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Compressed Sensing Creates a Buzz
at ICIAM ’07
By Justin Romberg

Digital signal processing has become so pervasive that its impact would be hard to overstate. Converting data into digital format gives us
almost unlimited flexibility in how we process it; as computation has gotten cheaper, DSP has become ever more widespread. Artifacts of the
“DSP revolution” that has taken place over the last 30 years surround us: Any DVD player, iPod, or cell phone has an embedded DSP chip run-
ning algorithms that are the end-product of decades of research in applied mathematics.

The nascent field of compressed sensing, showcased at ICIAM 2007 in three special sessions and a plenary talk by Emmanuel Candès, gives
us a fresh look at the fundamentals of DSP. Rather than looking for better ways to process the digital data, CS concentrates on the actual acqui-
sition process, the translation of the signal into digital format. By looking at the acquisition process (“sampling” or “sensing”) from a mathe-
matically abstract standpoint, research in CS has uncovered something surprising about the best way to sample signals.

The story of compressed sensing starts with classical methods for data compression. A common trick for compressing a set of digital data is
to first “transform” the data as a superposition of a known set of basis signals. If the basis is chosen judiciously, the transform coefficients will
be sparse—the salient information will be concentrated in a few large terms. Photograph-like images containing millions of pixels, for exam-
ple, can be very sparse in the wavelet domain, where only a small percentage of the transform coefficients are significant. This sparsity struc-
ture allows us to throw away the vast majority of the transform coefficients, while suffering very little distortion. Roughly speaking, a transform
coder operates by executing this change of basis, sifting through the coefficients for the important ones, and then carefully encoding their indices
and values.

The traditional framework for capturing and then transmitting or storing a signal of interest is to sample it, possibly at very high rates, and
then apply a digital transform coder to turn the large stream of sample values into a much smaller stream of coded transform coefficients. It
seems wasteful, though, in terms of hardware cost, power, and complexity, to take a large number of samples only to produce a considerably
smaller amount of compressed data. Com-pressed sensing avoids this waste by, as the name implies, integrating compression into the sampling
process itself.

To do this, we need to broaden our notion of what it means to “sample” a signal. Whereas traditional sampling consists of simply recording
the value of a signal at a discrete set of points, CS devices correlate the incoming signal against a set of known test signals, and record these
correlations. (see Figure 1.) Now the question is: Which test signals should we use to minimize the number of measurements we have to take?
It is tempting to match the test signals to the signal structure by using basis functions from our transform. We know, after all, that the signal is
sparse in the transform domain, and so we should be able to capture it with a small number of measurements. But unless we know a priori which
components will be active, and typically we do
not, the fact that the signal is sparse does not
help us at all.

The solution to this dilemma has a surprising
twist: Correlating against a series of random
waveforms allows us to simultaneously figure
out which transform coefficients of the signal
are important and what their actual values are. In
doing this, a CS device is effectively mixing all
of the important components of the signal
together in a variety of ways. The measurement
sequence will not look like the signal at all—in
fact, it will look like noise. But subtly embedded
in these measurements is all of the critical infor-
mation about the signal.

The last ingredient for compressed sensing is
an algorithm that will tease the signal out of the random measurements. This is where sparsity enters the picture. While many signals can explain
the measurements we observed, only one signal with sparse structure can account for them. To find this signal, we solve an optimization pro-
gram that searches for the sparsest signal (quantified using the �1 norm: the sum of the magnitudes of the transform coefficients) that could have
produced the measurements in hand.

How many measurements do we need for this reconstruction procedure to work? It turns out that the number is roughly proportional (small-
er, in practice, by a factor of about five) to the number of active components in the signal we are sensing. For a megapixel image that can be
closely approximated with 20,000 wavelet coefficients, this means that we can recover the coefficients (and hence something close to the image)
from 100,000 random measurements—a reduction by a factor of 10 compared with individual measurements of each  of the 1 million pixels.

Compressed sensing casts a new light on the acquisition process. Instead of taking samples, we are encoding the signal: The compression and

Figure 1. Traditional sampling (left) turns a signal into a discrete list of numbers by simply eval-
uating it at a discrete set of points. Compressed sensing (right) turns a signal into a discrete
list of numbers by correlating it with a series of random waveforms.



the sensing are all part of the same process. The reconstruction algorithm (the optimization pro-
gram) is thus in some sense trying to decode the measurements to recover the transform coeffi-
cients.

The development of CS is one of those rare instances in which a completely unintuitive sug-
gestion from abstract mathematics turns out to work: An effective way to measure a structured
signal is to correlate it with random noise. As we saw at ICIAM, this mathematical advance is
directly influencing the design of next-generation sensors. The applications being explored
include novel imaging devices that can capture high-resolution images with a single photodetec-
tor, high-resolution radar systems made from relatively inexpensive hardware, extremely low-
powered cameras, and new analog-to-digital converters that can capture signals that contain
extremely high frequencies.

Justin Romberg, organizer of three ICIAM ’07 minisymposia on compressed sensing, is a pro-
fessor of electrical and computer engineering at Georgia Institute of Technology.

Invited speaker Emmanuel Candès (“Compressive Sampling”) discussed the novel sensing or sam-
pling theory that allows the faithful recovery of signals or images from far fewer measurements
than required with traditional methods.


