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Approximation by Greedy Algorithms
By Albert Cohen

Approximation theory studies the process of
approaching arbitrary functions by simple func-
tions depending on N parameters, such as alge-
braic or trigonometric polynomials, finite ele-
ments, or wavelets. It plays a pivotal role in the
analysis of numerical methods.

One usually makes the distinction between
linear and nonlinear approximation. In the first
case, the simple function is picked from a linear
space (such as polynomials of degree N or
piecewise-constant functions on some fixed par-
tition of cardinality N) and is typically comput-
ed by projection of the arbitrary function onto
this space. In the second case, the simple func-
tion is picked from a nonlinear space, yet is still
characterizable by N parameters. Such a situa-
tion typically occurs with adaptive or data-driven approximations, which makes it relevant for applications as diverse as data compression, sta-
tistical estimation, or numerical schemes for partial differential or integral equations (see [4] for a general survey). The notion of projection is
no longer applicable, however, and a critical question arises: How can we compute the best possible approximation to a given function? Let us
translate this question into concrete terms for two specific examples:

■■ Adaptive triangulations. Given a function f defined on a polygonal domain and given N > 0, find a partition of the domain into N triangles such that the L2-error
between f and its projection onto piecewise-polynomial functions of some fixed degree on this partition is minimized.

■ Best N-term approximation. Given a dictionary D of functions that is normalized and complete in some Hilbert space H, and given f ∈� H and N > 0, find
the combination fN = ∑Νκ=1ckgk that best approximates f, with {c1, . . . ,cN} being real numbers and {g1, . . . ,gN} picked from D.

To make the first problem computationally tractable, we can assume that the vertices of each triangle are picked from a limited yet large num-
ber of locations M. For the second problem, our assumption is that the search is limited to a subset of D of cardinality M. The exhaustive search
for the optimal solution has combinatorial complexity of order (M

N ), however, and neither problem is therefore generally solvable in polynomi-
al time in N and M. A relevant goal then becomes to find suboptimal yet acceptable solutions that can be computed in reasonable time.

Greedy algorithms constitute a simple approach to this goal. They rely on stepwise local optimization procedures for picking the parameters
in an inductive fashion, in the hope of approaching the globally optimal solution. They are particularly easy to im-plement, although the analysis
of their performance gives rise to many open problems.

Triangulation problem. A simple greedy algorithm will typically start from a coarse triangulation and proceed from coarse to fine by splitting
the triangle T on which the local projection error || f – PT f ||L2(T) is maximal. The type of split can be fixed in advance, e.g., T can be decom-
posed from the mid-points into four subtriangles (Figure 1, left); alternatively, the split itself can be data driven, e.g., T can be bisected from
one of its vertices, selected so as to minimize the local projection error for the new triangulation (Figure 1, right).

A split of either type restricts the accessible
triangulations to a specific family. The second
type has the advantage of allowing the develop-
ment of anisotropic triangles, which are more
efficient for approximating functions with
curved singularities, such as edges in images or
cliffs in terrain elevation data (see [3] for appli-
cations of this algorithm to image and surface
compression). Figure 2 shows the result, after
512 steps, for the algorithm applied to the func-
tion f (x) = y(x2 + y2) + tanh(100(sin(5y) – 2x)),
which has a sharp transition along the curve
sin(5y) = 2x.

Our algorithm behaves very well on this
example, in the sense that it develops anisotrop-

Figure 1. Isotropic quad-split (left) and anisotropic bisection (right).

Figure 2. Triangulation (left) and approximation (right).



ic triangles along the transition curve. But how close are we to an optimal triangulation? Because we have limited our choice to a restricted fam-
ily, there is in general no hope that the greedy algorithm will produce precisely the optimal triangulation. In practice, we would be satisfied if
we could show that the L2 error between the function and its approximation decays with the number of triangles at a rate similar to that of the
optimal one. Despite the good numerical behavior of the algorithm, however, no result of this type is known so far, and establishing the rate of
convergence is a difficult task even for very specific functions.

N-term Approximation Problem. Greedy algorithms for solving problems of this type were introduced initially in the context of statistical data
analysis. Their approximation properties were first explored in [1] and [6], in relation to neural network estimation, and in [5], for general dic-
tionaries. A recent survey of such algorithms can be found in [7]. The most commonly used greedy algorithms are:

■■ Stepwise Projection (SP). Having selected {g1, . . . ,gk–1}, we define fk–1 as the orthogonal projection onto Span{g1, . . . ,gk–1}. The next gk is selected so as to mini-
mize the distance between f and Span{g1, . . . ,gk–1,g} among all choices of g ∈�D.

■■ Orthonormal Matching Pursuit (OMP). With the same projection for fk–1, we  select gk so as to maximize the inner product |〈 f – fk–1,g〉| among all choices of g ∈
D. Unlike the case with SP, we do not need to evaluate the anticipated projection error for all choices of g ∈ D, which makes OMP more attractive from a computation-
al viewpoint.

■■ Relaxed Greedy Algorithm (RGA). Having constructed fk–1, we define fk = αk fk–1 + βkgk, where (αk ,βk,g) are selected so as to minimize the distance between f and
α fk–1 + βg among all choices of (α, β, g). It is often convenient to fix αk in advance, which leads to the selection of gk that maximizes |〈 f – αk fk–1, g〉| and  βk = 〈 f – αk
fk–1, gk〉. A typical choice is αk = (1  – c/k)+ for some fixed c > 1. The intuitive role of the relaxation parameter αk is to damp the memory of the algorithm, which might
have been misled in its first steps. Because no orthogonal projection is involved, RGA is even cheaper than OMP.

In the special case in which the dictionary D is an orthonormal basis, SP and OMP are equivalent and provide the optimal solution to the best
k-term approximation. We compute this solution simply by retaining the N largest coefficients cg = 〈 f,g〉 in the expansion of f, i.e., defining

Intuitively, this approximation process is effective when the coefficient sequence (cg)g∈D is concentrated or sparse. One way to measure spar-
sity is to reorder the coefficients in decreasing order of magnitude and consider the smallest value of 0 < p ≤ 2 such that the resulting sequence
(cn

*)n>0 decays like n–1/p. We then say that the original coefficient sequence is weakly � p-summable (or belongs to w � p(D)), with the extreme
case p = 0 corresponding to a finitely supported sequence. We can easily check that this property is equivalent to the convergence rate

|| f – fN ||H ≤ CN–s, s = 1/p – 1/2.

In summary, the convergence performance of the greedy algorithm is directly related to the level of sparsity of the coefficient sequence.
For a general dictionary D, a natural question is whether a similar property holds: If f admits a sparse representation in D, can we derive

some corresponding rate of convergence for the greedy algorithm? A first answer to this question is given by the following result [5,6], which
holds for SP, OMP, and RGA: If f = ∑g∈Dcgg with ||(cg)||� 1 ≤ V, then

|| f – fN ||H ≤ CV N–1/2.

The case of a more general function f ∈�H that does not have a summable expansion can be treated by the following result [2], which again
holds for SP, OMP, and RGA: If f ∈ H and h = ∑g∈Ddgg with ||(dg)||�1 ≤�W, then

|| f – fN ||H ≤ || f – h ||H + CW N –1/2.

An immediate consequence is that the greedy algorithm converges for any f ∈ H. This result means that the accuracy of the greedy approx-
imant is stable under perturbation, although the component-selection process involved in the algorithm is unstable by nature.

Approaching the problem from the other end, one might ask how the algorithm behaves when f has a highly concentrated or finitely support-
ed expansion, i.e., when f = ∑g∈Dcgg with ||(cg)||� p ≤ V for some p < 1. For a general dictionary, it is known that SP, OMP, and RGA may fail
to converge faster than N –1/2. An area of active research is the study of those conditions on a dictionary D under which the convergence of
greedy algorithms might fully benefit from such concentration properties, similar to the case of an orthonormal basis.
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