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The Long and the Short of It:
Queueing Theory Goes Dynamic
By Barry A. Cipra

Waiting in line—be it at the post office or the
grocery store, or on the phone, listening to out-
sourced call-center music—would seem to be an
inherently stationary activity. But to William
Massey, a professor of operations research and
financial engineering at Princeton University,
waiting in line is totally dynamic. In a lecture at
the Blackwell–Tapia Conference, held Nov-
ember 3 and 4 at the Institute for Mathematics
and Its Applications at the University of
Minnesota (see “IMA Hosts 2006 Blackwell–
Tapia Conference”). Massey described some of
the tools used to study queues as dynamical sys-
tems. In part for work described in the talk,
Massey received the 2006 Blackwell–Tapia
Prize at the conference.

People have been standing in lines since the
dawn of bureaucracy, but queueing theory is
only about a hundred years old, an offspring-
turned-midwife of the telecommunications era.
The first explicit analysis is credited to the
Danish mathematician Agner Krarup Erlang,
who, while working for the Copenhagen Tele-
phone Company, published “Sandsynlighedsregning og Telefonsamtaler” (Theory of Probabilities and Telephone Conversations) in 1909, fol-
lowed by “Løsning af nogle Problemer fra Sandsynlighedsregning af Betydning for de automatiske Telefoncentraler” (Solution of Some
Problems in the Theory of Probabilities of Significance in Automatic Telephone Exchanges) in 1917, with other papers in between and after.
(His principal works, in English translation, are available at http://oldwww.com.dtu.dk/teletraffic/Erlang.html.) Erlang brought the Poisson dis-
tribution to telephony and gave an exact solution to the delay problem in the case of the single, overwhelmed switchboard operator.

Multi-server queues should obviously speed things up, provided they’re used intelligently. (It would be nice, for example, if poky drivers on
the Interstate would stay to the right.) Attendees at this January’s Joint Mathematics Meetings in New Orleans got a vertical taste of some mod-
ern queueing technology at the new elevator banks in the headquarters hotel: Instead of simply pressing an up or down button to summon a car,
riders were required to enter their destination on a keypad; a small screen then told them which of the several alphabetically labeled elevators
to board. In principle, such a system will put, say, all six people going to the 13th floor onto one elevator, instead of having six separate cars
make the same unlucky stop. (Some, presumably non-SIAM, mathematicians could be seen struggling on their ascent of the learning curve as
they pondered the meaning of the keypad and its terse, monosymbolic instructions. Lively onboard discussions were common, focusing on the
system’s efficiency or perceived lack thereof, and on the algorithms and objective functions it might be using.)

Massey sees queueing theory as “a tandem network of simplifying modeling assumptions.” Among the most stark of the assumptions is that
the probabilistic nature of the line—the rate at which customers tend to arrive, the demands they make, and the rate at which servers process
the workload—is unchanging. If the only variability is stochastic, with invariant statistics, the appropriate thing to analyze is the steady-state
behavior of the queue.

If, for example, a single processor gives equal attention to all current customers, who arrive in Poisson fashion at rate r with average demand
d (i.e., the probability of a new customer joining the queue in a time interval of duration Δ t is rΔ t, and the average job, if given the processor’s
undivided attention, takes d units of time), the fraction of the time during which n customers will be in the queue is (1 – p)pn, where p = rd, pro-
vided that p < 1, and a customer arriving with a job of size x can expect a “sojourn time” of x/(1 – p). (If p ≥ 1, the queue just gets longer and
longer, so that with the possible exception of a few early birds, no customer’s job is ever finished in a reasonable amount of time.)

Real-life lines are not so orderly. In addition to stochastic variations, they are usually subject to predictable variability: anticipated changes
in a queue’s statistics, such as diurnal or seasonal fluctuations or a one-time switch when, say, a new call center opens. Procedures designed to
optimize steady-state processing can still be used, of course—you can do anything you want if you don’t care how well it works—but they’re
unlikely to produce optimal outcomes. The proper management of time-varying queues calls for new mathematical tools.

Or maybe creative application of some old ones.
Queueing theory has many analogs in fluid dynamics. Massey and colleagues, including graduate student Robert Hampshire, have studied
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fluid limits for queues with time-varying rates, using a technique of “uniform acceleration” pioneered by Massey in his 1981 PhD dissertation.
In uniform acceleration for a single-server queue, the instantaneous arrival and processing rates λ and μ are both scaled by a factor η, and the
scaling effect on the number of customers in the queue is considered in the limit as η tends to infinity. If λ�and μ are constants and λ is the small-
er of the two rates, there is no scaling effect; the limit is simply the average number of customers in the steady-state limit. But when these rates
are variable, and in particular in cases where λ(t) is occasionally greater than μ(t) (which generates periods of overload that can persist even
when λ(t) reverts to being the smaller of the two), the number of customers does scale with η. Dividing by η gives, by definition, the fluid limit
(which is 0 if the queue is underloaded).

Uniform acceleration for a multiple-server queue can be thought of as supply (the number of servers) keeping pace with demand (the arrival
rate λ) in a growing economy (η). Alternatively, a single processor that gives equal attention to all current jobs can view uniform acceleration
as the quantization of jobs into ever finer pieces as the number of full jobs is proportionally scaled upward. These scaling limits transform the
stochastic model into a deterministic process and simplify the analysis of the expected sojourn time and other variables of interest. The fluid
limit, of course, only approximates the actual behavior of the original stochastic model, but the asymptotic nature of the results means that these
fluid limit models become more accurate as the actual demand and supply rates become larger. Massey and colleagues have found that their
fluid limit formulas agree with results from simu-
lations for a variety of examples (see Figure 1).

These fluid limits, Massey points out, also give
queueing theory a rich set of analogies with clas-
sical mechanics. The length of a queue (i.e., the
number of customers in it) at time t is analogous
to the generalized coordinate q(t), and the cus-
tomer flow rate to the velocity q

.
(t). The “value

rate” of a queue—that is, its rate of net profit (or
cost of operation)—is analogous to the
Lagrangian L(q,q

.
,t). (In particular, the distinction

between customers lost to blocking or abandon-
ment and those being actively served has a lot in
common with the distinction between potential
and kinetic energy.) The opportunity cost per cus-
tomer is like the conjugate momentum p(t) = dL /dq

.
, and the opportunity cost rate is like the Hamiltonian H(p,q,t). Finally, the principle of least

action in classical mechanics carries over to the “Bellman value function,” which applies generally to issues in optimal control.
Fluid limit analysis lends itself to applications, as Massey and Hampshire have shown in a study of call-center staffing. In their model a call

center consists of a variable number of agents L(t) and a variable number of additional phone lines K(t), which “answer” incoming calls by put-
ting the caller on hold and, stereotypically, playing music. The queueing process is characterized by a time-varying Poisson arrival rate λ(t), an
exponential service rate μ (assumed to be constant in the model), and exponential abandonment rates β for callers who get fed up listening to
music and γ for those who get busy signals (which happens when the number of callers exceeds K + L) and don’t bother to redial. The staffing
problem is to find functions K and L that optimize the profit of the call center given cost functions c(L) and d(K + L) for staffing and provision-
ing, a per-customer reward for service completion, and per-customer penalties for music and busy-signal abandonments.

Massey and Hampshire have shown that in the fluid limit, the optimal functions K*(t) and L*(t) are related to a system of “competing”
Euler–Lagrange equations. An amusing quirk of their model is that K* and L* are complementary variables, meaning that their product is 0.
This implies, perversely but believably, that an efficiently operating (in terms of profit optimality) call center might intentionally schedule times
when there are phone lines to accept calls but no one to answer them!

Barry A. Cipra is a mathematician and writer based in Northfield, Minnesota.

Figure 1. Go with the flow. A com-
parison of analytic and simulated
results for the mean sojourn time
for a queue with sinusoidally fluctu-
ating arrival rate. (From “Fluid and
diffusion limits for transient sojourn
times of processor sharing queues
with time varying rates” by Robert
C. Hampshire, Mor Harchol-Balter,
and William A. Massey, in
Queueing Systems: Theory and
Applications, June 2006.) 


