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Neuroscience, like many other areas of science, is experiencing a data explosion, propelled both by improvements in existing recording tech-
nologies, such as electroencephalography (EEG), magnetoencephalography (MEG), positron emission tomography (PET), and functional mag-
netic resonance imaging (fMRI), and by the advent of new and relatively new measurement and recording technologies, such as multiple elec-
trode arrays, diffuse optical tomography (DOT), and diffusion tensor imaging (DTI). These technologies have had a significant impact on basic
and clinical neuroscience research. An analysis bottleneck is inevitable as the collection of data using these techniques now outpaces the devel-
opment of new methods appropriate for analysis of the data. In each case, resolution of significant signal processing and statistical questions is
crucial if researchers and clinicians are to make the best inferences from the data. This article briefly describes three challenging data analysis
questions in neuroscience research.

Spike Sorting: Identification and Classification of Spike Events

Multiple-electrode arrays capable of recording the simultaneous spiking activity of many (more than 20) neurons make it possible to study
how groups of neurons act in concert to define the function of a given region of the brain [14]. Sorting of extracellular spike events is an oblig-
atory first step in analyzing multiple-electrode recordings, because the potentials measured from multiple electrodes are the spiking and den-
dritic voltages of many simultaneously recorded neurons [8]. The extraction or sorting of the spike events from these signals, usually an off-line
process, is accomplished in three steps: spike-event detection, identification of the number of neurons, and spike-event classification [1].

In the first step, a combination of filtering algorithms and thresholding criteria is used within a specified time window to detect spike events
in the extracellular potentials. Each spike event is summarized as a feature vector, which is a sample of the voltage trace in a short time inter-
val around the event. In the classification step, the characteristics of the feature vector are used to assign each spike event to a specific neuron.
This can be done manually, by inspecting plots of low-dimensional projections of the feature vectors, or by applying automated spike-classifi-
cation techniques that use one of several clustering algorithms from machine learning or statistics to place similar feature vectors in the same
group. All spike events of one group are taken as coming from the same neuron. 

There is no consensus on the optimal approach to spike sorting. Because of the complexity of the spike-sorting problem, different methods
applied to the same data set can yield different results. Several factors contribute to the complexity. First, clusters often violate the frequently
made assumption of Gaussian errors in model-based parametric analyses; the clusters can also change in time as a result of drifts in experimen-
tal conditions [3]. Second, identifying the number of neurons to which the spike events will be assigned is a challenge [11]. Third, simultane-
ous intracellular–extracellular recordings have shown that spike sorting for large numbers of neurons can have a non-zero error rate because the
spike shapes from different neurons can overlap [6]. Fourth, multiple-electrode arrays with different geometries and numbers of electrodes
require different sorting algorithms. Finally, in neural prosthetic and brain–machine interface applications, spike sorting has to be done on-line
and in real time if the devices are to be practical [7]. Defining optimal strategies for spike sorting is an important question for neuroscience
research: All subsequent analyses and conclusions from multiple-electrode recordings depend on the solution obtained in this first step.

Multimodal Data Fusion

A central focus of current functional neuroimaging research is the development of tools for multimodal image fusion, for varying combina-
tions of fMRI, DOT, EEG, and MEG. This means conducting experiments in which imaging is performed in two or more of these modalities,
simultaneously or in sequence, so that the information from the different sources can be combined [9]. Use of two or more imaging modalities
simultaneously to study brain function provides information about the same sources, yet on different spatial and time scales. The combination
of EEG measurements with simultaneously recorded fMRI, for example, takes advantage of both the high spatial resolution of fMRI and the
high temporal resolution of EEG. Other combinations being actively explored include EEG with MEG, fMRI with DOT, and DOT with both
EEG and MEG. 

Optimal fusion of the information from different modalities is a nontrivial task, requiring computed solutions to a sequence of high-dimen-
sional, ill-posed inverse problems. Solving an ill-posed inverse problem means determining the best estimates of activity in specific brain regions
from the multimodal measurements [4,5,10]. The problem is ill-posed because without additional constraints the solution is not unique. The
constraints imposed should be chosen not arbitrarily but rather on the basis of  known biophysical properties of the imaging modalities and the
physiological and anatomical features of the brain and the particular experimental question under study [12,13]. How to do this is an open prob-
lem whose solution has enormous implications for the optimal use of functional neuroimaging technology. Moreover, the concept, if not the spe-
cific techniques, can be used to combine neurophysiological information from other important sources, such as behavioral recordings and
genomic data. 

Dynamic Signal Processing Methods

Much neuroscience research focuses on understanding how the dynamic properties of synapses, individual neurons, and neural circuits lead
to the functional properties of specific brain regions. Proper estimation of the dynamic properties of neural systems, whether from imaging, local
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field potentials, or neural spike-train recordings, requires dynamic signal processing methods. Despite the wide array of dynamic signal pro-
cessing algorithms available for continuous-valued measurements, most current methods for neural spike-train data analysis are static rather than
dynamic. Hence, there is a significant need for dynamic statistical methods explicitly designed to analyze neural spike-train data recorded from
multiple-electrode arrays [1].

Dynamical systems and neural network models have long provided essential quantitative characterizations of neural systems [2]. Research on
dynamic data-analysis methodology, however, should be conducted more in concert with modeling research. With experiments directly related
to computational modeling, experimental findings could be put to improved use: in quantifying better predictions from more complex models,
in refining model formulation, and, as a consequence, in designing better experiments. Similarly, computational models could suggest formu-
lations of the statistical methods that would make them more successful in extracting salient features from experimental data.

As illustrated by these three examples, solutions to key signal processing and statistics problems in neuroscience revolve around the need for
appropriate new methods that can correctly characterize the dynamic, multivariate nature of neuroscience data. In some cases, it will be possi-
ble to borrow from existing paradigms in statistics, engineering, computer science, and physics to design these methods. Indeed, use of exist-
ing methods should be the first step. The unique features of neuroscience experiments, however, are leading rapidly to a need for signal pro-
cessing and statistical methods developed from scratch specifically for these studies.

Acknowledgments 

Support for this work was provided in part by NIH grants MH66410, MH59733, EB00522, and DA015664.

References

[1] E.N. Brown, P.P. Mitra, and R.E. Kass, Multiple neural spike train data analysis: State-of-the-art and future challenges, Nat. Neurosci., 7:5
(2004), 45661.

[2] P. Dayan and  L.F. Abbott, Theoretical Neuroscience, MIT Press, Cambridge, Massachusetts, 2001.
[3] M.S. Fee, P.P. Mitra, and D. Kleinfeld, Automatic sorting of multiple unit neuronal signals in the presence of anisotropic and non-Gaussian vari-

ability, J. Neurosci. Meth., 69  (1996), 175–188.
[4] A. Galka, O. Yamashita, T. Ozaki, R. Biscay, and P. Valdes-Sosa, A solution to the dynamical inverse problem of EEG generation using spatiotem-

poral Kalman filtering, NeuroImage, 23 (2004), 435–453.
[5] M.S. Hamalainen, R. Hari, R.J. Ilmoniemi, J. Knuutila, and O.V. Lounasmaa, Magnetoencephalography—Theory, instrumentation, and applica-

tion to noninvasive studies of the working human brain, Rev. Modern Phys., 65 (1993), 413–497.
[6] K.D. Harris, D.A. Henze, J. Csicsvari, H. Hirase, and G. Buzsaki, Accuracy of tetrode spike separation as determined by simultaneous intracel-

lular and extracellular measurements, J. Neurophysiol., 84 (2000), 401–414.
[7] L.R. Hochberg, M.D. Serruya, G.M. Friehs, J.A. Mukand, M. Saleh, A.H. Caplan, A. Branner, D. Chen, R.D. Penn, and J.P. Donoghue, Neuronal

ensemble control of prosthetic devices by a human with tetraplegia, Nature, 442 (2006), 164–171.
[8] M.S. Lewicki, A review of methods for spike sorting: The detection and classification of neural action potentials, Comput. Neural Syst., 9 (1998),

R53–R78.
[9] A.K. Liu, J.W. Belliveau, and A. Dale, Spatiotemporal imaging of human brain activity using functional MRI constrained magnetoencephalog-

raphy data: Monte Carlo simulations, Proc. Natl. Acad. Sci, 95:15 (1998), 8945–8950.
[10] C.L. Long, N. Desai, S. Temereanca, P. Purdon, M.S. Hämäläinen, and E.N. Brown, A dynamic solution to the ill-conditioned magnetoen-

cephalography (MEG) source localization problem, Third IEEE International Symposium on Biomedical Imaging, 2006. 
[11] D. Nguyen, L.M. Frank, and E.N. Brown, An application of reversible-jump MCMC to spike classification of multiunit extracellular recordings,

Network: Comput. Neurosci., 14 (2003), 61–82.
[12] J.J. Riera, X. Wan, J.C. Jimenez, and R. Kawashima, Nonlinear local electrovascular coupling, I: A theoretical model, Hum. Brain Mapp., 11

(2006), 896–914.
[13] J.J. Riera, X. Wan, J.C. Jimenez, and R. Kawashima, Nonlinear local electrovascular coupling, II: From data to neuronal masses, Hum. Brain

Mapp.; E-pub, August 24, 2006.
[14] M.A. Wilson and B.L. McNaughton, Dynamics of the hippocampal ensemble code for space, Science, 261 (1993), 1055–1058.

Emery Brown is a member of the Department of Brain and Cognitive Sciences at MIT and the Department of Anesthesia and Critical Care,
at Massachusetts General Hospital and Harvard Medical School.


