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Geometry Analysis and Signal Processing on Digital Data,
Emergent Structures, and Knowledge Building

By Ronald R. Coifman and Mauro Maggioni

This article (which is based on the invited talk of the first author at the 2008 SIAM Conference on Data Mining) discusses “diffusion geom-
etry,’’ which, by generalizing classic tools of harmonic analysis, provides a synthesis of different approaches to data analysis and processing.

In the last few years exciting developments in data mining and machine learning have been applied to the analysis of large data sets arising
in a wide variety of disciplines. With millions of text documents being converted to digital format, for example, many users would benefit from
automatic ways to organize and extract information from large collections of documents, automatic recommendations of interesting documents
based on their reading history, and so on.

Many of the problems that arise in this area fall broadly into two classes. The first class encompasses problems related to the geometry of the
data: low-dimensional, low-distortion embeddings of large data sets in high-dimensional space and graphs, permitting visualization, human
interaction and information extraction, denoising of data, outlier detection, and other capabilities. The second class includes problems about the
approximation/fitting/learning of functions on the data from a few samples, with the goal of predicting the values of the functions at new data
points. Of particular importance have been methods based on the assumption that the intrinsic geometry of the data plays an important role, and
that the smoothness of relevant functions on the data should be defined in a way that is adapted to the geometry.

Diffusion Geometry
Ideas from harmonic analysis and spectral graph theory have played a fundamental role in recent advances in this area. Diffusion geometry

starts from the premise that a similarity measure A(x,y) between any pair (x,y) of nearby data points can be meaningfully defined. A typical
choice for data points lying in RD is A(x,y) = exp (– ||x – y ||2/t), where t is a fixed scale parameter. In general, the choice of A is both data- and
goal-dependent. If N is the number of data points, A is an N × N matrix, which we think of as sparse because only nearby data points are con-
nected by an edge with a weight above some threshold.

We can renormalize A to obtain a Markov matrix P, which represents a random walk on the data points—that is, P(x,y) is the probability of
jumping from x to y in one step. In diffusion geometry, P and its powers are used to gain insight into the geometry of the data, e.g., by finding
coordinate systems, as well as to construct dictionaries of functions, à la Fourier or wavelet analysis, for learning functions on the data.

As an example (see Figure 1), we consider a body of 1000 articles from Science News (kindly provided by J. Solka). We can represent each
document as a high-dimensional vector by fixing a vocabulary of d words and letting the kth coordinate of a document be the frequency of the
kth word in the dictionary for that document. In our case we selected 10,000 common English words and then retained the top 1000 with respect
to a score for significance in the data set, based on mutual information. We define similarity between documents as the correlation between their
word vectors when larger than 0.95, and as 0 otherwise. The eigenvectors of the normalized similarity P can be used as coordinates on the data
set, yielding a low-dimensional representation (Figure 1).

Notice how topics tend to cluster, suggesting that the subdivision of topics (not used in the construction of this embedding!) is related to the
intrinsic geometry of the data set, and that automatic discovery of such topics and classification of the documents into categories are possible.
This could be done with or without supervision. In the unsupervised framework, we look for clusters, defined as subsets of the data that have
large amounts of inter-connectivity and low amounts of intra-connectivity. In a supervised setting, a few documents are labeled by hand as be-
longing to each corresponding scientific field; the given labels are then propagated on the graph to label the remaining documents automatical-
ly.

Another example is a hyperspectral image in which a spectrum of light
absorption is associated with each pixel (Figure 2). The points (absorption
spectra) are indexed by pixels, and we define affinity between two pixels as
a correlation between their spectra that exceeds 0.8, and 0 otherwise.

If we label some regions as representing different tissue types, we can
propagate these labels on the graph to label all the points in the image auto-
matically and obtain a segmentation. We can then “propagate” the green,
magenta, and blue labeled points, assuming that pixels with nonzero affinity
are likely to be in the same class. The images shown in Figure 2 contrast the
result of such “label diffusion” with the massive failure of the nearest-neigh-
bor approach, in which a pixel is classified by the class of the label set with
the highest correlation.

We selected the threshold of 0.8 for correlations between spectra so that
two spectra so tightly correlated would be for the most part in the same label
class. In this case all that is required is a good “nearest-neighbors” model.
This is analogous to a local linear differential equation model in calculus. In

Figure 1. Low-dimensional diffusion map of a body of documents
from Science News. Data set courtesy of Jeff Solka.



our case “integration from local to global” is
achieved by diffusing the given labels on the
graph induced by the local affinities.

Organizing Data
by Diffusion Geometry

The organization of digital data by diffusion
geometry can be accomplished, roughly speak-
ing, in two ways: (1) by a dimension-reduction
approach that embeds the data in low-dimen-
sional Euclidean space through the use of eigen-
vectors of the affinity matrix/kernel A (or a nor-
malized related matrix), followed by processing
and clustering in the lower dimension; (2) by hierarchical folder building and clustering, a bottom-up agglomeration approach that propagates
or diffuses affinity between documents; this can be achieved through probabilistic mod-el building and statistical/combinatorial “bookkeeping”
on the data.

For the first approach, which is based on the eigenfunctions of A, or on the random walk P, we let Pϕi = λiϕi, assuming that
λ1 ≥ λ2 ≥ . . . λi . . . . We can use the eigenfunctions ϕi to map the data to m-dimensional Euclidean space by Φm

t (x) :=
(λ1

t/2ϕ1(x), . . . , λm
t/2 ϕm). This is closely related to the so-called spectral graph em-bedding long in extensive use for graph layouts; in fact, few

properties of this embedding are known. Observe that the probability of a path of length t from x to y is Pt(x,y) = ∑iλi
tϕi(x)ϕi(y). For large t,

because all λ’s are smaller than 1, λi
t is very small for i larger than, say, m. But the Euclidean distance between Φm

t (x) and Φm
t (y) is then equal

to the Euclidean distance, in the N-dimensional space of data points, between the probability distributions P t(x, .) and P t(y, .), called the diffu-
sion distance between x and y at time t. This embedding in Euclidean m-dimensional space thus reflects diffusion distances on the original data,
which are intrinsic geometric properties of the data.

Figure 3 shows a simple example of such an embedding. Each data point is a small (100 × 100-pixel) image of the symbol 3D; the correla-
tion between them is just the dot product in dimension 10,000, and the affinity matrix A is defined as above. The first two eigenfunctions organ-
ize the small images, which were provided in random order in the assembly of the 3D puzzle. The eigenvectors integrate and piece together the
information measured through the local similarities between spatially nearby patches.

The second approach leads to a generalized wavelet analysis, based on so-called diffusion wavelets, which is associated with and tuned to the
random walk P described earlier. The approach shares some features with classic multiscale and wavelet analysis, and it allows generalization
of classic signal processing techniques—for, say, compression, denoising, fitting, and regularization—to functions on data sets.

We can show that these two seemingly different approaches are mathematically related, much as Fourier and wavelet analysis are related in
Euclidean spaces. The multiscale construction leads to basis functions that are hierarchically organized according to diffusion distances at dif-
ferent scales. The eigenvectors are global functions on the data that “integrate” precisely the local “infinitesimal” affinity geometry.

Techniques based on these ideas of diffusion on data sets have led to machine-learning algorithms that perform at state-of-the-art levels or
better on standard community benchmarks. We refer interested readers to “Regularization on Graphs with Function-adapted Diffusion
Processes,” A.D. Szlam, M. Maggioni, and R.R. Coifman, Journal of Machine Learning Research, 9 (2008), 1711–1739, and the references
therein.

In conclusion, we see emerging a “signal processing toolbox” for digital data as a first step in the development of methods for analyzing the
geometry of large data sets in high-dimensional space and functions defined on such data sets. Among the numerous problems and applications

are multi-dimensional document rankings, exten-
sion of the Google ranking algorithm, information
navigation, heterogeneous material modeling, and
multiscale complex structure organization.

The ideas described in this short article are
strongly related to nonlinear principal component
analysis, kernel methods, spectral graph embed-
ding, and many other techniques lying at the inter-
section of various branches of mathematics, com-
puter science, and engineering. They have been
documented in literally hundreds of papers by re-
searchers from various communities. A simple
description of these and other ideas from a “diffu-
sion geometry perspective” can be found in the
July 2006 issue of Applied and Computational
Harmonic Analysis, and the references therein.
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Figure 2. Hyperspectral image of a dermatology sample. Left, regions with tissue of different
types are marked by different colors. Center, prediction of tissue types by a nearest-neighbor
approach. Right, prediction by diffusion of the training labels to all points.

Figure 3. Embedding of a set of images of the symbol 3D under different rotation angles and
illumination. Courtesy of Stéphane Lafon.


