)

+
1

|I+i |
∑

i∈I+i

`

(
〈w,xi〉 ≤ max

j∈I◦i
〈w,xj〉

)

+
1

|I◦i |
∑

i∈I◦i

`

(
〈w,xi〉 ≤ max

j∈I−i
〈w,xj〉

)
(4)

Equipped with the objective of individual users, we
now turn to the final collaborating ranking objective
as:

F(W) = λ‖W‖∗

+
n∑

i=1

 1

|I+i |
∑

j∈I+i

`
(
〈wi,xj〉 − ‖X−i wi‖∞

)

+
n∑

i=1

 1

|I+i |
∑

j∈I+i

` (〈wi,xj〉 − ‖X◦iwi‖∞)

+
n∑

i=1

 1

|I◦i |
∑

j∈I◦i

`
(
〈wi,xj〉 − ‖X−i wi‖∞

)

,

(5)

where X◦i = [x1, . . . ,xn◦
i
]> is the matrix of n◦i un-

rated items in I◦i .

5 Experiments

In this section, we conduct exhaustive experiments to
demonstrate the merits and advantages of the pro-
posed algorithm. We conduct our experiments on
three well-known datasets MovieLens, Amazon and
CiteULike.

Table 1: Statistics of real datasets used in our exper-
iments.

Statistics ML-IMDB Amazon CiteULike

users 2,113 13,097 3,272
items 8,645 11,077 21,508
ratings 739,973 175,612 180,622
features 8,744 5,766 6,359
Density 4.05% 0.12% 0.13%

5.1 Datasets

• ML-IMDB. We used ML-IMDB which is a
dataset extracted from the IMDB and the Movie-
Lens 1M datasets by mapping the MovieLens
and IMDB and collecting the movies that have
plots and keywords.

• Amazon. We used the dataset of best-selling
books and their ratings in Amazon. Each book
has a one or two paragraphs of textual descrip-
tion, which has been used to have a set of fea-
tures of the books.

• CiteULike. It is an online free service for
managing and discovering scholarly references.
Users can add those articles that they are
interested in to their libraries. Collected articles
in a user’s library will be considered as relevant
items for that user. This dataset does not
have explicit irrelevant items and was chosen to
illustrate the effect of considering missing data
while only having relevant itmes.

For all above datasets, the description about the
items were tokenized and after removing the stop
words, the rest of the words were stemmed. Then
those words that have been appeared in less than 20
items and more that 20% of the items were also re-
moved [22]. At the end, the TF-IDF was applied on
the remaining words and the TF-IDF scores repre-
sented the features of the items. The statistics of the
datasets are given in Table 1. As it is shown in Ta-
ble 1, all these three datasets have high dimensional
feature space.

5.2 Metrics

We adopt the widely used metrics, Discounted Cu-
mulative Gain at n and Recall at n, for assessing the
performance of our and baseline algorithms. For each
user u, given an item i, let sk be the relevance score of
the item ranked at position k, where sk = 1/n if the
item is relevant to the user u and sk = 0 otherwise.

5

Discounted Cumulative Gain at n, is defined as:

DCGu@n = s1 +
n∑

k=2

sk
log2(k)

If we divide the DCGu@n by its maximum value, we
get the NDCGu@n value. Given the list of top-n
item recommendations for each user u, Recall at n
will count the number of relevant items appeared in
that list. Recall at n is defined as:

RECu@n =
|{relevant items to u} ∩ {top-n items}|

|{top-n items}|
DCG@n, NDCGu@n and REC@n will be computed
for each user and then will be averaged over all users.

5.3 Methodology

Given the partially observed rating matrix, we
transformed the observed ratings of all datasets from
a multi-level relevance scale to a two-level scale
(+1,−1) while 0 is considered for unobserved ratings.
We randomly selected 60% of the observed ratings for
training and 20% for validation set and consider the
remaining 20% of the ratings as our test set. To bet-
ter evaluate the results, we performed a 3-fold-cross
validation and reported the average value for our re-
sults.

5.4 Baseline Algorithms

The proposed S2COR algorithm is compared to the
following algorithms:

• Feature Based Factorized Bilinear Similar-
ity Model (FBS) [22]: This algorithm uses
bilinear model to capture pairwise dependencies
between the features.

• Collaborative User-specific Feature-based
Similarity Models (CUFSM): By using the
history of ratings for users, it learns personalized
user model across the dataset [10].

• Regression based Latent Factor Model
(RLF):2 This method incorporates the features
of items in factorization process by transforming
the features to the latent space using linear re-
gression [2]. If the learning method is Markov
Chain Monte Carlo, we name it RLF-MCMC.

• Cosine Similarity Based Recommender
(CSR): Using the similarity between features of
items, the preference score of a user on an item
will be estimated.

2The implementation of this method is available in LibFM
library [18].

5.5 Robustness to not missing at ran-
dom ratings

In this section we compare the effect of incorporating
the unobserved ratings in our learning in compari-
son with excluding them from our learning. Most of
the methods in the literature ignore the unobserved
ratings and train their model only base on observed
ratings. By incorporating the unrated items in rank-
ing, our method can limit the bias caused by learning
solely based on the observed ratings and consequently
deals with the not missing at random issue of ratings.
Table 2 shows results of comparing these two scenar-
ios for S2COR on ML-IMDB. In order to see the differ-
ence between these two scenarios, we considered 70%
of the ratings for training and 30% for test to have
more ground truth for our testing. Table 2 shows
the NDCG@5, 10,15 and 20 for both scenarios and
it shows that incorporating the unobserved ratings
causes to improve the accuracy of recommendation
list. Hence, the NDCG values for top 5, 10, 15 and
20 items improved when unrated items were included
as part of the training process.

5.6 Dealing with cold-start items

We now turn to evaluating the effectiveness of S2COR
for cold-start recommendation. To do so, we ran-
domly selected 60% of the items as our training items
and 20% for validation set and considered the remain-
ing 20% of the items as our test set. In this scenario,
baseline algorithms that are used for comparison are
CSR, FBS, CUFSM and RLF. For the experiments,
we used ML-IMDB, Amazon and CiteULike datasets.
Table 3 shows the measurement results of applying
mentioned algorithms on these datasets. For each
test, the parameters’ values producing the best rank-
ing on the validation set were selected to be used
and reported. As it can be seen from the results
in Table 3, the proposed S2COR algorithm outper-
formed all other baseline algorithms and provided a
recommendations with higher quality in comparison
to other methods. We can also see from the results of
Table 3 that for the ML-IMDB dataset, the improve-
ment in terms of REC@10 is significant compared to
other datasets. Since the density of this dataset is
much higher than other two datasets, this observa-
tion indicates that our method is more effective in
utilizing side information compared to other meth-
ods. These results demonstrate the effectiveness of
S2COR in comparison with other state-of-the-art algo-
rithms. S2COR was able to outperform other state-
of-the-art algorithms by considering the missing data
and focusing on top of the recommendation list for

6

Table 2: Results of employing missing ratings versus ignoring them on ML-IMDB. λ = 0.6 is regularization
parameter, h = 10 is dimension of latent features, T = 100 is the number of iterations.

Algorithm: S2COR NDCG@5 NDCG@10 NDCG@15 NDCG@20

Observed ratings 1.1690 2.2218 2.8362 3.2849
Observed + missing ratings 1.1794 2.2405 2.8585 3.3096

cold-start items.

6 Conclusions

In this paper we introduced a semi-supervised collab-
orative ranking model by leveraging side information
about both observed and missing ratings in collabo-
ratively learning the ranking model. In the learned
model, unrated items are conservatively pushed af-
ter the relevant and before the irrelevant items in the
ranked list of items for each individual user. This
crucial difference greatly boosts the performance and
limits the bias caused by learning only from sparse
non-random observed ratings. The proposed algo-
rithm is compared with seven baseline algorithms on
three real world datasets that demonstrated the ef-
fectiveness of proposed algorithm in addressing cold-
start problem and mitigating the data sparsity prob-
lem, while being robust to sampling of missing rat-
ings.

References

[1] G. Adomavicius and A. Tuzhilin. Toward the
next generation of recommender systems: A sur-
vey of the state-of-the-art and possible exten-
sions. IEEE Transactions on Knowledge and
Data Engineering, 17(6):734–749, 2005.

[2] D. Agarwal and B.-C. Chen. Regression-based
latent factor models. In SIGKDD, pages 19–28.
ACM, 2009.

[3] S. Agarwal. The infinite push: A new support
vector ranking algorithm that directly optimizes
accuracy at the absolute top of the list. In SDM,
pages 839–850. SIAM, 2011.

[4] S. Balakrishnan and S. Chopra. Collaborative
ranking. In ACM WSDM, pages 143–152. ACM,
2012.

[5] C. J. Burges. A tutorial on support vector ma-
chines for pattern recognition. Data mining and
knowledge discovery, 2(2):121–167, 1998.

[6] E. J. Candès and T. Tao. The power of con-
vex relaxation: Near-optimal matrix comple-

tion. Information Theory, IEEE Transactions
on, 56(5):2053–2080, 2010.

[7] K. Christakopoulou and A. Banerjee. Collabora-
tive ranking with a push at the top. In WWW,
pages 205–215. International World Wide Web
Conferences Steering Committee, 2015.

[8] P. Cremonesi, Y. Koren, and R. Turrin. Per-
formance of recommender algorithms on top-n
recommendation tasks. In ACM RecSys, pages
39–46. ACM, 2010.

[9] R. Devooght, N. Kourtellis, and A. Mantrach.
Dynamic matrix factorization with priors on un-
known values. In ACM SIGKDD, pages 189–198.
ACM, 2015.

[10] A. Elbadrawy and G. Karypis. User-specific
feature-based similarity models for top-n recom-
mendation of new items. ACM Transactions
on Intelligent Systems and Technology (TIST),
6(3):33, 2015.

[11] K. Järvelin and J. Kekäläinen. Ir evaluation
methods for retrieving highly relevant docu-
ments. In ACM SIGIR, pages 41–48. ACM,
2000.

[12] Y. Koren, R. Bell, and C. Volinsky. Matrix fac-
torization techniques for recommender systems.
Computer, (8):30–37, 2009.

[13] J. Lee, S. Bengio, S. Kim, G. Lebanon, and
Y. Singer. Local collaborative ranking. In Pro-
ceedings of the 23rd international conference on
World wide web, pages 85–96. ACM, 2014.

[14] T.-Y. Liu. Learning to rank for information re-
trieval. Foundations and Trends in Information
Retrieval, 3(3):225–331, 2009.

[15] B. M. Marlin and R. S. Zemel. Collaborative
prediction and ranking with non-random missing
data. In RecSys, pages 5–12. ACM, 2009.

[16] B. M. Marlin, R. S. Zemel, S. T. Roweis, and
M. Slaney. Collaborative filtering and the miss-
ing at random assumption. In UAI, pages 267–
275, 2007.

7

Table 3: Results on cold-start items. λ, µ1 and β are regularization parameters, h is dimension of latent
features, l is the number of similarity functions and T is the number of iterations.

Algorithms Hyperparameters DCG@10 REC@10

M
L

-I
M

D
B CSR — 0.1282 0.0525

RLF h = 15 0.0455 0.0155
CUFSM l = 1, µ1 = 0.005 0.2160 0.0937

FBS λ = 0.01, β = 0.1, h = 5 0.2270 0.0964
S2COR λ = 0.6, h = 10, T = 200 0.2731 0.2127

A
m

a
z
o
n CSR — 0.0228 0.1205

RLF h = 30 0.0076 0.0394
CUFSM l = 1, µ1 = 0.25 0.0282 0.1376

FBS λ = 0.1, β = 1, h = 1 0.0284 0.1392
S2COR λ = 0.6, h = 10, T = 200 0.1195 0.1683

C
it

e
U

L
ik

e CSR — 0.0684 0.1791
RLF h = 75 0.0424 0.0874

CUFSM l = 1, µ1 = 0.25 0.0791 0.2017
FBS λ = 0.25, β = 10, h = 5 0.0792 0.2026
S2COR λ = 0.6, h = 10, T = 200 0.0920 0.2243

[17] S.-T. Park and W. Chu. Pairwise preference re-
gression for cold-start recommendation. In Rec-
Sys, pages 21–28. ACM, 2009.

[18] S. Rendle. Factorization machines with libfm.
ACM Transactions on Intelligent Systems and
Technology (TIST), 3(3):57, 2012.

[19] C. Rudin. The p-norm push: A simple convex
ranking algorithm that concentrates at the top
of the list. The Journal of Machine Learning
Research, 10:2233–2271, 2009.

[20] M. Saveski and A. Mantrach. Item cold-start
recommendations: learning local collective em-
beddings. In RecSys, pages 89–96. ACM, 2014.

[21] A. I. Schein, A. Popescul, L. H. Ungar, and
D. M. Pennock. Methods and metrics for cold-
start recommendations. In SIGIR, pages 253–
260. ACM, 2002.

[22] M. Sharma, J. Zhou, J. Hu, and G. Karypis.
Feature-based factorized bilinear similarity
model for cold-start top-n item recommenda-
tion. In SDM, 2015.

[23] Y. Shi, M. Larson, and A. Hanjalic. List-wise
learning to rank with matrix factorization for
collaborative filtering. In ACM RecSys, pages
269–272. ACM, 2010.

[24] Y. Shi, M. Larson, and A. Hanjalic. Collab-
orative filtering beyond the user-item matrix:
A survey of the state of the art and future

challenges. ACM Computing Surveys (CSUR),
47(1):3, 2014.

[25] V. Sindhwani, S. S. Bucak, J. Hu, and A. Mo-
jsilovic. One-class matrix completion with low-
density factorizations. In ICDM, pages 1055–
1060. IEEE, 2010.

[26] N. Srebro, J. Rennie, and T. S. Jaakkola.
Maximum-margin matrix factorization. In Ad-
vances in neural information processing systems,
pages 1329–1336, 2004.

[27] H. Steck. Training and testing of recommender
systems on data missing not at random. In KDD,
pages 713–722. ACM, 2010.

[28] H. Steck. Gaussian ranking by matrix factoriza-
tion. In Proceedings of the 9th ACM Conference
on Recommender Systems, pages 115–122. ACM,
2015.

[29] M. Volkovs and R. S. Zemel. Collaborative rank-
ing with 17 parameters. In Advances in Neu-
ral Information Processing Systems, pages 2294–
2302, 2012.

[30] M. Weimer, A. Karatzoglou, Q. V. Le, and
A. Smola. Maximum margin matrix factoriza-
tion for collaborative ranking. NIPS, 2007.

[31] T. Zhou, H. Shan, A. Banerjee, and G. Sapiro.
Kernelized probabilistic matrix factorization:
Exploiting graphs and side information. In SDM,
volume 12, pages 403–414. SIAM, 2012.

8

A Scalable People-to-People Hybrid Reciprocal Recommender Using Hidden
Markov Models

Ammar Alanazi∗ Michael Bain†

Abstract
Recommender systems are methods of personalisation that
provide users of online services with suggestions for further
interaction with those services. Most recommender systems
are for product-to-consumer recommendation, suggesting
items or products to users, but there is a growing need for
reciprocal recommender systems, where the goal is to suggest
users to other users of the system with whom they might like
to interact. Unlike product-to-consumer recommendation,
for reciprocal recommendation to be successful both parties
must agree to the interaction. Reciprocal recommendation
is needed, for example, in matching users in online social
networks for friendship or dating, or matching users to
employers in online recruitment. Since online social network
websites typically have many millions of users, the problem
of finding successful interactions is not a trivial task, and
automating the process becomes essential.

Most existing reciprocal recommender systems use ei-
ther profile similarity or interaction similarity to recommend
new matches, assuming that user preferences are static and
ignoring temporal aspects of user behaviour. This paper
takes a different approach, and addresses the issue of rep-
resenting user preferences as dynamic. We introduce a new
representation for changes in user preferences and use that
representation in creating a reciprocal recommender system
applied to online dating.

In this paper, we develop a general framework for com-
bining a Hidden Markov model (HMM) content-based recip-
rocal recommender system with collaborative filtering tech-
niques to create a unified hybrid recommender. Additionally,
a new similarity measure is introduced to rank the recom-
mendations generated by this hybrid recommender. More-
over, we propose, design and implement a reciprocal recom-
mender system using the suggested framework and the new
similarity measure. Evaluation of this system shows that it
generates better recommendations than existing systems in
a time-efficient manner.

1 Introduction

Most of the existing work on recommender systems
is built on the assumption that users’ behaviours are
static and do not change over time. More recently, this
assumption has begun to be relaxed in work on temporal
recommendation [18, 20, 11]. However, to the best
of our knowledge no work has addressed the problem
of temporal reciprocal recommendation, such as occurs
in the context of online dating, employment websites,
and other people-to-people interactions. Reciprocal

∗King Abdulaziz City for Science and Technology, Computer

Research Institute, Riyadh, Saudi Arabia
†University of New South Wales, Faculty of Engineering,

Sydney, Australia

recommender systems are necessary when the entity
recommended to the active user (the one receiving
the recommendation) must consent or reciprocate in
some way to being the object of the recommendation;
typically this “entity” is another user.

Analysis of real-world data from a dating website
on people-to-people interactions [2] shows that people’s
behaviour and activity levels do change over time, which
leads to the conclusion that we need a dynamic model
to generate better recommendations.

To capture these temporal changes, in this paper we
describe a scalable hybrid Hidden Markov Model [17]
reciprocal recommender system that captures how each
user’s behaviour evolves over time and generates recom-
mendations accordingly. The proposed hybrid recom-
mender combines collaborative filtering techniques with
the HMM recommender proposed in [3] to generate rec-
ommendations.

In this research, the main concern is the changes in
individuals’ behaviours rather than changes in the whole
population’s behaviour (i.e. trends). Moreover, social
networks (including dating websites) are different from
typical item-user networks because there is no obvious
categorisation of the users in these networks. For
example, in article recommender systems, the problem
can be abstracted to recommending an article category
to minimise the number of classes that the model has
to predict. While people can be categorised by age,
gender, interests ...etc., reducing the recommendations
problem in social networks to recommending a category
instead of recommending a specific user does not lead
to accurate results. Unlike the standard item-to-user
recommenders, where the user can just purchase the
recommended item, in this type of recommenders the
recommendations are people, and these people also have
to accept the other party for the interaction to be
considered successful.

In this paper we introduce a novel hybrid recom-
mender system that combines the ability of collabo-
rative filtering methods to generate recommendations
with the high performance of the predictions of the
Hidden Markov model recommender that was proposed
in [3], to generate recommendations in reciprocal do-

mains with high success rates. The Collaborative Fil-
tering Hidden Markov Models Hybrid Recommender
CFHMM-HR was tested on an industrial-scale data
that was acquired from a real dating website and the
results show that CFHMM-HR outperforms its coun-
terparts.

Moreover, CFHMM-HR is a scalable hybrid recom-
mender that can run in real-world applications. Al-
though CFHMM-HR was only tested on an online-
dating dataset, we believe that the same model can be
applied in other reciprocal domains after a few changes
in the preprocessing level.

The key contribution we present in this paper is
a novel hybrid recommender that combines techniques
from content-based recommender systems and collabo-
rative filtering recommender systems to generate rec-
ommendations in a people-to-people domain and which
outperforms the previous recommender systems that
were reported on a similar domain. In particular, the
proposed hybrid recommender offers the following novel
features:

• It presents a novel hybrid recommender that gen-
erates recommendations with high success rate in
comparison to its counterparts.

• It presents a recommender that can work on indus-
trial sized datasets in a timely manner and that can
be deployed online.

• It introduces a new similarity measure that min-
imises the number of false positives and maximises
the number of true positives predicted by the rec-
ommender. Consequently, the new similarity mea-
sure maximises the success rate of the recommen-
dations generated by the model.

2 Related Work

Although recommender systems have been investigated
thoroughly in the literature, research on temporal as-
pects of the recommendation problem has only at-
tracted attention in the past few years. Most of the
time-aware recommenders proposed in the literature
[11, 18, 20, 9, 24, 8, 10] are variations of the Matrix
Factorisation (MF) model. However, initial experimen-
tations on MF in people-to-people reciprocal recommen-
dation did not work well [21].

The area of people-to-people reciprocal recom-
menders has attracted little research attention in com-
parison to traditional item-to-user recommenders. Al-
though some interesting models were proposed in the
literature such as [1, 12, 6, 21, 13, 5, 22, 15], to the best
of our knowledge no one has addressed the temporal
aspect of the problem explicitly.

3 Dataset

The dataset used to test the model is a real-world
commercial dataset from a dating website. In the dating
domain, there are users who initiate interactions, we
call them senders, and people who receive interactions,
and we call them recipients. Senders and recipients
can overlap which means a user can be a recipient
and a sender at the same time. There are different
forms of interactions that can be exchanged such as
predefined messages, emails and chats. In this research,
we use the predefined messages, we call them messages,
to train and test our model because this is the first
method of communication between users in most cases
and depending on the success of these messages, users
can further their communications and exchange other
forms of interactions.

When a predefined message is sent, the recipient
can ignore this message and not reply to it, reply with
a positive predefined message or reply with a negative
one. We have only considered messages that have
replies to them and classify them as positive or negative
interactions based on the reply message.

The dataset has over 3 million users and over
80 million interactions exchanged between these users.
Therefore, using the whole dataset is not feasible and
representative subsets have to be used instead. To
generate training and testing data for our model, a
time period was randomly selected (e.g. from March
1st to March 15th, 2009) and all active users during this
time period were used as the experiment population.
Then, for users in the selected population, all their
interactions, even interactions outside the selected time
period, were obtained and used to build the model.
Several populations were generated and average results
across these populations will be presented later in this
paper.

The average population size is over 195,000 users
of which a little over 16,000 were recipients and about
190,000 were senders. These users exchanged over two
million messages amongst themselves. Each population
was divided into 70% training data and 30% test data.

This dataset was chosen because it is a real-world
commercial reciprocal dataset that has temporal dy-
namics. Although users’ life cycles are mostly short in
a dating website [2], there are several life-cycle phases
to capture and these changes between phases have their
effects on the decision of initiating an interaction and
the decision of accepting one.

4 Evaluation Metrics

Several measures have been used in literature to mea-
sure the performance of recommender systems. Mea-
sures such as Root Mean Squared Error (RMSE) and

Mean Absolute Error (MAE) indicate the accuracy of
the system’s predictions. However, in applications that
require generating actual recommendations to users we
are rather interested in measuring how many of these
predictions will be used, i.e. the usage of the recommen-
dations [19, 4, 7]. Dating is one of these applications.

In this paper we use the following two metrics that
measure the usage of the recommendations. The first
one is the Success Rate, also referred to as Precision
or Confidence, which is defined as the proportion of gen-
erated recommendations that are correct. The other
metric used to evaluate the model is Recall, or Sensi-
tivity, which is the proportion of successful interactions
in the test set that was predicted successfully by the
model [16].

More formally, let R be the set of recommendations
generated by the model, R+ be the subset of R that is
correct, I+ be the set of successful interactions in the
test data and Size(S) is the size of a set S.

SuccessRate =
Size(R+)

Size(R)
=

TP

TP + FP

Recall =
Size(R+)

Size(I+)
=

TP

TP + FN

Generally, recommender systems in online dating
applications are required to generate a pre-determined
number of recommendations and in this case the most
important evaluation metric is Success Rate [19]. Addi-
tionally, opening communication channels in online dat-
ing domain consumes time and money in most cases.
Therefore, the best recommender is the one that does
not encourage the user to start an interaction unless it
is very likely to succeed and the measure that captures
this likelihood is also the Success Rate. However, since
experiments in this paper are all offline experiments that
are performed on historical data, we will present Recall
values as well, but the focus of this research is to im-
prove the Success Rate.

Additionally, we will use the F-measure, also
called F-factor, which is a weighted average of success
rate and recall [16]. The general formula to calculate
F-measure is:

Fβ = (1+β2).
SuccessRate.Recall

(β2.SuccessRate) +Recall
where β > 0

When β = 1, similar weights are given to both
success rate and recall. We decided to use β = 0.25 to
put more emphasis on success rate since it is the focus
of this research.

5 A Hybrid Recommender Combining
Collaborative Filtering and Hidden Markov
Models

The recommender that will be described in this section
is an extension to the content-based HMM recommender
that was presented in [3]. We will first start by outlining
the limitations of the HMM recommender followed by
the design, implementation and experimental results of
CFHMM-HR.

5.1 Limitations of the Content-Based HMM
Recommender Although the experimental results of
the content-based HMM recommender [3] are promis-
ing, there is one main limitation to that model. The
only way of actually generating recommendations is to
use brute-force to generate all the possible interactions
that could occur and then pass them through the model
to predict whether they will succeed or fail. However,
this is not feasible due to the size of the dataset. Even
with a small sample of 1,000 recipients, there is an aver-
age of 12,000 senders interacting with these recipients.
Consequently, brute-force will produce 12,000,000 in-
teractions to be validated and this will not work in a
timely manner in a real-world recommender. Moreover,
that small sample is too small to be representative of
the whole dataset.

5.2 Design One of content-based recommenders’
strengths is that they can be used as filters on recom-
mendations generated by other methods [14]. On the
other hand, collaborative filtering recommenders have
the ability to generate a list of recommendations by util-
ising the similarities between the users.

Therefore, to overcome the limitations of the HMM
recommender and be able to generate recommendations,
we decided to use a collaborative filtering recommender
first to generate the recommendations. Then, we test
the top N recommendations using the HMM model and
filter out the unsuccessful predictions.

The CFHMM-HR model works in the following
order (Figure 1):

• Training data is used to train the HMM recom-
mender and used by the collaborative filtering rec-
ommender to generate the initial list of recommen-
dations.

• The initial list of recommendations gets validated
by the HMM recommender. The output of this step
is another list, the second list, of recommendations
which is a smaller subset of the initial list.

• The second list of recommendations gets ranked
using a combination measure of likelihood and

collaborative filtering similarity and the final list
of recommendations is generated.

To represent the messages of the initial list of
recommendations as interactions (described in [3]), we
assume that each one of these messages are received
immediately after the last message of the training data
for each user. Formally:

Ir = (Otrk−n+1
, Otrk−n+2

, . . . , Otrk , Or)

if k ≥ n− 1

or Ir = (φ, φ, . . . , O0, . . . , Otrk−1
, Otrk , Or)

if k < n− 1

Where trk is the last message in the training data for
each user, r is the recommended message, Ox is the
observation vector for the message x and Ix is the
message x represented as an interaction.

The model is built so that it can work with any
collaborative filtering recommender as long as it gener-
ates the initial list of recommendations in a compatible
syntax. The HMM recommender that was used in this
model is the one described in [3]. As for the collabora-
tive filtering part of the recommender, we experimented
with three different models: Basic CF+ [12], SIM-CF
[21] and ProCF [6]. These models were selected because
SIM-CF [21] is the model that was chosen to be the rec-
ommender for the dating website that we obtained its
dataset for this research and SIM-CF’s main strength is
its high recall. ProCF [6] is one of the best performing
models, success rate wise, reported on the same dataset.
Finally, Basic CF+ [12] is a simple model that imple-
ments the basic idea of collaborative filtering in an easy
to understand way.

In each experiment, the HMM part of CFHMM-HR
receives a list of the top 200 candidates for each user
from the CF recommender. The HMM recommender
then filters and re-ranks that list to get the top 50.

Since CFHMM-HR receives the initial list of recom-
mendations with their similarity scores from a CF rec-
ommender and we have no control over the similarity
measure used in that CF recommender, it is not possi-
ble to derive a combined similarity measure from first
principles. Instead, we derive a new heuristic similar-
ity measure that combines the similarity score received
from the CF recommender with the likelihood values
generated by the HMM recommender. The new similar-
ity measure was engineered to assure that each element
of the measure has the required effect.

The final list of recommendations generated by
CFHMM-HR is ranked based on this new heuristic
similarity measure we call HMMSIM . The formula
to calculate HMMSIM is as follows:

HMMSIM(mi) = ∆likelihood(mi) + sim(mi) + α

where:

α =

{
large positive constant, if ∆likelihood(mi) ≥ 0

0, otherwise

and:

∆likelihood(mi) = likelihoodsuccess(mi)−likelihoodfailure(mi)

Also, sim(mi) is the similarity, between mi’s sender
and mi’s recipient, generated by the CF recommender
for the message mi

One of the findings we discovered during the exper-
imentations on HMM-CBR is that it is a conservative
recommender that tends to under-predict in most cases.
However, its predictions are highly reliable. On the
other hand, we noticed that the CF recommenders tend
to over-predict both true positives and false positives.
Therefore, the main effect of adding ∆likelihood(mi) in
HMMSIM is to minimise the number of false positives
predicted by sim(mi) by demoting their score.

Further, since the predictions of the HMM rec-
ommender are highly reliable, we want the messages
that are predicted to be successful by it to be on the
top of the list. Therefore, we add the large constant
α to promote these messages to the top of the list
(∆likelihood(mi) ≥ 0 means mi is predicted to be suc-
cessful).

Additionally, we find that ∆likelihood(mi) ranges
between -15 and +15, while sim(mi) value can be
over 180 for popular users. Which means that in
such cases of popular users with high sim(mi) values,
the addition of ∆likelihood(mi) will not be sufficient to
have the required effect of demoting the overall score
HMMSIM . Therefore, the addition of α balances the
weights of sim(mi) and ∆likelihood(mi) as well.

To further simplify the intuition behind
HMMSIM , we present this example. Assume
we have a user ua who received two recommendations
mi (user ux is recommended to ua) and mj (user uy is
recommended to ua). Also assume that ux is a popular
user and uy is not which means that sim(mi) is likely
to be larger than sim(mj). Normally, a popular user
receives overwhelming messages and his/her recent
history would have many unsuccessful messages. In
such cases, we believe that the HMM recommender will
identify that and predicts mi to be unsuccessful. Let’s
also assume that mj is predicted to be successful and
we have the following values:
sim(mi) = 90, sim(mj) = 5
∆likelihood(mi) = −15, ∆likelihood(mj) = 15

From these values, if we calculate the scores before
the addition of α we get the following results:

Figure 1: The framework for CFHMM-HR.

sim(mi) + ∆likelihood(mi) = 75
sim(mj) + ∆likelihood(mj) = 20

Which means that mi will be ranked higher than
mj even after the demoting. However, if we add
α = 100 we get:
HMMSIM(mi) = 75, HMMSIM(mj) = 120

This ranks mj higher than mi which is the required
outcome.

5.3 Implementation The Hidden Markov models
Toolkit (HTK) [23] was used to implement the content-
based Hidden Markov models part of the recommender
and Java was used to implement all the preprocessing
and post-processing tools.

6 Experimental Results

This proposed model was also evaluated using the same
dataset described in Section 3. Users of the website
did not have access to recommendations generated by
our model and therefore the model was evaluated using
historical data.

6.1 CFHMM-HR with Basic CF+ In this exper-
iment we used the Basic CF+ [12] as the CF recom-
mender. Comparing the accuracy of the recommenda-
tions between Basic CF+ alone and CFHMM-HR with

Table 1: A comparison between the results of Basic
CF+ and the result of CFHMM-HR (n = 5).

Basic CF+
Rank Success Rate Recall F0.25 score
top 10 0.252 0.034 0.183
top 20 0.235 0.057 0.199
top 30 0.226 0.076 0.202
top 40 0.219 0.092 0.203
top 50 0.213 0.105 0.201

CFHMM-HR
Rank Success Rate Recall F0.25 score
top 10 0.434 0.034 0.256
top 20 0.406 0.060 0.303
top 30 0.388 0.082 0.318
top 40 0.376 0.099 0.323
top 50 0.368 0.114 0.325

Basic CF+ as the CF recommender shows a noticeable
overall improvement. The success rate of CFHMM-HR
for top 50 recommendations is 15.5% more than the
success rate of Basic CF+ and for the top 10 recom-
mendations it is 18.2% more. The recall of the top 50
recommendations is 0.9% more in CFHMM-HR while
the recall of the top 10 recommendations is the same in
both cases. Please refer to Table 1 for detailed results.

6.2 CFHMM-HR with SIM-CF This section
presents the experimental evaluation of CFHMM-HR
using SIM-CF [21] as the CF recommender. There is
an improvement in the success rate and a slight loss of
recall. In the top 50 recommendations, CFHMM-HR
improves the success rate by 5.7% while losing 0.6% re-
call. Similarly, in the top 10 recommendations there is
an improvement of 5.1% in success rate and a setback
of 2.9% in recall when using the CFHMM-HR instead
of using the SIM-CF alone. Using the F0.25 score to
evaluate the overall performance, CFHMM-HR outper-
forms SIM-CF in all top ranks. More detailed results
are presented in Table 2.

6.3 CFHMM-HR with ProCF Here we present
the results of CFHMM-HR with ProCF [6] as the CF
part of it. We notice an improvement in success rate
and a small drop in recall for the top 30 ranks and
below. For the top 50 recommendations, CFHMM-HR
has 18.9% more success rate than ProCF alone and 0.5%
more recall. For the top 10 recommendations, CFHMM-
HR shows a 20.2% increase in success rate and a 0.3%
decrease in recall. Using the F0.25 score to evaluate the
overall performance, CFHMM-HR outperforms ProCF
in all top ranks. Please refer to Table 3 for more results.

Table 3: A comparison between the results of ProCF and the result of CFHMM-HR (n = 5).
ProCF

Rank Success Rate Recall F0.25 score
top 10 0.485 0.032 0.266
top 20 0.471 0.048 0.310
top 30 0.455 0.059 0.326
top 40 0.448 0.068 0.337
top 50 0.440 0.074 0.341

CFHMM-HR
Rank Success Rate Recall F0.25 score
top 10 0.687 0.029 0.294
top 20 0.667 0.042 0.354
top 30 0.653 0.058 0.407
top 40 0.642 0.070 0.434
top 50 0.629 0.079 0.447

Table 2: A comparison between the results of SIM-CF
and the result of CFHMM-HR (n = 5).

SIM-CF
Rank Success Rate Recall F0.25 score
top 10 0.296 0.107 0.268
top 20 0.279 0.163 0.268
top 30 0.265 0.202 0.261
top 40 0.256 0.234 0.255
top 50 0.250 0.260 0.250

CFHMM-HR
Rank Success Rate Recall F0.25 score
top 10 0.347 0.078 0.289
top 20 0.341 0.146 0.316
top 30 0.327 0.191 0.314
top 40 0.314 0.223 0.307
top 50 0.307 0.254 0.303

7 Analysis of Run-Time

Although the main focus of this research is to find a
recommendation model that identifies temporal changes
and utilises them to better understands user behaviour,
there is another aim that is of similar importance. The
other aim is that the final model is scalable, time-
efficient and can be deployed in a real-world application.

To demonstrate the efficiency of CFHMM-HR, we
have calculated the run-time for every step the recom-
mender performs over a large number of experiments.
These experiments were run on a Windows Server 2008
machine with the following specifications: Intel Xeon
CPU, 2.80 GHz, 4 processors, 32 GB RAM.

The typical scenario for running CFHMM-HR on-
line is as follows:

1. Train the HMM part of CFHMM-HR on a large
training data sample. This step can be performed
offline and there is no need for frequent re-training.
We believe that repeating this step once every
month would suffice.

2. Train the CF part of CFHMM-HR overnight. This
step needs to be repeated more frequently.

3. Generate the initial list of recommendations from
the CF recommender.

4. Test, filter and re-rank the initial list of recom-
mendations using the latest trained HMM recom-
mender. This step needs to be performed overnight
and repeated more frequently as well.

5. Send the final list of recommendations to users.

The run-time for training the HMM recommender
is shown in Table 4. The average time it takes per
message is 106 milliseconds and we suggest using a
sufficiently large representative training sample (1-2
million messages). 94% of the time taken in training
is spent by the HTK tools that were used to implement
the HMM recommender and the remaining 6% is spent
by the Java software tool. Moreover, of the time
spent by the Java software tool, 86% was spent in
input/output operations to process the HTK formatted
files. We cannot estimate the proportion of time
spent in input/output operation by the HTK tools
but we believe it is similar to the Java software tool.
The HTK toolkit requires the data to be stored in
specially formatted files on the hard disk drive (HDD)
which adds a time overhead for opening these files and
reading the data and in this case the overhead consumes
about 80% of the total time. To deploy CFHMM-
HR on an online application, we recommend developing
alternative HMM software tools that read the data
directly from the DBMS or from memory to eliminate
the time overhead.

The run-time of the CF part of CFHMM-HR varies
depending on the algorithm used. The three algorithms
that were used in this research have been tested in an
online trial and they run efficiently [21].

Testing the initial recommendation list by the HMM
recommender run-time is presented in Table 5. It takes
an average of 8.8 milliseconds to test one message of
which 20% is spent by the HTK tools and the remain-
ing 80% is spent by the Java software tool. About 88%
of the Java software tool time is spent on input/output
operations to generate the HTK formatted files. This

Table 4: Average run-time for training the HMM recommender (per message).

Total HTK Tools
Java Software Tool

DB Operations I/O Operations Other
Time (msec) 106.131 99.259 0.969 5.894 0.009

Percentage 93.52% 0.91% 5.55% 0.01%

leads us to the same conclusion that developing alter-
native HMM software tools that read the data directly
from the DBMS or from memory would minimise the
run-time significantly.

8 Discussion

CFHMM-HR is a general framework for combining
CF techniques with HMM-CBR in one unified hybrid
recommender. Such a combination overcomes one of the
main shortcomings of the HMM recommender [3] which
is its inability to generate actual recommendations. It
also improves the success rate of the CF recommenders
considerably. However, the improvement of CFHMM-
HR depends on the initial list of recommendations
generated by the CF recommender. For example, the
best success rate for CFHMM-HR is when it is combined
with ProCF and that is because of the three CF methods
we combined with HMM-CBR, ProCF is the one with
the highest success rate. On the other hand, the best
recall for CFHMM-HR is when it is combined with SIM-
CF because it is the model with the highest recall.
Nevertheless, in all experimentations performed in this
research, CFHMM-HR outperforms the use of the CF
recommender alone in success rate.

However, while it is possible to deploy CFHMM-HR
in an online application in its current setup, we believe
that this is not the ideal setup and more optimisation
is needed. Mainly, we suggest developing alternative
HMM software tools instead of using the HTK toolkit.
Because HTK is designed to read data from files stored
on HDD, a large proportion of the run-time of CFHMM-
HR is spent on writing and reading these files. We
estimate that the time overhead caused by the I/O
operations is about 80% of the reported run-time and we
recommend developing HMM tools that read the data
directly from the DBMS or from memory.

In the domain of online dating the interaction vec-
tors of users tend to be sparse and short. Initial ex-
perimentations of collaborative filtering methods that
are popular with researchers, such as matrix factoriza-
tion MF, did not work well [21]. A possible reason for
that is that in the domain of online dating the inter-
action matrix is Boolean (positive or negative) and in
such cases applying matrix factorisation is harder than
applying it on a numerical matrix (ratings). Therefore,

we compared our model to other models that are known
to work on such data.

9 Conclusion and Future Work

In this paper we presented a hybrid model for people-to-
people recommendations using HMM that can capture
the temporal changes of users’ behaviours and generates
better personalised recommendations based on this.
Evaluating this model using a commercial dataset for
a dating website shows a significant improvement in the
success rate of recommendations.

The model combines a HMM content-based recom-
mender and a collaborative filtering algorithm to gener-
ate recommendations. In future, we plan on using other
dynamic models to represent the recommender such as
coupled Hidden Markov models or the Collaborative
Kalman Filtering model [20]. Moreover, in CFHMM-
HR, the recommendations are generated by a recipro-
cal CF method and then re-ranked using the tempo-
ral HMM-CBR. Incorporating the temporal dynamics
in the CF part of the recommender as well would be an
interesting extension to our model.

References

[1] J. Akehurst, I. Koprinska, K. Yacef, L. Pizzato, J. Kay,
and T. Rej. CCR: A content-collaborative reciprocal
recommender for online dating. In Proceedings of
the 22nd International Joint Conference on Artificial
Intelligence - Volume 3, IJCAI’11, pages 2199–2204.
AAAI Press, 2011.

[2] A. Alanazi and M. Bain. Ranking interaction-based
collaborative filtering recommendations using temporal
features in online dating. In K. Soliman, editor, Inno-
vation and Sustainable Competitive Advantage: From
Regional Development to World Economies, volume 1-
5, pages 450–457. Int Business Information Manage-
ment Assoc-IBIMA, 2012. 18th IBIMA Conference,
Istanbul, TURKEY, MAY 09-10, 2012.

[3] A. Alanazi and M. Bain. A people-to-people content-
based reciprocal recommender using Hidden Markov
models. In Proceedings of the 7th ACM Conference
on Recommender Systems, RecSys ’13, pages 303–306,
New York, NY, USA, 2013. ACM.

[4] A. Bellogin, P. Castells, and I. Cantador. Precision-
oriented evaluation of recommender systems: An algo-
rithmic comparison. In Proceedings of the 5th ACM

Table 5: Average run-time for HMM recommender testing (per message).

Total HTK Tools
Java Software Tool

DB Operations I/O Operations Other
Time (msec) 8.787 1.800 0.761 6.213 0.013

Percentage 20.49% 8.66% 70.71% 0.14%

Conference on Recommender Systems, RecSys ’11,
pages 333–336, New York, NY, USA, 2011. ACM.

[5] X. Cai, M. Bain, A. Krzywicki, W. Wobcke, Y. Kim,
P. Compton, and A. Mahidadia. Collaborative filter-
ing for people to people recommendation in social net-
works. In J. Li, editor, AI 2010: Advances in Artifi-
cial Intelligence, volume 6464 of Lecture Notes in Com-
puter Science, pages 476–485. Springer Berlin Heidel-
berg, 2011.

[6] X. Cai, M. Bain, A. Krzywicki, W. Wobcke, Y. Kim,
P. Compton, and A. Mahidadia. ProCF: Probabilistic
collaborative filtering for reciprocal recommendation.
In J. Pei, V. Tseng, L. Cao, H. Motoda, and G. Xu,
editors, Advances in Knowledge Discovery and Data
Mining, volume 7819 of Lecture Notes in Computer
Science, pages 1–12. Springer Berlin Heidelberg, 2013.

[7] P. G. Campos, F. Dı́ez, and I. Cantador. Time-
aware recommender systems: A comprehensive survey
and analysis of existing evaluation protocols. User
Modeling and User-Adapted Interaction, 24(1-2):67–
119, Feb. 2014.

[8] F. C. T. Chua, R. J. Oentaryo, and E. Lim. Mod-
eling temporal adoptions using dynamic matrix fac-
torization. In IEEE 13th International Conference on
Data Mining, number Dallas,, pages 91–100, TX, USA,
December 2013.

[9] S. Gultekin and J. Paisley. A collaborative kalman
filter for time-evolving dyadic processes. In Proceedings
of the IEEE International Conference on Data Mining,
ICDM ’14, pages 140–149, Washington, DC, USA,
2014. IEEE Computer Society.

[10] B. Ju, Y. Qian, M. Ye, R. Ni, and C. Zhu. Using dy-
namic multi-task non-negative matrix factorization to
detect the evolution of user preferences in collaborative
filtering. PLoS ONE, 10(8):e0135090, 08 2015.

[11] Y. Koren. Collaborative filtering with temporal dy-
namics. Commun. ACM, 53(4):89–97, April 2010.

[12] A. Krzywicki, W. Wobcke, X. Cai, A. Mahidadia,
M. Bain, P. Compton, and Y. Kim. Interaction-based
collaborative filtering methods for recommendation in
online dating. In L. Chen, P. Triantafillou, and T. Suel,
editors, Web Information Systems Engineering, AI
WISE 2010, volume 6488 of Lecture Notes in Computer
Science, pages 342–356. Springer Berlin / Heidelberg,
2010.

[13] L. Li and T. Li. MEET: A generalized framework for
reciprocal recommender systems. In Proceedings of the
21st ACM International Conference on Information
and Knowledge Management, CIKM ’12, pages 35–44,
New York, NY, USA, 2012. ACM.

[14] M. J. Pazzani and D. Billsus. Content-based recom-
mendation systems. In P. Brusilovsky, A. Kobsa, and
W. Nejdl, editors, The Adaptive Web, volume 4321
of Lecture Notes in Computer Science, pages 325–341.
Springer Berlin Heidelberg, 2007.

[15] L. Pizzato, T. Rej, T. Chung, I. Koprinska, and
J. Kay. RECON: a reciprocal recommender for online
dating. In Proceedings of the 4th ACM conference on
Recommender systems, pages 207–214. ACM, 2010.

[16] D. M. W. Powers. Evaluation: from precision, recall
and f-measure to ROC, informedness, markedness and
correlation. International Journal of Machine Learn-
ing Technology, 2(1):37–63, 2011.

[17] L. Rabiner. A tutorial on Hidden Markov models and
selected applications in speech recognition. Proceedings
of IEEE, 77(2):257–286, 1989.

[18] N. Sahoo, P. V. Singh, and T. Mukhopadhyay. A
Hidden Markov model for collaborative filtering. MIS
Q., 36(4):1329–1356, Dec. 2012.

[19] G. Shani and A. Gunawardana. Evaluating recommen-
dation systems. In F. Ricci, L. Rokach, B. Shapira, and
P. B. Kantor, editors, Recommender Systems Hand-
book, pages 257–297. Springer US, 2011.

[20] J. Sun, D. Parthasarathy, and K. Varshney. Collabora-
tive kalman filtering for dynamic matrix factorization.
IEEE Transactions on Signal Processing, 62(14):3499–
3509, July 2014.

[21] W. Wobcke, A. Krzywicki, Y. S. Kim, X. Cai, M. Bain,
P. Compton, and A. Mahidadia. A deployed people-
to-people recommender system in online dating. AI
MAGAZINE, 36(3):5–18, January 2015.

[22] P. Xia, B. Liu, Y. Sun, and C. Chen. Reciprocal rec-
ommendation system for online dating. In Proceedings
of 2015 IEEE/ACM International Conference on Ad-
vances in Social Networks Analysis and Mining, Paris,
France, 2015.

[23] S. Young, G. Evermann, M. Gales, T. Hain, D. Ker-
shaw, X. A. Liu, G. Moore, J. Odell, D. Ollason,
D. Povey, V. Valtchev, and P. Woodland. The HTK
Book. Cambridge University Engineering Department,
March 2009.

[24] C. Zhang, K. Wang, H. Yu, J. Sun, and E.-P. Lim.
Latent factor transition for dynamic collaborative fil-
tering. In Proceedings of the SIAM International Con-
ference on Data Mining, pages 452–460. Citeseer, 2014.

Modeling Trust for Rating Prediction in Recommender Systems

Anahita Davoudi∗ Mainak Chatterjee†

Abstract
Traditional recommender systems usually ignore the social interac-
tions between users in a social network and assume that users are
independent and identically distributed. This assumption hinders
the users to have access to personalized recommendations based on
their circle of trusted friends. To model the recommender systems
more accurately and realistically, we propose a social trust model
and use the probabilistic matrix factorization method to predict user
rating for products based on user-item rating matrix. The effect of
users friends tastes is modeled using a real-valued trust which is de-
fined based on importance and similarity between users. Similarity
is modeled using a rating-based (Vector Space Similarity algorithm)
and connection-based methods; centrality is quantified using degree
and eigen-vector centralities. To validate the proposed method, rat-
ing estimation is performed on the Epinions dataset. Experiments
show that our method provides better prediction when using trust
relationship based on centrality and similarity rather than using the
binary values. Also, degree centrality is shown to be more effective
compared to the eigen-vector centrality. In addition, trust model
using connection-based similarity is observed to have better perfor-
mance compared to the ones that use rating-based similarity.

1 Introduction
Recommender systems help users with item selection and
purchasing decisions based on users’ tastes and preferences
using a variety of information gathering techniques. Such
information is gathered either explicitly by mining user’s
ratings, or implicitly by monitoring user’s behavior. These
systems offer a personalized experience based on social
interactions or user preferences are considered as a fantastic
opportunity for retailers in e-commerce businesses. Many
recommendation techniques have been studied [12, 21, 22]
and have been well adapted to commercial websites such as
Amazon, Netflix, etc. Such commercial websites offer a vast
number of products for users with different tastes.

An approach which has not received much attention is
how to apply the social relationship of users as valuable
source of information. Traditional recommender systems as-
sume that users are independent and identically distributed
which results in ignoring the social interactions and trust re-
lationships between users. However, user’s social relation-
ships play an important role in the behavior of users regard-
ing future ratings. Since most of the similarities within a
network are caused by the influence and interactions of its
users, it is reasonable to develop a social recommender sys-
tem based on the user connections and interactions. Social
recommender systems focus on easing information and in-

∗Department of Computer Science, University of Central Florida
†Department of Computer Science, University of Central Florida

teraction burden by applying different methods that present
the most relevant information to the users. But retailing plat-
forms usually do not consider social factors such as relation-
ships and trust among the users and the power of social influ-
ence is not exploited. On the other hand, social networking
platforms generally do not consider online shopping related
factors such as purchase history and product rating.

In addition to social connections, trust relationships also
influence one’s decisions and ought to be considered for
recommendations [3]. In a social network, trust relationships
and social relationships are two different concepts. Two
socially connected users would not necessary trust each
other. Also, multiple connections of a user would not have
equal impact on user’s opinions and decisions. In addition
to trust relationships, users with similar taste in purchasing
would show similar behavior when rating a product as well.

In this paper, we combine the features of social networks
and e-commerce platforms to design a social recommender
mechanism to increase the prediction accuracy of product
recommendations in e-commerce by considering the factors
of similarity, user importance in the network, and social trust
relationships. The proposed model could be practically ap-
plied to new emerging social commerce platforms. We argue
that users are influenced by social interactions, in particular,
by the set of trusted friends and their respective importance.
To that end, we combine social trust connections and user-
item matrix to predict the rating that a user would assign to
a product. We use matrix factorization to factor user-item
rating matrix into two low-dimensional matrices consisting
of user latent matrix and item latent matrix. For the so-
cial connections, we consider both user importance and user
similarity to build the social trust model between users. We
use vector space similarity to obtain the similarity between
users. Using degree and eigen-vector centrality, we quan-
tify the importance of users in the network. We use a linear
combination of similarity and centrality to model the trust
parameter between users. The proposed method captures the
balance between user taste and her friends’ taste and adjusts
the share of centrality and similarity in the trust values using
two parameters. The low-dimensional latent user-specific
and item-specific matrices are estimated by performing gra-
dient descent on the objective function. We use a dataset
from Epinions to validate the proposed model. We estimate
the accuracy of the proposed method in terms of the mean ab-
solute error by comparing the predicted and the actual user

ratings of products. Results reveal that there is a high cor-
relation between the predicted and the actual ratings. The
proposed method is also compared using binary trust values
as well as considering the eigen-vector and degree centrality.
In summary, our experiment results show that the proposed
model could enhance recommendation accuracy.

2 Related Work
Let us discuss the various aspects such as trust, similarity,
and user preference that that are relevant for this paper.

2.1 Recommender Systems Different types of recom-
mender techniques has been developed: collaborative filter-
ing, content-based or hybrid [9]. Content-based systems use
items’ characteristics and the ratings that users have given
to generate recommendations. However, this approach has a
critical problem: when collecting or providing insufficient
information, recommender systems tend to fail [1]. Col-
laborative systems identify similar users and analyze their
preferences to generate recommendations. In [4] the users’
purchase patterns are derived by sequential pattern analy-
sis to collaboratively recommend items to the users. There
are many studies of the combination of content-based and
collaborative-based systems [14, 26]. In [26], a hybrid news
recommender system in which the recommendation is made
based on analyzed users’ preferences and computed news
similarities is developed. User-based and item-based ap-
proaches are combined in [14] to build a hybrid recommen-
dation of movies in P2P networks.

Collaborative filtering methods are divided into three
further categories of memory-based, model-based and hy-
brid of both. Memory-based methods utilize users’ past be-
havior and recommend products that other users with simi-
lar interests have selected in the past [22]. They have been
widely used in commercial recommender systems [13, 20].
Memory-based algorithms are either user-based [2, 8] or
item-based [13, 22]. User-based algorithms predict rating
given by a user to an item based on the ratings by simi-
lar users, whereas, item-based algorithms estimate the rat-
ing based on the ratings of similar items previously cho-
sen by the user. These methods find similar users [2, 8]
or similar items [5, 13, 22] for providing accurate predic-
tions. These methods use Pearson Correlation Coefficient
(PCC) algorithm [20] or Vector Space Similarity (VSS) al-
gorithm [2] to compute the similarity for finding the similar
users or items. Methods used in traditional recommender
systems are mostly based on user-item rating matrix. These
algorithms usually fail to find similar users since density of
ratings in user-item rating matrix is often less than 1 per-
cent [13]. Model-based methods utilize available data to
train a predefined model for rating prediction. Some of these
methods are: clustering model [11] and the Matrix Factor-
ization model [15]. Model-based approaches can handle

problems with limited data using hierarchical clustering to
enhance the accuracy of the prediction [11]. Matrix factor-
ization is another model-based method which factorizes the
user-item rating matrix using low-rank representation [21].
Although model-based methods mitigate the sparsity prob-
lem, handling users who have never rated any item is a chal-
lenging problem in both memory-based and model-based ap-
proaches [21].

2.2 Trust Models Online communities allow users to eas-
ily express their personal preferences, such as the users they
trust and the products/services they are interested in. Trust
means a subjective expectation that an agent has about an-
other’s future behavior based on the interaction history of
their encounters [18]. Trust is a construct [25] that has
a significant impact on users’ online purchasing behavior.
Doing business with people we have never met before re-
quires a great deal of trust, especially when the transac-
tion is executed online without any physical interaction.
Therefore, trust plays a critical role in e-commerce behav-
ior. Many trust-based models have been introduced such as
TrustWalker [10] which is a combination of both trust-based
and item-based recommendations, TidalTrust [6] which finds
all the raters with shortest distance from the source user and
aggregates their ratings. Also, in [19] trust-aware recom-
mendation is used to increase recommendation accuracy.

2.3 Similarity The similarity between two users has been
modeled by similarity measures such as Vector Space Sim-
ilarity (VSS) and Pearson Correlation Coefficient (PCC).
Both have been incorporated in social recommender sys-
tems [2]. Based on the similarity concept, the trust rela-
tions are bidirectional and equal in both directions. How-
ever, this is not true in real world relationships where trust
relationships are non-transitive. Also, a user trust relation-
ship value is affected by the importance of that user. Users
usually tend to follow an important friend regardless of the
similarity between them. The trust relationship enforced by
the importance of user is asymmetric since every user have
their unique importance.

2.4 User Preference Model To provide personalized rec-
ommendation, there are two ways to capture users’ prefer-
ences [7]: implicit and explicit. The implicit method gathers
users’ behavior to obtain their preferences [4]. Matrix fac-
torization models built in [12] use implicit feedback from
system. The explicit method filters and analyzes interactions
and feedback to obtain users’ specification [23,26]. In [15] a
user-item matrix is considered with users’ social trust graph
to build a latent low-dimensional matrix for providing a bet-
ter recommendation. Users opinion is modeled based on her
own and her friends’ opinions which reflect real life social
interactions [16]. In addition, using trust values in recom-

mender systems would help to predict the behavior of those
users who have rated fewer products.

Here, we capture the effect of users’ similarity in trust
values. We also argue that the importance of a user must
be taken into consideration for finding the trust values for
predicting the rating of products.

3 System Model
We consider a social recommender system for a social
network that is represented as a weighted directed graph
of users where edges represent the social trust relationship
between users. Users rate items (products) on a scale 1
to 5. The adjacency matrix AN×N represents the social
connections between users. Also user-item rating matrix
shows the rating given by each user to each item. The
user-item rating matrix RM×N represents the ratings that
each user assigns to each item. The existence of a social
connection between two users would not necessarily reflect
their level of trust in each other. The method presented here
is based on the assumption that the trust between users is
impacted by similarity and importance of users.

Problem Statement: In a given recommender system, how
can we predict the rating that user i would assign to product
j, when the social relationship graph and the user-item rating
matrix are given.

3.1 Similarity Enforced Trust

3.1.1 Rating Similarity There are several users’ charac-
teristics that affect the value of trust between users. Simi-
larity between users is one of the most important ones since
two users with the same taste are more likely to trust each
other. The effect of similarity has been incorporated in so-
cial recommender systems for predicting user rating. Vector
Space Similarity (VSS) and Pearson Correlation Coefficient
(PCC) [2] are the two most popular methods used for similar-
ity estimation. Here we apply the VSS algorithm to identify
the similarity between users utilizes the common items that
have been rated by both users i and f to compute similarity
which is given by:

(3.1) Sim(i, f) =

∑

j∈I(i)∩I(f)

Ri,j ·Rf,j

√ ∑

j∈I(i)∩I(f)

R2
i,j ·

√ ∑

j∈I(i)∩I(f)

R2
f,j

where j is an item that both users i and f have rated and Ri,j

is the rating that user i assigned to item j. I(i) represents
the set of items rated by user i. VSS is defined in [0, 1];
larger value implies more similarity between user i and user
f . The trust values enforced by similarity can be modeled
by weighted average rating of the users using the similarity

scores as the weights. Consequently, a connection with high
similarity will have more impact on the user’s rating.

3.1.2 Connection Similarity The similarity between two
users can also be determined by the connection between
these two users. The similarity between two users can be
measured by the mutual connection they have in common.
This can be done using the each user list of connections. For
each edge we get the list of connections for both users and
then list of mutual connection on both sides. The larger the
value would be, it could be an indication of users having
more similarity which shows that their connection is more
valid in shaping the trust. The list of friends for each user
i is defined F (i). The proportion of mutual friends to list
of friends for the starting node of relationship is defined as
follows:

(3.2) Sim(i, f) =
F (i) ∩ F (f)

F (i)

3.2 Centrality Enforced Trust Although similarity is a
major driving force for trust between users, there are other
aspects as well. A user with high importance (i.e., high im-
pact) is more likely to be followed by her friends regard-
less of their similarities. This aspect of trust relationship is
modeled by considering the importance of users. The impor-
tance of the users in a social network can be quantified using
centrality measures such as degree centrality, betweenness,
closeness, eigen-vector centrality and pagerank [17]. To ob-
tain the importance of users, we use degree centrality and
eigen-vector centrality.

Degree centrality is the simplest centrality measure. It
shows the degree of a node, representing how many nodes
are connected to it. Eigen-vector centrality gives each node
a value which is proportional to the sum of values of its
neighbors. Eigen-vector centrality has a property: it can be
large either because a node has many neighbors or because
it has important neighbors (or both). Pagerank and Katz
are similar to eigen-vector centrality except that they add a
small free centrality value to each node. Closeness measures
the mean distance from a node to other node. Betweenness
centrality measures the extent to which a node lies on paths
between other nodes. We choose eigen-vector and degree
centrality since they consider the connections and also the
importance of each connection. Other measure either gives
free initial centrality or capturing the path and distances
between nodes which we are not interested in.

Degree centrality is used as the basic indication of a
user’s importance which can be defined as the number of
connections. In our case, it is the number of incoming
edges (in-degree) in the social graph. We define the degree
centrality Cl of a user l as:

(3.3) Cl =
∑

∀m,l 6=m

Al,m

where Al,m is the element of the adjacency matrix which
represents the connection between user l and user m. Thus,
with all connections treated equally, a user with more incom-
ing edges has higher importance in the network.

Eigen-vector centrality of user l at time t is the defined
as sum of the centrality of all connections of l which is given
as:

(3.4) Cl(t) =
∑

∀m
Al,m(t)× Cl(t− 1)

where Cl(t − 1) is the centrality of user l at time t − 1. In
contrast to the degree centrality, the eigen-vector centrality
considers both the number of incoming edges and also
the centrality of the neighboring users. The eigen-vector
centrality is computed iteratively by setting all initial values
to 1 i.e., Cl(0) = 1 for all user l.

3.3 Combined Similarity and Centrality Trust We use
a linear combination of similarity and centrality to model the
trust of user i in user k as:

(3.5) Γi,k = β
Sim(i, k)∑

l∈T (i)

Sim(i, l)
+ (1− β)

Ck∑

l∈T (i)

Cl

Here, β is the parameter that defines the contribution of
similarity and centrality to the overall trust. β = 0 implies
purely centrality enforced trust while β = 1 refers pure
similarity-based trust values. T (i) refers to the set of trusted
friends of user i. Ck refers to the centrality (i.e., measured
using either degree or eigen-vector centrality) of user k.

4 Trust Model for Matrix Factorization
Matrix factorization has been widely used to develop so-
cial recommender systems [12,15,16,21]. Generally, matrix
factorization helps to estimate either the user-item rating or
user-trust matrix [16] using low-dimensional representative
latent matrices. Here matrix factorization for social recom-
mendation proposed by [16] is employed to examine the per-
formance of the proposed trust relationship. The user-item
rating matrix is factorized to learn two l−dimensional fea-
ture representation of users U and items V .

The user-item rating matrix R consists of m users and n
items with rating values in range [0, 1]. Ui and Vj represent
the l−dimensional user-specific and item-specific feature
vectors of user i and item j. The conditional distribution
for R, given Γ, U , V and σ2

R is defined as [15, 21]:

(4.6) p(R|Γ, U, V, σ2
R) =

m∏

i=1

n∏

j=1

[N (Rij |g(
∑

k∈T (i)

ΓikU
T
k Vj), σ

2
Γ)]

IR
ij

where N (Ri,j |µ, σ2
Γ) is probability density function of the

Gaussian distribution with mean µ and variance σ2
Γ. Here,

Γ is the proposed trust parameter given by Eq. (3.5), Γi,k

is the trust value between users i and k. Ri,j is the rating
given to item j by user i, and σ2

R is the rating variance.
IRij is an indicator function representing whether user i rated
item j. Based on the Bayesian inference and assuming Γ is
independent of U and V , the conditional probability of U
and V , given R, Γ, σ2

R , σ2
U , and σ2

V , is defined as:

(4.7) p(U, V |R,Γ, σ2
Γ, σ

2
U , σ

2
V) =

m∏

i=1

n∏

j=1

[N (Ri,j |g(αUT
i Vj+(1−α)

∑

k∈T (i)

Γi,kU
T
k Vj), σ

2
Γ)]

IR
i,j

×
m∏

i=1

N (Ui|0, σ2
U I)×

m∏

i=1

N (Vj |0, σ2
V I)

where σ2
U and σ2

V are the variance of user and item feature
matrices. I is the identity matrix. The function g(x) =
1/(1 + exp(−x)) is a mapping function whose range is
within [0, 1]. The set T (i) contains user i’s trusted friends.
The proposed social recommender system is based on the
idea that user’s ratings are impacted by her own taste and
her immediate friends’ tastes. The parameter α is used
to balance between these two factors. The term UT

i Vj

represents the estimated taste of user i of item j, while∑
k∈T (i) Γi,kU

T
k Vj term reflects her immediate friends’

taste, given as the weighted average of their taste using the
trust value as weights.

4.1 User-Specific and Item-Specific Matrices In order to
find the optimal values of U and V , the log of the posterior
distribution given in Eq. (4.7) should be maximized. Equiv-
alently, U and V can be derived by minimizing the sum-of-
squared-errors given in the following equation:

(4.8) L(R,Γ, U, V) =

1

2

m∑

i=1

n∑

j=1

IRi,j(Ri,j−g(αUT
i Vj+(1−α)

∑

k∈T (i)

Γi,kU
T
k Vj))

2

+
λU

2
||U ||2F +

λV

2
||V ||2F

where ||.||2F is the Frobenius norm. λU and λV are user and
item latent variance ratios.

The gradient decent approach can be used to solve the
minimization problem given in Eq. (4.8) for findingU and V .
Gradient decent is a local optimization method based on the
partial derivative of the objective function with respect to the
decision variables (i.e., U and V). The partial derivatives of
L with respect to U and V are given in Eqs. (4.9) and (4.10).

(4.9)
∂L
∂Ui

= α

n∑

j=1

IRi,jg
′(αUT

i Vj+(1−α)
∑

k∈T (i)

Γi,kU
T
k Vj)Vj

× (g(αUT
i Vj + (1− α)

∑

k∈T (i)

Γi,kU
T
k Vj −Ri,j)

+(1−α)
∑

p∈φ(i)

n∑

j=1

IRp,jg
′(αUT

p Vj+(1−α)
∑

k∈T (p)

Γp,kU
T
k Vj)

× (g(αUT
p Vj + (1− α)

∑

k∈T (p)

Γp,kU
T
k Vj)

−Rp,j)Γp,iVj + λUUi

(4.10)
∂L
∂Vj

=
m∑

i=1

IRi,jg
′(αUT

i Vj + (1− α)
∑

k∈T (i)

Γi,kU
T
k Vj)

× (g(αUT
i Vj + (1− α)

∑

k∈T (i)

Γi,kU
T
k Vj −Ri,j)

× (αUi + (1− α)
∑

k∈T (i)

Γi,kU
T
k) + λV Vj

Here g′(x) is the derivative of logistic function where
g′(x) = exp(x)/(1 + exp(x))2. φ(i) is the set of the users
who trust user i [16].

5 Simulation Model and Results
In order to test the validity and accuracy of the proposed
rate prediction framework, we conduct extensive simulation
experiments with data from Epinions [24].

5.1 Dataset Description Epinions is a review and rating
website which allows users to rate items by giving an integer
number between 1 and 5. The users can also form social
connections by adding other users as their trusted friends.
The social connections in this dataset are binary values
and do not represent the actual trust values. The dataset
includes 22166 users and 355754 social connections, leading
to 0.0724 percent density in the user social relationship
matrix. The total number of items is 296277, with a total
of 922267 ratings, which results in a very sparse item-rating
matrix with 0.0140 percent density.

As a result, the user-item rating matrix is also relatively
sparse. On average, users have 16.05 trusted friends. The
maximum number of friends for a user is 1551 and the most
trusted user has 2023 other users trusting her.

5.2 Evaluation Metrics Evaluation measures for recom-
mender systems are usually divided into three categories: 1)

Predictive Accuracy Measures (such as MAE, RMSE) which
evaluate how close the recommender system is in predict-
ing actual rating values, 2) Classification Accuracy Measures
(such as Precision, Recall, F1) which measure the frequency
with which a recommender system makes correct/incorrect
decisions regarding items based on the relevancy of the rec-
ommended items, and 3) Rank Accuracy Measures (such as
Discounted cumulative gain(DCG) and Mean Average Preci-
sion (MAP)) which evaluate the correctness of the ordering
of items performed by the recommendation system.

Precision is a measure of exactness and determines the
fraction of relevant items retrieved out of all items (e.g.,
the proportion of recommended movies that are actually
good). Recall is a measure of completeness and determines
the fraction of relevant items retrieved out of all relevant
items (e.g. the proportion of all good movies recommended).
The F1 Metric attempts to combine Precision and Recall
into a single value for comparison purposes so it may be
used to gain a more balanced view of performance. The
precision is the fraction of all recommended items that are
relevant and recall is the fraction of all relevant items that
were recommended. F-measure is a single value combining
different facets of accuracy (precision and recall). Ranking
accuracy measure ranks all items for user such that higher-
ranked recommendations are more likely to be relevant to
users. Since our proposed model focus on the error in the
rating prediction, we use the metrics in the first category
which evaluate the prediction accuracy of the recommender
system. The other two categories are used for classification
and ranking.

5.3 Predictive Accuracy Measures Let us formally de-
fine that error matrix that we would use.
Mean Absolute Error (MAE): This metric measures the av-
erage variation in the predicted rating vs. the actual rating.
Let Rpre

i,j be the predicted rating and Ract
i,j be the actual rating

given by the user i to the product j. The MAE is defined as
follows:

(5.11) MAE =

∑
i,j |R

pre
i,j −Ract

i,j |
N

Mean Squared Error (MSE): This metric punishes big
errors more severely and is defined as follows:

(5.12) MSE =

∑
i,j |R

pre
i,j −Ract

i,j |2
N

Root Mean Squared Error (RMSE): This metric is a
variant of mean square error and is defined as follows:

(5.13) RMSE =

√∑
i,j |R

pre
i,j −Ract

i,j |2
N

All these metrics measure the accuracy of the actual
predictions and are easy to compute efficiently. Moreover,
MAE and MAE-based error estimates have well known
statistical properties. These characteristics MAE and RMSE
good representative of error metrics to analyze the accuracy
of the proposed model.

10
-2

10
-1

10
010

-3

10
-2

10
-1

10
0

P(
c≥

 C
)

Normalized Centrality, C

Degree
Eigen

Figure 1: Distribution of centrality

10
-2

10
-1

10
010

-3

10
-2

10
-1

10
0

P(
s≥

 S
)

Normalized Similarity, S

Rating
Connection

Figure 2: Distribution of similarity

10
-2

10
-1

10
010

-3

10
-2

10
-1

10
0

P(
t≥

T)

Trust, T

Degree/Rating
Degree/Connection
Eigen/Rating
Eigen/Connection

Figure 3: Distribution of trust values

5.4 Simulation Results As mentioned before, the trust re-
lationships between users are defined based on centrality and
similarity measures. Fig. 1 shows the distribution of de-
gree and eigen-vector centrality. In Fig. 2, the distribution of
rating-based and connection-based similarity are shown. The
rating-based similarity has a relatively sparse distribution
due to the lack of mutual rated products for two friends in
many cases. The trust values are calculated as the weighted
summation of centrality of similarity using the weight con-
stant β. Fig. 3 shows the distribution of trust values using

β = 0.5. Based on the different centrality and similarity
measures, there are four types of trust values as illustrated in
Fig. 3.

The proposed trust model is used to predict users rating
based on the discussed matrix factorization technique using
75 percent of the data as the training set. According to
Eq. (4.7), a user’s opinion about a particular product would
be a linear function of her connections’ taste and her own
taste using a weighting factor α. Smaller values of α is
an indication of less impact from neighbors. As previously
defined in Eq. (3.5), the trust model is presented as the linear
combination of centrality and similarity using the weighting
factor β. Higher values of β indicate higher impact of
similarity rather than centrality on the trust values. Here,
user and item latent variance ratio (λU and λV) are set to
0.001. The latent size is L = 4, α = 0.4, and the number
of iterations is 300. The performance of the proposed trust
model for different values of β in terms of MAE and RMSE
is shown in Figs. 4 and 5. Compared to the binary trust
model (dashed black lines), the proposed trust model has
better performance. Comparing different definitions of trust
reveals that degree centrality is the better measure to model
trust using eigen-vector centrality. The same is true for
connection-based similarity compared to rating-based. An
interesting point is that, although including centrality in trust
model enhances the recommendation performance compared
to the binary trust model, the trust models solely based on
similarity (i.e.,β = 1) show the best performance for the
studied network.

0 0.2 0.4 0.6 0.8 1
0.8

0.85

0.9

0.95

1

M
AE

β

Degree/Rating
Degree/Connection
Eigen/Rating
Eigen/Connection
Binary

Figure 4: MAE using binary trust and the proposed trust
model

The performance of the trust model (the definition which
had the best performance in Figs. 4) and 5) for different latent
sizes and training percentages are shown in Fig. 6 and Fig. 7.
Generally, increasing the latent size as well as using more
training data enhance the performance of the recommender
system.

The probability distribution of rating estimation error
(i.e., estimated rating minus actual rating) for the binary
trust and proposed trust model is shown in Fig. 8. Both
probability distributions are a little right skewed, implying

0 0.2 0.4 0.6 0.8 1
1.1

1.15

1.2

1.25

1.3

RM
SE

β

Degree/Rating
Degree/Connection
Eigen/Rating
Eigen/Connection
Binary

Figure 5: RMSE using binary trust and the proposed trust
model

1 2 3 4
0.8

0.9

1

1.1

1.2

Er
ro

r

L

MAE
RMSE

Figure 6: Errors for different latent sizes using degree
centrality and connection-based similarity to define trust

25 50 75 100

0.8

1

1.2

1.4

Er
ro

r

Traning Data %

MAE
RMSE

Figure 7: Errors for various training set sizes using degree
centrality and connection-based similarity to define

over-estimation. However, the proposed trust model seems
to have relatively better performance especially for errors
between 0.5 and 2, since it estimates more between 0.5 and 1
and less between 1 and 2 compared to the binary model. The
probability distribution of absolute error ratio (i.e., absolute
error divided by the actual rating) is shown in Fig. 9. The
proposed trust model leads to less error ratio between 1 and
2 and more between 0 and 1 which implies relatively better
performance.

In Figs. 10 and 11 the estimated versus actual ratings
are shown for the proposed and the binary trust models. The
boxes illustrate the lower, upper and inter quartiles, while the
redline is the medium. The height of the boxes represents the
variation of the estimated rating. Comparing Figs. 10 and 11,

-3 -2 -1 0 1 2 3
0

0.05

0.1

0.15

Est. - Act.

Pr
ob

ab
ili

ty

Degree\Connection Binary

Figure 8: The probability distribution of error for rating
estimation using binary trust and the proposed trust model

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

|Est. - Act. |Act. -1
Pr

ob
ab

ili
ty

Degree\Connection
Binary

Figure 9: Absolute error ratio for rating estimation using
binary trust and the proposed trust model

it is observed that the proposed trust model produces better
estimations for low ratings (1 and 2) by slightly undermining
the estimation. In addition, for high ratings, the proposed
trust model reduces the variation of estimations, i.e., the
height of the quartile boxes.

1 2 3 4 5
1

2

3

4

5

Es
tim

at
ed

Actual

Figure 10: The quartile plot of actual versus estimated rating
for the proposed trust model

6 Conclusions
With emerging applications of social networks and consid-
ering the role of social interactions in our daily life deci-
sions, extracting information from user’s social relationships
is becoming a popular method for predicting user’s behavior.
We capture the trust relationships between users considering
users with similar profile and their importance. The main as-

1 2 3 4 5
1

2

3

4

5

Es
tim

at
ed

Actual

Figure 11: The quartile plot of actual versus estimated rating
for the binary model.

sumption is that the users with more similarity would trust
each other more; also users with higher importance would
be trusted more. Similarity is quantified by a rating-based
approach and a connection-based method. The importance is
modeled by degree centrality and eigen-vector centrality. We
define trust as a linear combination of similarity and central-
ity using a weighting parameter. The proposed framework
is validated using real data from Epinions. Our result in-
dicates that the proposed trust model produces better rating
estimation in terms of the mean absolute error (MAE), the
root mean squared error (RMSE) and error distribution, com-
pared to the traditional binary trust model which is widely
used in recommender systems. Trust enforced by degree cen-
trality shows better performance compared to eigen-vector
centrality. The same conclusion is valid for connection-
based similarity compared to rating-based. The trust rela-
tionships are also observed to be more dependent on the sim-
ilarity rather than centrality.
References

[1] H.J. Ahn, “A new similarity measure for collaborative filter-
ing to alleviate the new user cold-starting problem”, Informa-
tion Sciences, vol. 178, pp. 37-51, 2008.

[2] J. S. Breese, D. Heckerman, and C. Kadie, “Empirical anal-
ysis of predictive algorithms for collaborative filtering”, Un-
certainty in Artificial Intelligence, pp. 43–52, 1998.

[3] M. Chau and J. Xu, “Mining communities and their relation-
ships in blogs: a study of online hate groups”, Intl. J. of Hu-
man Computer Studies, vol. 65, pp. 57-70, 2005.

[4] K. Choi, D. Yoo, G. Kim, Y. Suh, “A hybrid online-product
recommendation system: combining implicit rating-based
collaborative filtering and sequential pattern analysis”, Elec-
tronic Commerce Research and Applications, vol. 11, pp.
309-317, 2012.

[5] M. Deshpande and G. Karypis, “Item-Based Top N-
Recommendation, ACM Transaction on Information Sys-
tems, Vol. 22, pp. 143–177, 2004.

[6] J. Golbeck, “Computing and Applying Trust in Web-based
Social Networks”, PhD thesis, University of Maryland Col-
lege Park, 2005.

[7] U. Hanani, B. Shapira, P. Shoval, “Information filtering:
overview of issues, research and systems”, User Modeling
and User-Adapted Interaction, Vol. 11, pp. 203-259, 2001.

[8] J. Herlocker, J. Konstan J., A. Borchers, and J. Riedl, “An
Algorithmic Framework for Performing Collaborative Filter-
ing”, ACM SIGIR Conference, pp. 230–237 1999.

[9] Z. Huang, W. Chung, H. Chen, “A graph model for E
commerce recommender systems”, Journal of the American
Society for Information Science and Technology, vol. 55,
259-274, 2004.

[10] M. Jamali and M. Ester, “Trustwalker: a random walk model
for combining trust-based and item-based recommendation”,
ACM SIGKDD, pp. 397–406, 2009.

[11] A. Kohrs and B. Merialdo, “Clustering for Collaborative Fil-
tering Applications”, In proc. of the International conference
on Computational Intelligence for Modeling Control and Au-
tomation, 1999.

[12] Y. Koren, R. Bell, and C. Volinsky, “Matrix Factorization
Techniques For Recommender Systems”, Computer vol. 8,
pp. 30–37, 2009.

[13] G. Linden, B. Smith, and J. York,“Amazon.com recommen-
dations: Item-to-item collaborative filtering”, IEEE Internet
Computing, pp.76–80, 2003.

[14] Z.B. Liu, W.Y. Qu, H.T. Li, and C.S. Xie, “A hybrid col-
laborative filtering recommendation mechanism for P2P net-
works”, Future Generation Computer Systems, vol. 26, pp.
1409-1417, 2010.

[15] H. Ma, H. Yang, M. R. Lyu and I. King, “SoRec: Social
Recommendation Using Probabilistic Matrix Factorization”,
In proc. of ACM CIKM, pp. 931–940, 2008.

[16] H. Ma, I. King and M. R. Lyu, “Learning to Recommend with
Explicit and Implicit Social Relations”, ACM Transaction
Intelligent Systems Technology, Vol. 2, 2011.

[17] M. Newman, “Networks:an introduction”, Oxford University
Press, 2010.

[18] L. Mui, M. Mohtashemi and A. Halberstadt, “A computa-
tional model of trust and reputation”, Proc. of the 35th Inter-
national Conference on System Science, pp. 280-287, 2002.

[19] J. O’Donovan and B. Smyth, “Trust in Recommender Sys-
tems”, In Proc. of IUI, pp. 167–174, 2005.

[20] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J.
Riedl, “Grouplens: An open architecture collaborative filter-
ing of netnews”, ACM CSCW, pp. 175–186, 1994.

[21] R. Salakhutdinov and A. Mnih,“Probabilistic matrix factor-
ization”, Advances in Neural Information Processing Sys-
tems, Vol. 20, 2008.

[22] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl, “Item-based
collaborative filtering recommendation algorithms”, World
Wide Web conference, pp. 285–295, 2001.

[23] J.B. Schafer, J.A. Konstan, J. Riedl, “E-commerce recom-
mendation applications”, Data Mining and Knowledge Dis-
covery, vol. 5, pp. 115–153, 2001.

[24] J. Tang. [online]. Available:
www.public.asu.edu/ jtang20/datasetcode/truststudy.htm

[25] P. Van Baalen, J. Bloemhof-Ruwaard, and E. van Heck,
“Knowledge sharing in an emerging network of practice”,
European Management Journal, vol. 23, pp. 300-314, 2005.

[26] H. Wen, L. Fang, L. Guan, “A hybrid approach for personal-
ized recommendation of news on the Web”, Expert Systems
with Applications, vol. 39, pp. 5806–5814, 2012.

Towards Automatic Ranking App Risks via Heterogenous Privacy Indicators

Deguang Kong∗ Lei Cen† Hongxia Jin‡

Abstract

To inform the users of dangerous levels of mobile apps,
assessing privacy risks of mobile apps becomes an ur-
gent task. This paper presents the first systematic study
on privacy risk ranking of mobile apps via incorporating
the heterogeneous privacy indicators (i.e., permission ac-
cess, user review, developers’ description and ads library).
We formalize the risk ranking problem as an optimization
problem, which uses “risk propagation” technique to au-
tomatically rank the risks of mobile apps by considering
the privacy indicators from different aspects, such that the
ranking order can be automatically learned by consider-
ing data manifold information. Our method can automat-
ically rank the risks of mobile apps given a few number
of labeled mobile apps, The exploration on the impacts
of different privacy indicators will give insight on which
privacy indicators are more closely related to the privacy
risks of mobile apps.

1 Introduction

Nowadays, people spend more time on using mobile apps
on smart phones and tablets because of the convenience
they bring to people’s daily life. Personalized service
(such as targeted advertising, personal recommendation)
is possible on mobile devices when users’ personal infor-
mation such as contact and location is accessible by mo-
bile apps. However, disclosing personal information to
mobile apps could lead to serious privacy issues. Mo-
bile app risk assessment is an effective way to display the
risks of mobile apps by summarizing the information that

∗Samsung Research America, San Jose, CA, US 95134,
doogkong@gmail.com
†Purdue University, West Lafayette, IN 47907, lcen@purdue.edu
‡Samsung Research America, San Jose, CA, US 95134,

hongxia@acm.org

Privacy
Risk

Ranking

User reviews App descriptions

Permission Ads libraries

Figure 1: Motivation: Ranking the risks of mobile apps using
app meta data such as description, user review and permission
access, ads library. To automatically ranking more different mo-
bile apps, a ranking model is proposed to capture the relations
between the ranking score and privacy indicators from different
aspects.

related to the unauthorized access to users’ personal in-
formation. It makes the risk transparent and warns the
users of potential personal information leakage. A risk
score strategy has been shown to have a “significant posi-
tive effects” [2] for users, which allows the users to better
perceive the levels of security risks.

In android systems, permissions indicate the resources
that the apps can access, and thus can be viewed as a pri-
vacy indicator [3]). From users’ perspective, the meta data
such as users’ reviews and developers’ descriptions reflect
users’ perceptions and developers’ expectations for the
apps, and thus are also correlated [2] with risks of apps.

Given the heterogeneous privacy indicators of mobile
apps, a question that naturally follows is: can we de-
sign an automated approach to analyze the risks of mo-
bile apps by utilizing the heterogeneous indicators? On
one hand, there are millions of mobile apps on Google
play and labeling the risk score for each mobile app is
time consuming and tedious. The proposed method is re-
quired to label the risks of mobile apps efficiently and ef-
fectively when only a very small number of mobile app
risk scores are available. On the other hand, the proposed

1

approach should utilize the privacy indicators from differ-
ent aspects, and make a comprehensive assessment. How
to combine all the heterogeneous privacy indicators to ac-
curately estimate the risks of apps is under-explored but
highly desirable. Recent works, including permission us-
age pattern mining [1], app permission prediction from
meta-data, mobile app recommendation, however, do not
essentially solve this problem.

We propose a new approach to rank the privacy risks
of mobile apps via heterogeneous privacy indicators. The
proposed approach only requires a small number of risk
score of apps labeled by experts and can automatically
predict risk scores of other apps. The predicted scores
can be used to improve the credibility of apps in app play
store, and make the users be aware of the security risks of
mobile apps.

2 Methodology
Assume we have n mobile apps, and each mobile app is
abstracted as a data point xi denoting the privacy indica-
tors the app carries. We name the features extracted from
v-th (1 ≤ v ≤ V) privacy indicator as the v-th aspect
feature. In particular, let xvi ∈ <pv be the v-th view fea-
ture (i.e., features extracted from permission, user review,
etc.) of a mobile app i, pv be the dimension of feature ex-
tracted from the v-th view. Consider all the mobile apps,
Xv = [xv1,x

v
2, · · · ,xvn], where each data column vector

is xvi ∈ <pv .
For the mobile app risk ranking problem, each mobile

app is given a scalar value yi ∈ <+ as the risk score.
Without loss of generality, we assume the risk scores
for the first ` � n apps are already labeled by security
experts, which are denoted as {xi, yi}`i=1. The mobile
app risk ranking task is to learn a function f : such that
yi = f(xi), which can predict the risk scores yi for un-
labeled1 mobile app xi (` + 1 ≤ i ≤ ` + u). The rank-
ing/order of yi reflects the severity of security levels for
different apps. As a number of notations will be used in
next sections, we summarize them in Table 1 for clarity.

Let f = [f1, f2, · · · , fn] be the desired risk scores2

1In the paper next, “unlabeled” refers to the apps whose risk scores
are required to be labeled.

2For clarity purpose, we make a distinction between y and f . Let f
be the desired risk score for mobile app, but y only has the risk scores

Table 1: Notations used in the paper
Notation Description

xv
i ∈ <pv , v-th view of feature

y = [y1, y2, · · · , yi] yi ∈ <+, risk score for app i
`;u # of labeled apps, # of unlabeled apps;

n = `+ u

α ∈ <V , contribution weight for each fea-
ture type

f = [f1, f2, · · · , fn] ∈ <n, the desired app risk ranking
score

W v
ij the similarity of app i, j in terms of v-th

view indicator
fT inverse of the vector f

corresponding to apps [x1,x2, · · · ,xn], where f1 =
y1, f2 = y2, · · · , f` = y` for the labeled apps. Taking
all the above considerations, we propose to optimize the
following objective function with respect to f , i.e.,

min
f ,α

V∑

v=1

αvf
T L̃vf + λ‖α‖22 + fT L̃W f − fT L̃Sf

s.t. αTe = 1; α ≥ 0; fi = yi (1 ≤ i ≤ `);(1)

where V denotes the number of types of privacy indicators
extracted from mobile apps. Eq.(1) consists of three parts:

(1) risk propagation: term
∑V
v=1 αvf

T L̃vf ;
(2) multi-view privacy indicator weight α: term
‖α‖22, αTe = 1, α ≥ 0;

(3) constraint f by incorporating prior knowledge:
term fi = yi, f

T L̃W f − fT L̃Sf , etc.

References
[1] M. Frank, B. Dong, A. P. Felt, and D. Song. Mining per-

mission request patterns from android and facebook appli-
cations. pages 870–875, 12 2012.

[2] C. S. Gates, J. Chen, N. Li, and R. W. Proctor. Effective risk
communication for android apps. IEEE Trans. Dependable
Sec. Comput., 11(3):252–265, 2014.

[3] C. S. Gates, N. Li, H. Peng, B. P. Sarma, Y. Qi, R. Potharaju,
C. Nita-Rotaru, and I. Molloy. Generating summary risk
scores for mobile applications. IEEE Trans. Dependable
Sec. Comput., 11(3):238–251, 2014.

for the labeled apps, i.e., yi = 0 if (`+ 1) ≤ i ≤ n.

2

