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 - Construction principles and properties 
    - Optimal sparse grids 
    - Adaptive combination method 
 2. Application  
 - Multi-scale viscoelastic flows 



Motivation 
 

 
 

 
• Numerical methods in uncertainty quantification: 

- Galerkin approach 
- Collocation technique 
- Discrete projection                                                     

• Needed on stochastic/parameter domain: 
- Approximation of integrals  
- Interpolation, especially for collocation 

• Simple domains with product structure:  
• Issue: high- or even infinite-dimensional problems 
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Curse of dimension  
•   
• Bellmann ´61: curse of dimension 

 
 

• Find situations where curse can be broken ? 
• Trivial: restrict to  

 
    but practically not very relevant  
• In any case: some smoothness changes with  
    or importance of coordinates decays successively 
    (e.g. after suitable nonlinear transformation) 
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Sparse grid approach 
 • Basic principles: 

– 1-dim multilevel series expansion with proper decay 
– d-dim product construction 
– Trunctation of resulting multivariate expansion 

 
• Effect: 

– reduction of cost complexity 
– nearly same accuracy as „full“ product 
– necessary: certain smoothness requirements 
– adaptivity for detection of lower-dimensional manifolds 



Simple example: Hierarchical basis 

parabola in   [-1,1] 

conventional coefficients 
no decay from level to level 

hierarchical coefficients  
decay by ¼  from level to level 
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Tensor product hierarchical basis 
Generalization to higher dimension by tensor product 

decay in x- and y-direction by 1/4 
decay in diagonal direction by 1/16 

Idea: 
Omit points with small associated hierarchial coefficient values 

Table of subspaces 
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 Regular sparse grids 

 
 



Properties of regular sparse grids 

 
 

Cost:  

Accuracy: 

Mitigates the curse of dimension of conventional full grids 
Note: Higher regularity in mixed derivative, ~d 
 
For wavelets, general stable multiscale systems: 
 

instead of 

-norm 

Sparse grids Full grids 

Smoothness: 

: 

Space, seminorm: 
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Re-invented several times: 
1957  Korobov, Babenko 
1963  Smolyak 
1970  Gordon 
1980  Delvos, Posdorf 
1990  Zenger, G. 
2000  Stromberg, deVore 
2010  ???? 
  

hyperbolic cross points 
 
blending method 
Boolean interpolation 
sparse grids 
hyperbolic wavelets 

Application areas include: 
• solution of PDEs 
• integral equations 
• eigenvalue problems 

• quadrature 
• interpolation 
• data compression 

 History of regular sparse grids 
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Basic principles of sparse grids 
 • 1-dim multilevel sequence of operators and spaces 

 
• Sequence of differences, telescopic approach 

 
 

• d-dim. product construction 
 
 

• Appropriate truncation of resulting multivariate 
expansion 
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• Integration:                                    

– Sequence of nested or non-nested point sets and weights,  
size:           or                                                              

    => various sparse grid quadrature rules 
• Interpolation                    , approximation  

– Local piecewise polynomials, multiscale expansion: 
hierarchical basis, interpolets, wavelets, multilevel basis, 
size:  

  => sparse grid finite element spaces 
– Global polynomials: Fourier series, Chebyshev, Legendre, 

Hermite, Bernoulli polynomials 
   size           or                                           or 

      => total degree / hyperbolic cross approximation 
 
 

 
 

 

Examples of multiscale expansions, 1d  
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Regular sparse grid approach 
 • Index sets 

 
 

 
• The hierarchical representation is then 

 
 
• Other representations:  

– generating system 
– Lagrange system over SG points 
– semi-hierarchical  
– combination method 
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• A simple alternative representation is [G., Schneider, Zenger 91],  

 
 

– Involves just the (anisotropic) full grid discretizations      on 
different levels and linearly combines them 

• 2D example 
  

 
 
 
 

 

The combination technique 
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• Redundant representation but allows the simple 

reuse of existing code 
• Completely parallel computation of the subproblems 
• Corresponds to a certain multivariate extrapolation 

method [Rüde 91] 

• Necessary: Existence of a pointwise error expansion. 
– Euler-Maruyama of stochastic ODE: additive expansion 

(leading error term) of mean square error 
• Multilevel-Monte Carlo is just 2-d combination method 

– Variance and bias for the two dimensions and a proper 
refinement rule which reflects the MC and the Euler-
Maruyama rates [Gerstner12, Harbrecht,Peters,Siebenmorgen13]  

 
  

The combination technique 
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• In general: Given  

– a class of functions and an error norm 
– an associated  bound        for the benefit of  
– a bound       for the cost of  

• We can a-priori derive a (quasi-) optimal sparse grid  
    by solving a binary knapsack problem  [Bungartz+G.03]  
 
 
 

    and setting 
• Boils down to just sorting the quotients              of the 

benefit versus cost according to its size and taking 
the largest indices into account 

A priori construction of sparse grids 
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• Representation 
 
• Cost per subspace 
• Benefit for accuracy 

 
• Choice of best subspaces ? Knapsack problem ! 
    => local benefit2/cost ratio 

 
 

-norm-based sparse grids in  
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Anisotropic sparse grids 
 

 

 
• Non-equal directions 

– Weighted Sobolev spaces [Sloan+Wozniakowski93]  

 
– Anisotropic smoothness spaces [Gerstner+G. 98, G.+Zung15] 

 
– Different dimensions for different directions [G.+Harbrecht 11] 

 
• Via knapsack problem:   

– A priori construction of optimal    
         anisotropic sparse index sets   

– log-terms disappear  
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Generalized sparse grids 
 
• General index sets 

 
• Downward closed set, no holes 

 
 

• Associated sparse grid operator 
 

• Associated space and associated function 
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• Can also be generalized to a given downward closed 

index set 
 

 
• Combination coefficient 

 
 

    with characteristic function    on the index set 
• Again: just (anisotropic) full grid discretizations        

on different levels get linearly combined 
• Note: many coefficients on the lower levels are zero 

 
 
 
 
 

The combination technique 
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Tensor product sparse grids 
• Examples:   

– space   time,                     ,   parabolic problems 
– space   parameters                               
                                     but smooth in parameter variables 
– space   stochastics                        
                                     but analytic in stochastic variables 

• Main result: Curse of dimension only w.r.t. the 
larger dimension and/or the lower smoothness 
[G.+Harbrecht11], [G.+Zung15] 

• Time, parametrization and stochastic coordinates 
disappear in the overall complexity rate 

    => just space discretization matters 
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space dimension 2, space-time sparse grid, 
Cranck-Nicolson case, n=4,5: 

space dimension 1, space-time 
sparse grid,  Euler case 

• Approximation error and necessary regularity [G.+Oeltz07] 

 
 

– Classical regularity theory (Ladyzenskaja, Wloka) 

– Sparse space-time grids posses same approximation rate as 
full space-time grids but just cost complexity of space problem 

– In each time slice there is a conventional full grid  
 
 



• Solutions of stochastic/parametric PDEs 
        
    live on product  

• of temporal domain 
• of spatial domain    with               
• and stochastic/parametric domain     with      large or 

even infinity. 
• Often: Very high smoothness in    -part   

– Here: especially weighted analyticity for the different   
coordinates, decay in covariance [Cohen,Devore,Schwab10,11] 

– Then, even infinite-dimensional     become treatable 
• Sparse grid not only within stochastics but also 

between spatial, temporal and stochastic domain 
 
     
 

Stochastic and parametric PDEs  
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• Analytic regularity in polydisc with radii 
• Sequence of smoothness indices 
• With global polynomials:  
• Accuracy with respect to the involved #dof        

[Beck,Nobile,Tamellini,Tempone12,14], [Tran,Webster,Zhang15], [G.+Oettershagen15] 

 
• For the infinite-dimensional case:   

– Logarithmic growth => algebraic rate                                   
[Todor,Schwab07], [Cohen,Devore,Schwab10,11] 

 
 

– Linear growth => subexponential rate [G.+Oettershagen15],   
[Tran,Webster,Zhang15] 

 
 

Sparse grids and analytic functions 
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Stechkin´s Lemma  

Stechkin´s Lemma 
can not show this 
rate but gives only 
an algebraic bound 



Dimension-adapted sparse grids 
 • So far: function class known,  

– a-priori choice of best subspaces by optimization 
– size of benefit/cost ratio indicated if subspace is relevant  
    => sparse grid patterns for  

• Now: for given single function  
– adaptively build up a set     of active indices 
– benefit                         , i.e.  local error-indicator of   
– cost                    for subspace     ,  
– benefit/cost indicator  
– refinement strategy to build new index set,  
– global stopping criterion => sparse grid pattern  

• Directions            with product of different smoothness 
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The adaptive combination algorithm 

simple extension to   
dimension-adaptive 
version exists => UQ14 

1l
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• Evolution of the algorithm: 

 
 
 
 
 
 
 
 

• As any adaptive heuristics: may terminate too early 
• If mixed regularity not present, refinement to the usual full grid  
 

index sets: 

corresponding 
       grids: 

 

  

Example 
 



Application: Non-Newtonian fluids 
 

 

 
• Classical Newtonian fluids: Obey Newton´s law of 

viscosity, stress tensor is proportional to load/force 
 

• But various complex fluids show strange behavior  
    which is not correctly described  

 

Weissenberg effect tubeless siphon effect Barus effect 



Application: Non-Newtonian fluids 
 

 

 
• Non-Newtonian fluids contain microstructures which 

are the reason for their unusual properties 
• Examples: paint, toothpaste, shampoo, blood, oils 

• Polymeric fluids are a subset of non-Newtonian fluids 
• Long-chained molecules in a Newtonian solvent 
• Viscoelasticity due to interaction of elastic molecules and 

drag forces in basic flow  
• A macroscopic model like the Navier Stokes equations 

+ macrosopic extensions is no longer sufficient  
• Needs to be augmented by model on the micro scale 
        => Two scale modelling  



Mathematical modelling 
 

 

 
• The conservation equations for polymeric fluids are 

the same as for the Newtonian case, but the 
presence of polymer molecules contributes a 
polymeric extra-stress tensor      and an additional 
polymeric viscosity     such that the viscosity ratio  

• The Navier-Stokes equations are now 
 
 

    
+ b.c., with Reynolds number        
           and viscosity ratio  
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• On the microsocopic scale, a polymer chain is 

modelled by a spring chain of K+1 beads 
 
 
 
 

• Position    in physical space/flow domain 
• Orientations                in configuration space  
• Probability to find chains at time    with position in                                        

.               and orientations in  
 

Microscopic modelling 
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• The function     is a pdf, i.e. 
• The application of Newton´s 2nd law to the forces 

acting on chain leads to the Fokker-Planck equation  
 
 
 

    with Rouse matrix  

• Describes evolution of     under chain´s spring forces    
 

• Various models for spring force:    Hooke:  
 

    FENE:                                       ,    FENE-P: 

Fokker-Planck equation 


















i

T
K

i
it

quu xqx )()(
1


ji

K

i

K

j

iji

K

j

ij A
De

A
De

qqqF 





 

  1 11 4

1
)(

4

1

  1,0 



)(),..,( 1 KqFqF

KA ]121[ 

qF(q) 

bq
b




 2||||,
1 /||q||

qF(q) 2
b

b



 2

2
,

1
q

/q
qF(q)

 Deborah number  

 



 
 

  
•    represents polymeric configurations of micro-system  
• Expectation in configuration space 
 
 

• Coupling of internal configurations of micro system to 
macroscopic stress tensor via Kramer´s expression 
 
 

      Constant C depends on model, Deborah number, viscosity ratio 

• Issues with the Fokker-Planck equation 
– becomes more singular for higher values of         [Suli, Knezevic08] 

         => extremely fine numerical resolution needed [Lozinski, Owen 03] 

–                      -dimensional + time-dependent => curse of dim. 
 

 
          

 
 

Coupling to the macro scale 
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• There is a formal equivalence between the Fokker-

Planck equation and stochastic partial differential eq. 
 
 
 
 
– Describes evolution of     random fields                      that 

represent the configuration vector   
– Brownian forces on the beads are modelled by the 3-dim. 

Wiener processes 
– The vector        consists of the component-wise differences  

 
 
 

 

Stochastic microscopic modelling 
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• Brownian configuration fields (BCF) [Hulsen97] 

           Random field            for configuration 
• Discretization of x-space: the      grid cells make from 

the parabolic SPDE a system of SODEs (MoL) 
• Discretization of SODE-system: Put      configuration 

fields in each of the      space grid cells and evolve 
their configuration discretely over time, i.e. all            
configuration fields have fixed spatial positions (Eulerian view). 
 
 
 
 
 

Stochastic microscopic simulation 
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• In each grid cell                with center     we solve/ 

integrate the stochastic DE for a number      of 
stochastic realizations     

• They are distributed according to the known 
equilibrium density     for  

• But we do not know     for       . Thus, we approximate 
the first moments                               in Kramer´s 
relation as 
 
 
 

   i.e. we replace the integral by Monte Carlo quadrature 
 
 
 
 
 
 
 

 

Stochastic microscopic simulation 
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• Navier Stokes equations: 

– Uniform grid cells, staggered grid, cell centers   ,     , cell faces 
– WENO for convective terms, 2nd order scheme for other terms 
– Euler or Crank-Nicolson in time, CFL-condition 
– Chorin-like projection method   

• Microscale stochastic equations: 
–      stochastic samples for each grid cell =>            samples  
– QUICK for convective terms 
– Explicit Euler-Maruyama, semi-implicit Euler for FENE 
– Same time step size as for NS equations 
– Variance reduction scheme with equilibrium control variates 

Numerics 

p
pτ u

BM BG MM 



  
• Code works as expected 
• But: Huge memory requirements and                                                                     

huge computing times due to large               
number     of realizations in each cell  
 

• Example for 3D multi-scale problem 
– Flow domain     with   

•        = 100x100x100 grid cells 
•       = 10.000 stochastic realizations in each grid cell 

– Total memory requirements: 
• 8 MB for the pressure field    
• 24 MB for the velocity field    
• 48 MB for the six independent components of       
• 75 GB*N for all the              stochastic variables 

– Some months of computing time 
 

 
 

Issues 
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• Consider our multiscale flow problem in more detail.      
• We have the problem parameters: 

    mesh width, time step size, stochastic realizations, springs 
• How can we improve on computational complexity ? 

– Instead of MC use QMC 
– Multilevel-MC, MLQMC for stochastic ODEs (time + stoch.) 
      This is just a certain 2d combination technique/ 
      sparse grid approach [Gerstner 12] [Harbrecht,Peters,Siebenmorgen13]  

– Combination technique in all 3 discretization parameters
      i.e. for space x time x stochastics,                                
      and for model parameter K, i.e. …. x number of springs 

– If the optimal combination formula is not a priori known: 
      run the (dimension)-adaptive algorithm   

Sparse grid approach 



 
 

  
 
 
 
 
 
 
 

Coordinates for the combination method 

we use only an 
isotropic grid in 
our NS solver 



 
 

  
• Approximation of the vector     and the tensor 
• Compute benefits        and costs         componentwise 
• One index set for all components 

 
• Weighted and scaled benefit/cost indicator 

 
 

      
     Scaling with initial level       not necessary if         or 

 
 

 

Indicators for the combination method 
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• Non-Newtonian fluid in a 2D channel. 

– Fluid is at rest at initial time t = 0, 
– Shearing of fluid over time with rate 
– Linear spring force model (dumbbell, K=1) 
– Probability density function 

    1d in space, 2d in configuration space and time-dependent 
 
 
 

• Discretization:  
– Initial level  
– Refinement from level to level by factor *2 
– Error indicator        , we are after error in 
 
  

 
 
 
 
 
 
 

Example 1: Couette flow  

RtxRtx  ),,(),,(: 4 qq 

dydu /

256)16,(4,samples),/1,/1(  tx

1

time

velocity

 space

u

I I

5.0De



  Example 1 Couette flow 

  
• Behaviour of adaptive combination technique 

 
 
 
 
 
 
 



  
• We asymptotically observe an anisotropic sparse grid structure 

 
 
 
 
 
 
 

  
• Comparison:  

– Full grid error 
 

– Cost (dof) 
           full grid  
 
           sparse grid 

 
 
 
 
 
 

  Example 1 Couette flow 
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• Relative     error of 
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• Non-Newtonian fluid in a 3D domain. 

– Steady uniaxial extensional flow,  
– Stress tensor      is aimed for 
– FENE force model, K-spring chain 
– We vary the number K of springs up to 5 
– Probability density function  
3N-dimensional in configuration, time-dependent, number of 
springs, no space   

• Discretization 
– Initial level  
– Refinement for time and samples from level to level by 

factor *2, refinement for springs by +1 
– Error indicator        , we are after error in 

 

Example 2: Steady extensional flow  
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  Example 2: Steady extensional flow    
• Behaviour of adaptive 

combination technique 
• We observe:  

– a sparse grid structure 
for all indices  

– plus a nearly full grid 
between time and 
springs for the 
smallest sample size 

– Different refinement:         
*2 versus +1 

 

• Relative     error for            
of adaptive combination 
technique 
 
 
 
 
 
 
 

xx2L



 
 

  
• Convergence of model for rising number K of springs 

 
 
 
 
 
 
 

• All results are computed on fine level with 2 million samples. 
• Fixed stochastic time step width   
 

 

Example 2: Steady extensional flow  
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• Basic principles of sparse grids 
• Optimization by knapsack problem 
• Dimension-adaptive combination method 

– Solution of subproblems       on levels  
– Sparse grid  approximation by linear combination  
– Refinement with hierarchical contributions       and local cost 

 

• Application to non-Newtonian flow 
– Two-scale problem, stochastic microscale 

 

• Adaptive combination method works on discretization 
directions (space x time x samples) and also for 
model parameters (… x springs) 

=> Allows to couple discretization and modelling errors 
 
 
 

Concluding remarks  
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The C library HCFFT G.+Hamaekers 

 
 

 
• Hierarchical sparse grid interpolation based on:  

- Fast Fourier transform (FFT), fast Sine and Cosine transform 
- Fast Chebyshev transform, Fast Legendre transform 
- Various other polynomial transforms 

• Different hierarchical bases for different dimensions  
• Dyadic and arbitrary, non-dyadic refined grids 
• Several types of general sparse grids 
• Dimension-adaptive sparse grids 
• For high precision: possible use of long double 
• Freely available at 
        www.hcfft.org 
 

 
 
 



 
 

  
• Code NAST3DGPF which is freely available at  
  http://www.nast3dgpf.de/ 

 
 

The flow solver 


