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1. Sparse grids
- Construction principles and properties
- Optimal sparse grids
- Adaptive combination method
2. Application
- Multi-scale viscoelastic flows



Motivation

Numerical methods in uncertainty quantification:
- Galerkin approach
- Collocation technique
- Discrete projection
Needed on stochastic/parameter domain:
- Approximation of integrals
- Interpolation, especially for collocation

Simple domains with product structure: [-a,a]’, R°
Issue: high- or even infinite-dimensional problems



Curse of dimension

f: 0% 5IR, fev®, risotropic smoothness

Bellmann 61: curse of dimension M = #dof

| f—full,,=C(d)-M™|f],..=0M"")

Find situations where curse can be broken ?
Trivial: restrictto r=0(d)
| f—fy [=O(M ™) =0(M ™)
but practically not very relevant
In any case: some smoothness changes with d
or importance of coordinates decays successively

(e.g. after suitable nonlinear transformation)



Sparse grid approach

» Basic principles:
— 1-dim multilevel series expansion with proper decay
— d-dim product construction
— Trunctation of resulting multivariate expansion

o Effect:

— reduction of cost complexity

— nearly same accuracy as ,full® product

— necessary: certain smoothness requirements

— adaptivity for detection of lower-dimensional manifolds



Simple example: Hierarchical basis
| =1

Wl
V, =2 W,
W3

| =3
parabola f(X)=—(Xx-1)(x+1) in [-1,1]

conventional coefficients hierarchical coefficients
no decay from level to level decay by Y4 from level to level



Tensor product hierarchical basis

Generalization to higher dimension by tensor product
l, =1 l,=2 =3

Table of subspaces W, decay in x- and y-direction by 1/4

decay in diagonal direction by 1/16
|dea:

Omit points with small associated hierarchial coefficient values



Regular sparse grids




Properties of regular sparse grids

N = 2" Sparse grids Full grids
Cost: O(N log(N)“™) instead of O(N M
Accuracy:  O(N2log(N)*™) O(N7?) L,-norm
52%f d 9% f
Smoothness: <C <C
laxf...é‘xj | |§axi2 l
Space, seminorm: Hriixil f |2,mix H2’| f |2

Mitigates the curse of dimension of conventional full grids
Note: Higher regularity in mixed derivative, ~d

For wavelets, general stable multiscale systems:O(N ?(log N)“™'?)



History of regular sparse grids

Re-invented several times:

1957 Korobov, Babenko hyperbolic cross points
1963 Smolyak
1970 Gordon blending method
1980 Delvos, Posdorf Boolean interpolation
1990 Zenger, G. sparse grids
2000 Stromberg, deVore hyperbolic wavelets
2010 ?7?77?7?
Application areas include:
. quadrature * solution of PDEs
° interpo|ation ° integral equations

e data Compression o eigenvalue prOblemS



Basic principles of sparse grids

1-dim multilevel sequence of operators and spaces
P:V® v, V, | N
Sequence of differences, telescopic approach
A =(R-Ry):VY VeV, =W,
d-dim. product construction 1=(,L,,...,1,) eIN°

d d
A1 = j@lA'i :j@l(Plj_Plj—D:V(d) _)Wl fl:Al(f)EWl
Appropriate truncation of resulting multivariate

expansion
P N > S INC

P=>A — Py=>A

leN® 1e3



Examples of multiscale expansions, 1d

e Integration: BR=Q,:V¥Y -V, =R
— Sequence of nested or non-nested point sets and weights,
size: n, =1 or n =2"+1
=> various sparse grid quadrature rules
* Interpolation P =1,:V® -V, , approximation B =A:V® >V,

— Local piecewise polynomials, multiscale expansion:
hierarchical basis, interpolets, wavelets, multilevel basis,

size: N =2'+1  |W|=2"
=> gparse grid finite element spaces

— Global polynomials: Fourier series, Chebyshev, Legendre,
Hermite, Bernoulli polynomials

size =1 or n=2'+1 W =1 or |W,|=2"
=> total degree / hyperbolic cross approximation



Regular sparse grid approach

* |Index sets
i {leIN 1], = max |. <n}

j=1,.. dJ_

e {1en\| l|1:ZIj£n+d—1}
j=1

* The hierarchical representation is then

Psparse ZA Pnsparse( f ) _ ZAI ( f )
I, <n+d-1 [l <n+d -1
« Other representations:
— generating system
— Lagrange system over SG points
— semi-hierarchical
— combination method



The combination technique

* A simple alternative representation Is (c. schneider, zenger 911,

Pcombi

Z (_1)n+d |1|11(

n<|ll; <n+d -1

d-1
1)

R

d
I:)l:zj.@ll:)lj

— Involves just the (anisotropic) full grid discretizations P, on

different levels and linearly combines them

Pcombl .
1, n+d 1 1l n+d 2

-------------

2D example
n=4
P D :
E $O

.........

000000000

000000000

level indices, n=5



The combination technique

Redundant representation but allows the simple
reuse of existing code

Completely parallel computation of the subproblemsP,

Corresponds to a certain multivariate extrapolation
method [Riide 91]

Necessary: Existence of a pointwise error expansion.

— Euler-Maruyama of stochastic ODE: additive expansion
(leading error term) of mean square error

Multilevel-Monte Carlo is just 2-d combination method

— Variance and bias for the two dimensions and a proper
refinement rule which reflects the MC and the Euler-
Maruyama rates [Gerstner12, Harbrecht,Peters, Siebenmorgen13]



A priori construction of sparse grids

* |In general: Given
— a class of functions and an error norm
— an associated bound b(l) for the benefit of A,
— a boundc(l) for the cost of A,

« We can a-priori derive a (quasi-) optimal sparse grid
by solving a binary knapsack problem [gungartz+G.03]
max » ¢,-b(1) such that > g -c()<C, & {01

leN* leN¢
and setting 3. :{ 1N ¢ :1}
* Boils down to just sorting the quotients b(l)/c(l) of the

benefit versus cost according to its size and taking
the largest indices into account



L°-norm-based sparse grids in HmIX
f(x) eW, X = (X Xg)

Representation f(x)=) f,(x)
1

1= (11,

Cost per subspace c(l) =dim(W,) =2""

Benefit for accuracy
| fill,<b() =327 f, , =0(2™")

Choice of best subspaces ? Knapsack problem !

=> |ocal benefit?/cost ratio

5 2—4'|1|1 5
(0I opt) _ @ W
Il;=n+d -1

|2

= regu

1

ar sparse grid space

=n+d-1 Isoline

Nn

Il



Anisotropic sparse grids

* Non-equal directions

— Weighted Sobolev spaces [sioan+Wozniakowskig3]

HI’

¥, mix

— Anisotropic smoothness spaces (cester+c. 98, 6.+zung15]
H>xe2% = HY (1) QH2(1,)®---@H™(I,)

mix

— Different dimensions for different directions s.+Harbrecht 11]

H Q) ®OH%(Q,)®...0 H* (Q,)

* Via knapsack problem:
— A priori construction of optimal
anisotropic sparse index sets
— log-terms disappear

| TR




Generalized sparse grids

I2

General index sets I cIN¢

Downward closed set, no holes Eg

eI = 1-¢,€3 j=1,...,d

Associated sparse grid operator Py =>» A,

1e3

Associated space and associated function

Vs =W, P =2 A(f)=2 1,

1e3 1€3 1€3



The combination technique

Can also be generalized to a given downward closed
index set 3

PS :ZCIPI

€3

Combination coefficient
C, = Z(—l)'z'lf(lﬂ)
z=0

with characteristic function 7 “on the index set 5

Again: just (anisotropic) full grid discretizations R,
on different levels get linearly combined

Note: many coefficients on the lower levels are zero



Tensor product sparse grids

« Examples:
— space xtime, d,=3,d, =1, parabolic problems
— space x parameters d, =3,d, =10-20
but smooth in parameter variables
— space x stochastics d, =3,d, =00
but analytic in stochastic variables

« Main result: Curse of dimension only w.r.t. the

larger dimension and/or the lower smoothness
[G.+Harbrecht11], [G.+Zung15]

* Time, parametrization and stochastic coordinates
disappear in the overall complexity rate

=> just space discretization matters



ds

ty [6.+0eltz07]

ime gri

-1

Sparse space

d necessary regular

10N error an

t

IMma

* Approx

ulle(Q) ® H2((0,T))

-N

C2

<

)

| regularity theory (Ladyzenskaja, Wioka) | € H Z(Q) X H

T

U, HY(Q) ® L2(0,

u_

0
n

Inf
. €V

u

(0T))

ICa

— Class

te as

lon ra

t

IMma

ds posses same approxi

ime gri

— Sparse space-t

t cost complexity of space problem

—In each time slice there is a conventional full gri

ds but jus

ime gri

full space-t

=
(@)]
()]
(7))
had
®
Q.
(7)]
()]
+— -
1 <t
% Il
(e
a -
Q. )
ST
~ (M
- AN 5
000000000000000 C
000000000000 000 ® o)
000000000000000 c =~ O
000000000000000 n n
000000000000000 —_—
000000000000000 [ )
00000 0® O ® oS o D O
000000000000000 QO
00000®OPE® AP OO0 O e
0000060000006000 < Z
- 1
d k
. ©O
S O C
g 5
000000000000 000
O 000 OO O® O® 00 o o (/)] C
0000005000000 000
00000 0E oSO o%o
0000055080665680° & e
00000® O® OB OB XSO0 O
00000000000G000
ooooo%o@o%o@ mw%oo © N
O o
© 0 0 0 000 ©
©0Q 0L 0w 2
< @ @ v o O )
o o o o
% £
T O
[ORN))
O ®
1 , _ , c O
04 o E o O o
Yl o000 0 Qo0 09 a0 00 a a0 Se
Dﬂ el s o - —
07 o o a h L
OGODDDOOOAOquOOO n
: o ‘ o ! o _-
D, ) O
0 Q o —
D.#CGCGOOFFSG.VGGGC %g
()]
02 o . o m m
5 0 ©
c.d o o0 0 HO, O O 0 n\ a "] N_O_: a oo il a
o , _ , _ O QO
) 02 04 06 08 1 O w
t o
Q.
(7)]



Stochastic and parametric PDEs

» Solutions of stochastic/parametric PDEs
ou(t,x,y)-V-A(x,y)Vf (t,x,y) =r(t,x,y)

live on product (txy)eTxXxY
 of temporal domainT
- of spatial domainX with d, =123
« and stochastic/parametric domain Y with d, large or
even infinity.
« Often: Very high smoothness in y-part

— Here: especially weighted analyticity for the different
coordinates, decay in covariance [cohen,Devore, Schwab10,11]

— Then, even infinite-dimensional Y become treatable

« Sparse grid not only within stochastics but also
between spatial, temporal and stochastic domain



Sparse grids and analytic functions

Analytic regularity in polydisc with radii r:=(r,...r,)
Sequence of smoothness indices a=(a,,...a,)=log(r)

With

global polynomials:  [A(f)] <c.e @ ak)

Accuracy with respect to the involved #dof M

[Beck,Nobile, Tamellini,Tempone12,14], [Tran,Webster,Zhang15], [G.+Oettershagen15]

gm(a) =
Fort

1/d
ﬁajj w(d)=(d 1" >d/e Q(e—gm(a)ff(d)l\/l”d M (@07
j=1

ne infinite-dimensional case:

— Logarithmic growth => algebraic rate
[Todor,Schwab07], [Cohen,Devore,Schwab10,11]

00 1 _ _1
£>1 Z 2l . O(M (8 )) Stechkin’s Lemma
]
j=1 € -1
— Linear growth => subexponential rate [G.+Oettershagen15], Stechkin’s Lemma
[Tran,Webster,Zhang15] 3 o can not show this

] — —a/logM)  1+— B rate but gives only
a>0 aj > | O(M 8 M ¢ |Og(|\/|) 1/2) an algebraic bound



Dimension-adapted sparse grids

« So far: function class known,
— a-priori choice of best subspaces by optimization
— size of benefit/cost ratio indicated if subspace is relevant
=> gparse grid patterns for 3

« Now: for given single function f
— adaptively build up a set 3 of active indices
— benefit b(1):= | A,(f)|?, i-e. local error-indicator of |
— cost c(l) = |W,| for subspace W,,
— benefit/cost indicatore(l) .= b(l)/c(l)
— refinement strategy to build new index set,
— global stopping criterion => sparse grid pattern 3
* Directions TxXxY with product of different smoothness



The adaptive combination algorithm

/ refinement rule
|2
,

downward closedness

simple extension to
dimension-adaptive
version exists => UQ14



Example

 Evolution of the algorithm:

iIndex sets:
£ EENE I
. 1 = = =2 7 | =B &2 ®» & 9 @7 F n E a = g n
corresponding E .y
grids: nnnnnnnnnnnnnnnnnnnnnnnnnnnnn 2]  |ameaoea E nnnnnnnnnnnn :agn:nnanﬂ
ﬂﬂﬂﬂﬂﬂﬂ E a E ]
: ]

* As any adaptive heuristics: may terminate too early
 If mixed regularity not present, refinement to the usual full grid



Application: Non-Newtonian fluids

» Classical Newtonian fluids: Obey Newton’s law of
viscosity, stress tensor is proportional to load/force

* But various complex fluids show strange behavior
which is not correctly described

Barus effect Weissenberg effect tubeless siphon effect



Application: Non-Newtonian fluids

Non-Newtonian fluids contain microstructures which
are the reason for their unusual properties

« Examples: paint, toothpaste, shampoo, blood, oils

Polymeric fluids are a subset of non-Newtonian fluids
* Long-chained molecules in a Newtonian solvent

* Viscoelasticity due to interaction of elastic molecules and
drag forces in basic flow

A macroscopic model like the Navier Stokes equations
+ macrosopic extensions is no longer sufficient

Needs to be augmented by model on the micro scale
=> Two scale modelling



Mathematical modelling

* The conservation equations for polymeric fluids are
the same as for the Newtonian case, but the
presence of polymer molecules contributes a
polymeric extra-stress tensor T, and an additional
polymeric viscosity 77, such that the viscosity ratio 8 <1

* The Navier-Stokes equations are now

@+u VU——,BAH Vp+iv- Tp conservation
ot Re

of momentum

V-u=0
+ b.c., with Reynolds number Re
and viscosity ratio g=—=>" s solvent viscosity

Ms +1p 77, polymeric viscosity



Microscopic modelling

On the microsocopic scale, a polymer chain is
modelled by a spring chain of K+1 beads

Position X in physical spacef/flow domain Q IR’
Orientations q,,...,q, in configuration space T" cIR*¢

Probability to find chains at time t with position in
.[X,X+dX] and Ol’lentathnS |n [q11q1+dq1]----[q|<’q|< +qu]

v Q) ><F><[O,T]—> R™, (X,qy,qx,t) ¥ (X,qy,., G, L)



Fokker-Planck equation

* The function y is a pdf, i.e. v =0, erzl
« The application of Newton’s 2" [aw to the forces
acting on chain leads to the Fokker-Planck equation

Vv, (uw)+ZV ((Vu)Tqiw—

1
Deborah number —> 4De ZA‘J (a:) l//J QZZA‘JV% v a;¥

=1 j=1

with Rouse matrix A= [—1 2-1],
* Describes evolution of w under chain’s spring forces

F(q,),...F(qy)

« Various models for spring force: Hooke: F@ =q

q 2 q 2
. F(g) = , <b -P: F@ = ICOEL




Coupling to the macro scale

¥ represents polymeric configurations of micro-system
Expectation in configuration space

()=]-vdq.da

Coupling of internal configurations of micro system to
macroscopic stress tensor via Kramer's expression

K
T,=C > ((q, ®F(q,))-1d)
i=1
Constant C depends on model, Deborah number, viscosity ratio

Issues with the Fokker-Planck equation

— becomes more singular for higher values of De [suli, knezevicos]
=> extremely fine numerical resolution needed [Lozinski, owen 03]

— 3+3K =3(K+1) -dimensional + time-dependent => curse of dim.



Stochastic microscopic modelling

* There is a formal equivalence between the Fokker-
Planck equation and stochastic partial differential eq.

dQ(x,t) =(— (u-V)Q(x,t) +(Vu) - Q(x,t) -

1

1 AF(@(x,t))jdt+ 1

2De

dU(t)
Deborah number — 4De

— Describes evolution of K random fields Q=(Q,....Q,)" that
represent the configuration vector q=(q,,....q,)’

— Brownian forces on the beads are modelled by the 3-dim.
Wiener processes W.(t), i=1..,K+1

— The vector U(t) consists of the component-wise differences
(I_j(t))l — W+1(t) _“]i (t)1 I :11"'1 K



Stochastic microscopic simulation

* Brownian configuration fields (BCF) puisenor
Random field Q(xt) for configuration

» Discretization of x-space: the M, grid cells make from
the parabolic SPDE a system of SODEs (Mol)

 Discretization of SODE-system: Put M, configuration
fields in each of the Mg space grid cells and evolve

their configuration discretely over time, i.e. all M, M,
configuration fields have fixed spatial positions (Eulerian view).



Stochastic microscopic simulation

* In each grid cellk=1,...,M; with center x, we solve/
integrate the stochastic DE for a number M, of
stochastic realizations QV(x,,t), j=1..,M,

* They are distributed according to the known
equilibrium density v for t=0

« But we do not know ¢ for t>0. Thus, we approximate
the first moments (Q, (x,,t) ® F(Q; (x,.1))) in Kramer’s

relation as )
T,(x,)=C Z(<Qi(xk,t)®F(Qi(xk,t))>—ld)

~C il[wtiQ“’m,t)®F(Q§”(xk,t))—IdJ

l.e. we replace the integral by Monte Carlo quadrature



Numerics

* Navier Stokes equations:
— Uniform grid cells, staggered grid, cell centers p, T, cell faces u
— WENO for convective terms, 2" order scheme for other terms
— Euler or Crank-Nicolson in time, CFL-condition
— Chorin-like projection method

* Microscale stochastic equations:
— M; stochastic samples for each grid cell =>M;-M,; samples
— QUICK for convective terms
— Explicit Euler-Maruyama, semi-implicit Euler for FENE
— Same time step size as for NS equations
— Variance reduction scheme with equilibrium control variates



Newtonian

Issues
Code works as expected

But: Huge memory requirements and
huge computing times due to large
numberM of realizations in each cell

non-Newtonian

Example for 3D multi-scale problem

— Flow domain Q with

« M, =100x100x100 grid cells

* M;=10.000 stochastic realizations in each grid cell
— Total memory requirements:

« 8 MB for the pressure field P

« 24 MB for the velocity field u

* 48 MB for the six independent components of T

« 75 GB*N for all the M. -M; stochastic variables

— Some months of computing time



Sparse grid approach

* Consider our multiscale flow problem in more detail.

* We have the problem parameters:
mesh width, time step size, stochastic realizations, springs

 How can we improve on computational complexity ?
— Instead of MC use QMC
— Multilevel-MC, MLQMC for stochastic ODEs (time + stoch.)

This is just a certain 2d combination technique/
Sparse grld approach [Gerstner 12] [Harbrecht,Peters,Siebenmorgen13]

— Combination technique in all 3 discretization parameters
I.e. for space x time x stochastics,
and for model parameter K, i.e. .... x number of springs

— If the optimal combination formula is not a priori known:
run the (dimension)-adaptive algorithm



Coordinates for the combination method

we use only an
_isotropic grid in
our NS solver




Indicators for the combination method

Approximation of the vector u and the tensor T,

Compute benefits b(l) and costs c(l) componentwise
One index set for all components

Weighted and scaled benefit/cost indicator

I L] b)) e }
() b, e 1O, I,

e(l) = max{ (1- )

Scaling with initial level b(1) not necessary if =0 or w=1



Example 1: Couette flow

* Non-Newtonian fluid in a 2D channel.
— Fluid is at rest at initial time t = 0, De=0.5
— Shearing of fluid over time with rate y =du/dy
— Linear spring force model (dumbbell, K=1)
— Probability density function v :(x,q,t) e R*>w (x,q,t) eR
1d in space, 2d in configuration space and time-dependent

velocity

. L space fime
 Discretization:

— Initial level (1/ Ax, 1/ At, samples) = (4, 16, 256)
— Refinement from level to level by factor *2
— Error indicator =1, we are after error in u



Example 1 Couette flow

« Behaviour of adaptive combination technique



Example 1 Couette flow

time 1,=3 time 1,=5

« We asymptotically observe an anisotropic sparse grid structure

« Comparison:

— Full grid error  E(u, ) ~0.04
E(u;,,)~0.01

— Cost (dof)

full grid C(Ug ¢ ¢) ~5.4x10°
C(u; ; ;) ~4.3x10°

« Relative L, error of u, sparse grid  C(u°) ~4.6x10"



Example 2: Steady extensional flow,

. . . . ll=(é‘ X,—Ey,——Z)
* Non-Newtonian fluid in a 3D domain. 27 2

— Steady uniaxial extensional flow, De=1.0

— Stress tensor T , is aimed for

— FENE force model, K-spring chain

— We vary the number K of springs up to 5

— Probability density function v:(q,t)e R*x R—>y (q,t) eR

3N-dimensional in configuration, time-dependent, number of
springs, no space

» Discretization
— Initial level (samples, 1/At, springs) = (1024, 2, 1)

— Refinement for time and samples from level to level by
factor *2, refinement for springs by +1

— Error indicatoro =0, we are after errorin T



Example 2: Steady extensional flow

« Behaviour of adaptive
combination technique

« \We observe:

— a sparse grid structure
for all indices

— plus a nearly full grid
between time and
springs for the
smallest sample size

— Different refinement:
*2 versus +1

 Relative L, error for
of adaptive combination
technique



Example 2: Steady extensional flow
« Convergence of model for rising number K of springs

 All results are computed on fine level with 2 million samples.
» Fixed stochastic time step width At =1/2048



Concluding remarks

» Basic principles of sparse grids
* Optimization by knapsack problem

* Dimension-adaptive combination method
— Solution of subproblems P on levels |
— Sparse grid approximation by linear combination
— Refinement with hierarchical contributions A, and local cost

* Application to non-Newtonian flow
— Two-scale problem, stochastic microscale

* Adaptive combination method works on discretization
directions (space x time x samples) and also for
model parameters (... X springs)

=> Allows to couple discretization and modelling errors



The C ”brary HCFFT c+Hamaekers

Hierarchical sparse grid interpolation based on:

- Fast Fourier transform (FFT), fast Sine and Cosine transform
- Fast Chebyshev transform, Fast Legendre transform

- Various other polynomial transforms

Different hierarchical bases for different dimensions
Dyadic and arbitrary, non-dyadic refined grids
Several types of general sparse grids
Dimension-adaptive sparse grids

For high precision: possible use of long double

Freely available at
www.hcfft.org



The flow solver

 Code NAST3DGPF which is freely available at
http://www.nast3dgpf.de/



