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Agreement Among Supreme Court Justices: Categorical vs.
Continuous Representation
By Lawrence Hubert and Douglas Steinley

On Saturday, July 2, the lead headline in The New York Times read as follows: “O’Connor to Retire, Touching Off Battle Over Court.” Opening
the story attached to the headline, Richard W. Stevenson wrote, “Justice Sandra Day O’Connor, the first wo-man to serve on the United States
Supreme Court and a critical swing vote on abortion and a host of other divisive social issues, announced Friday that she is retiring, setting up
a tumultuous fight over her successor.”

Our purpose here is not to expand on this statement, or even to argue that, with the an-nouncement of the nominee, John Roberts, the word
“tumultuous” may no longer be apt. Our interests are in the data set also provided by the Times that day, quantifying the (dis)agreement among
the Supreme Court justices during the decade they had been together.

In this article, we provide two analyses of these data, and invite others to contribute insights, using whatever methodologies are uppermost
in their repertoires for dealing with square and symmetric proximity matrices. And we expect that many students in multivariate statistical analy-
sis classes will be asked to do the same for applied homework projects.

The information in the data set from the Times appears in Table 1 in the form of the percentage of non-unanimous cases in which the justices
disagreed, from the 1994/95 term through 2003/04. The dissimilarity matrix (in which larger entries reflect less similar justices) is given in the
same row and column order as the Times data set, with the justices ordered from “liberal” to “conservative”:

1: John Paul Stevens (St)
2: Stephen G. Breyer (Br)
3: Ruth Bader Ginsberg (Gi)
4: David Souter (So)
5: Sandra Day O’Connor (Oc)
6: Anthony M. Kennedy (Ke)
7: William H. Rehnquist (Re)
8: Antonin Scalia (Sc)
9: Clarence Thomas (Th)

We present two analyses of the proximity data of Table 1: (a) a unidimensional scaling of the justices, including the estimation of an additive
constant that we can apply to the proximities; (b) a hierarchical (or categorical) classification through what is called an “ultrametric,” also
obtained through a least-squares search strategy. These representations, as a best-fitting unidimensional scale and a best-fitting ultrametric, are
generated from methods presented in a forthcoming monograph by Hubert, Arabie, and Meulman, using the available open-source M-files (with-
in a MATLAB environment) that will be provided with this text. The monograph, The Structural Representation of Proximity Matrices with MAT-

LAB, is scheduled to appear in 2006 as part of the ASA–SIAM Series on Statistics and Applied Probability.

Unidimensional Scaling

The unidimensional scaling task can be formally phrased as follows: Given the n× n (in this case, 9 × 9) proximity matrix P = {pij} from Table 1, we
wish to find an additive con-stant c and a set of coordinates x1, . . . , xn to minimize the least-squares criterion

The best-fitting result was obtained for the following set of coordinates (with the carets (^) indicating that the values are the best estimates): xSt
= –.346; xBr = –.216; xGi = –.200; xSo = –.177; xOc = .062; xKe = .113; xRe = .160; xSc = .302; xTh = .302. The additive constant ĉ = –.218. Notice

that the coordinates are ordered exactly as the
Times ordered the justices in Table 1 (and also
that, without loss of generality, the sum of the
estimated coordinate values is set to zero).
Normalizing the least-squares criterion, we
obtain what is usually called a “variance-
accounted-for” (VAF) measure:
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St Br Gi So Oc Ke Re Sc Th

1 St .00 .38 .34 .37 .67 .64 .75 .86 .85 
2 Br .38 .00 .28 .29 .45 .53 .57 .75 .76
3 Gi .34 .28 .00 .22 .53 .51 .57 .72 .74
4 So .37 .29 .22 .00 .45 .50 .56 .69 .71
5 Oc .67 .45 .53 .45 .00 .33 .29 .46 .46
6 Ke .64 .53 .51 .50 .33 .00 .23 .42 .41
7 Re .75 .57 .57 .56 .29 .23 .00 .34 .32
8 Sc .86 .75 .72 .69 .46 .42 .34 .00 .21
9 Th .85 .76 .74 .71 .46 .41 .32 .21 .00

Table 1. Dissimilarities among the nine current Supreme Court justices.
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where p– is the mean off-diagonal proximity
measure in P; the value we observe is 98.0%.
In other words, the unidimensional scaling pro-
vides a very good representation for the data in
Table 1; the O’Connor coordinate, .062, is the
coordinate closest to zero and the median of the
nine coordinate values over the justices. It
would be possible to provide a table for recon-
structing the dissimilarities among the justices,
using the values {|x̂j – x̂i | – ĉ}; direct compari-
son with the data in Table 1 would reflect the
high quality of the reconstruction.

Although the O’Connor coordinate is the
median value among the nine locations, a
graphical representation (Figure 1) clearly
shows that she groups very closely with
Kennedy and Rehnquist; the gap between
O’Connor and Souter, the closest colleague to
her left, is rather large. In choosing the next
justice, then, an equivalence would be more
toward a Kennedy/Rehnquist conservative than
toward a Scalia/Thomas conservative.

Hierarchical Classification
(Clustering)

Rather than relying on a set of coordinates
(and their absolute differences) to represent the
elements in a proximity matrix, a best-fitting
ultrametric constructs a second matrix to
approximate P (say, U = {ûij}), minimizing the
least-squares criterion 

where the entries in U satisfy the ultrametric
inequality û 

ij ≤ max {ûik, ûkj} for all i, j, and k.
This best-fitting ultrametric can be found via a
heuristic search method using iterative projec-
tion onto closed convex cones defined by the
ultrametric inequality conditions. (This is doc-
umented  in some detail in the monograph
mentioned earlier.)

An ultrametric, as thoroughly discussed in
the classification literature, induces a partition
hierarchy by successive binary subdivision,
proceeding from a trivial partition containing
all objects within a single class to a second trivial partition having a class for each separate object; the n – 1 distinct values that the ultrametric
can take on characterize the levels at which the partitions could be considered formed, and also indicate the heights of the nodes in the dendro-
gram of Figure 2 and the hierarchical organization of the partitions. In the case of the data from Table 1, the best-fitting ultrametric is defined
by the eight nonzero distinct values that indicate how the hierarchical sequence of partitions is constructed:

Partition Level Formed
{Sc, Th, Oc, Ke, Re, St, Br, Gi, So} .641

{Sc, Th, Oc, Ke, Re}, {St, Br, Gi, So} .402
{Sc, Th}, {Oc, Ke, Re}, {St, Br, Gi, So} .363

{Sc, Th}, {Oc, Ke, Re}, {St}, {Br, Gi, So} .310
{Sc, Th}, {Oc}, {Ke, Re}, {St}, {Br, Gi, So} .285

{Sc, Th}, {Oc}, {Ke, Re}, {St}, {Br}, {Gi, So} .230
{Sc, Th}, {Oc}, {Ke}, {Re}, {St}, {Br}, {Gi, So} .220

{Sc, Th}, {Oc}, {Ke}, {Re}, {St}, {Br}, {Gi}, {So} .210
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Figure 1. Unidimensional scaling of the nine Supreme Court justices (based on the coordinates
given in the text).
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Figure 2. Dendrogram representation for the best-fitting ultrametric.



The VAF for the ultrametric representation (73.7%) is less adequate than that of the unidimensional scale. A dendrogram for this best-fitting
ultrametric is shown in Figure 2. Notice that the order in which the justices are given is different from that in the unidimensional scaling;
although we could have maintained the ordering of the unidimensional scaling, we chose not to so as to emphasize the basic “unorderedness”
of the clusters implied by the construction of the ultrametric.

Conclusion

It appears that agreement among the Supreme Court justices is better represented as a unidimensional scaling than as a categorical structure
defined by a hierarchy of partitions through an associated ultrametric. In terms of Justice O’Connor, despite her placement in the middle of the
scaling, the analysis reveals a major tilt toward the conservative end: Her coordinate value is very close to those for Kennedy and Rehnquist,
and very discrepant from that for Souter, the colleague to her immediate left.

We did not analyze other dissimilarity matrices that might have resulted from different disaggregations, such as by the type of case under con-
sideration or the plurality of the vote (e.g., in 5-to-4 resolutions). In addition, we have made no particular psychological interpretation of the
strong unidimensionality observed in our aggregate analyses, and we have not speculated about the underlying decision mechanisms. As men-
tioned at the beginning of this article, we invite others to pursue these and other analyses and interpretations.
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