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Over the last 50 years, researchers have proposed numerous computational models of turbulence for obtaining closure. The objective of clo-
sure is to capture certain statistical features of the physical phenomenon of turbulence at computably low resolution by mimicking the average
effects of the small scales on the larger ones, without calculating the former explicitly.

The Lagrangian-averaged Navier–Stokes–alpha (LANS–α) model (also known in the literature as the viscous Camassa–Holm equations, or
the Navier–Stokes–α model) is the first turbulence closure model produced by Lagrangian averaging. The LANS–α model combines
Lagrangian-averaged nonlinearity with Navier–Stokes viscosity. In modifying the nonlinearity of the Navier–Stokes equation, instead of its dis-
sipation, LANS–α provides a way to reach closure without enhancing viscosity. Derivation from these first principles implied mathematical the-
orems for its solutions, thereby guaranteeing that the most basic features and statistical properties of the flow (energy transport, circulation, vari-
ability, instability, dissipation anomaly, and intermittency) at length scales above the effective cutoff scale of alpha are all modeled “accurate-
ly.”

It has been proved analytically that the LANS–α solutions converge to certain solutions of the three-dimensional Navier–
Stokes solutions. Moreover, the model’s solutions for nonzero alpha possess a global attractor whose fractal and Hausdorff dimensions are finite.
The finite number of degrees of freedom in this model guarantees that the solutions are computable in finite resolution. Details can be found in
[4], [10–11].

The theorem-based approach of the LANS–α model development raises new mathematical possibilities for the derivation and analysis of
other computational models of turbulence. Application of the alpha model is still in its infancy, but results so far suggest that this new approach
will complement, and in some cases subsume, earlier approaches for modeling turbulence in real-world applications.

What Do the Navier–Stokes Equations Say about Turbulence?

Turbulence is an outstanding unsolved multiscale problem of classical physics. It occurs spontaneously in a fluid, when forcing by stirring
at the large scales is transferred by convection into slender, swirling circulations in the flow. These coherent swirling “blobs” of fluid, pierced
by vortex lines and bounded by material circulation loops, are called eddies. The eddies are Lagrangian structures—that is, they travel with the
flow, stretching into extended shapes (sheets or tubes) as they follow the flow induced by the vortex lines that pierce them. The coherent eddies,
sheets, and tubes of vorticity, stretching into finer and finer shapes, can be thought of as the “sinews” of turbulence.

The characteristic features of a turbulent flow—the distribution of eddy sizes, shapes, speeds, vorticity, circulation, nonlinear convection, and
viscous dissipation—can all be captured with the exact Navier–Stokes equations. The Navier–Stokes equations correctly predict how the cas-
cade of turbulent kinetic energy and vorticity accelerates and how the sinews of turbulence stretch out to finer and finer scales, until their motions
reach scales of only a few molecular mean free paths, where they can finally be dissipated by viscosity into heat. Further details can be found
in [9], [12–13], [28]. The fidelity of the Navier–Stokes equations in capturing the cascade of turbulence, however, is also their downfall for direct
numerical simulations of turbulence.

The Need for a Computational Turbulence Model

Turbulence is a paradigm for nonlinear phenomena. Indeed, without the nonlinear term representing convection in the Navier–Stokes equa-
tions, the dynamics of the time-dependent Stokes problem would be trivial. For this reason, the dimensionless Reynolds number Re, a measure
of the intensity of the nonlinear inertial term in the Navier–Stokes equations in comparison with the viscous linear effects, is usually used as an
indicator of the complexity of a turbulent flow. Heuristic physical arguments attributed to Landau suggest that the number of active degrees of
freedom required to simulate the turbulent cascade in high-Reynolds-number flows increases as Re9/4. Because turbulent flows often have
Re > 10 6, simulation requirements quickly outstrip the numerical resolution capabilities of even the largest, most powerful computers.

To make turbulence “computable,” then, it is necessary to forsake computing some of the fine details of turbulent flows. To do so without
compromising the main statistical features of the physical phenomena, scientists have developed various approximate models that halt the cas-
cade into smaller, faster eddies. Most models accomplish this by causing eddies below a certain size to dissipate computationally into heat. This
dissipative imperative causes errors, however, because it damps out the variability (known as “intermittency”) in the larger-scale flow that is
caused by the myriad motions at small scales interacting nonlinearly in the fields of the larger motion. Thus, computational turbulence closure
models based on reducing Reynolds number by enhancing viscous dissipation over its Navier–Stokes value run the risk of producing unrealis-
tically low variability.



Clues from Mathematical Analysis

Remarkably, one of the clues for understanding how turbulence closure models can be developed without enhancing viscous dissipation came
from the great analyst Leray. In the first regularization of the Navier–Stokes equations, Leray [22] modified their nonlinearity to the well-known
form

with = 0 on the boundary. Here, ν is the (constant) kinematic viscosity coefficient, F is the prescribed  external force, and = Gα * 
is a filtered version of the regularized velocity . The filtering operation is defined by Gα * = ∫ Gα(x,y) (y) d3y for a radially symmetric
smooth kernel Gα(x,y) of characteristic width α. The Navier–Stokes equations for are recovered in the limit as α → 0, so that → .

In an insightful review of the Leray regularization of the Navier–Stokes equations [14], G. Galovotti made the point that the Leray regular-
ization no longer satisfies the Kelvin circulation theorem. Galovotti [14] challenged the turbulence community to produce a regularization of
the Navier–Stokes equations that does satisfy a Kelvin circulation theorem. Remarkably, the combination of Lagrangian averaging (time-aver-
aging at fixed Lagrangian coordinates) and Taylor’s hypothesis (that the fluctuations are of low enough power to be regarded as carried along
by the mean flow) leads to the LANS–α model, which produces a regularized equation set that answers Galovotti’s challenge. These regular-
ized equations constitute the  LANS–α model:

Here, α is a constant of length; the filtering relation   = Gα * for the LANS–α model is specified to be ≡ – α2Δ .

Applying Filtering in
Kelvin’s Circulation Theorem

■ The filtering kernel Gα for the LANS–α model turns out to be the Green’s function for the Helmholtz operator, (1 – α2Δ).

■ As stated earlier, the LANS–α motion equation satisfies the Kelvin circulation theorem:

■ The circulation theorem tells us that the rate of change of momentum per unit mass around a closed material loop c( ) moving with
velocity = Gα * is given by the integral around that loop of the tangential component of the sum over forces (viscous and external) act-
ing on the fluid.

■ This statement of the circulation theorem can also serve as a mnemonic, allowing the derivation of other regularized turbulence models of
the LANS–α type simply by specifying a different filtering kernel Gα.

A Brief History of the LANS–αModel

Although we can now write the LANS–α model directly from its circulation theorem, the approach used historically [4] for deriving the
closed Eulerian form (1) of the LANS–α motion equation was based on a combination of two earlier results. First, the Lagrangian-averaged
variational principle of [16] was applied to derive the inviscid averaged nonlinear fluid equations, obtained by averaging Hamilton’s principle
for fluids over the rapid phase of their small turbulent circulations at fixed Lagrangian coordinates. (This step had its own precedent in the ear-
lier work on Lagrangian-averaged fluid equations of [1].)

Second, the Euler–Poincaré theory for continuum mechanics of [20] was used to produce the Eulerian form of the equations resulting from
the Lagrangian-averaged fluid variational principle. This step determined the relation between the momentum per unit mass , the velocity of
the Lagrangian-averaged fluid , and the Lagrangian fluctuation statistics. Next, Taylor’s hypothesis of frozen-in turbulence circulations was
invoked for closing the Eulerian system of Lagrangian-averaged fluid equations, by obtaining the explicit relation ≡ – α2Δ . Finally,
Navier–Stokes Eulerian viscous dissipation was added, so that viscosity would cause diffusion of the newly defined Lagrangian-averaged
momentum and monotonic decrease of its total Lagrangian-averaged energy. The theory can be either isotropic or anisotropic. Details of the
derivation are provided in  [17–18]. An alternative derivation is given in [24].

Turbulence Modeling: A New Role for Leray Analysis

At this point, we can consider the LANS–α model as simply a regularization of the Navier–Stokes equations and re-examine its properties
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from the viewpoint of Leray’s analysis. It turns out, moreover, that the same ideas that restore Kelvin’s circulation theorem to Leray’s regular-
ization of the Navier–Stokes equations also provide a basis for proposed computational models of turbulence, including large eddy simulations.

The converse is also true: Any proposed model of turbulence will lead to likely candidates for application of Leray’s analysis. Consequently,
the classical Leray analysis of the Navier–Stokes equations has a new role in the study of the analytical properties of turbulence models. Indeed,
the Leray model itself was recently found to be a viable candidate for computational modeling of turbulence [8], [15].

Relation of LANS–α Inertial Subrange to Taylor’s Turbulence Microscale

Of the various remarkable properties of the LANS–α system of equations (1), we discuss here only one: the two different scalings of its iner-
tial regime, depending on whether the eddies are larger or smaller than alpha. In fact, the Kármán–Howarth theorem for the LANS–α system,
discussed in [19], implies that the translational kinetic energy spectrum E(k) (i.e., the energy spectrum of the translational velocity    as a func-
tion of the wave number k) changes from E(k) ~ k–5/3 for large scales, corresponding to wave numbers kα 1, to E(k) ~ k–3 for small scales,
corresponding to wave numbers kα 1. A dimensional argument justifying this change of scaling in the inertial regime for the LANS–α model
was first given in [10].

With this wave-number scaling, the inertial range is shortened for circulations with high wave numbers (i.e., kα > 1) in the LANS–α model.
With α fixed, the wave number kα at the end of the second, steeper, k–3 regime of the LANS–α inertial range is determined in [10] to be 

This is the wave number kα at which dissipation balances nonlinearity in turbulence described by the LANS–α equations. In this formula,
kKo is the Kolmogorov dissipation wave number, at which dissipation balances nonlinearity in turbulent solutions of the Navier–Stokes equa-
tions. Because kKo scales with integral-scale Reynolds numbers as LkKo ≈ Re3/4, with L denoting the integral scale (or domain size), we find that
dissipation balances nonlinearity for the LANS–α model at Lkα ≈ Re1/2. Remarkably, the wave number for the well-known Taylor microscale
also scales as Re 1/2 [27]. Thus, for the three progressively larger wave numbers:

L /α < Lkα ≈ Re1/2 < L kKo ≈ Re3/4. 

Shortening the inertial range for the LANS–α model to Lk < Lkα ≈ Re1/2, rather than the Lk < LkKo ≈ Re3/4 of the Navier–Stokes equations,
implies fewer active degrees of freedom in the solution for LANS–α, which, as discussed below, makes LANS–α much more computable than
Navier–Stokes at high Reynolds numbers.

Counting Degrees of Freedom

For turbulence that is “extensive” in the thermodynamic sense, we might expect the number of “active degrees of freedom” Ndof for alpha-
model turbulence to scale as

where  kα is the end of the LANS–α inertial range and Re = L4/3ε1/3/ν is the integral-scale Reynolds number (with total energy dissipation rate
ε and viscosity ν). Because the corresponding number of degrees of freedom for Navier–Stokes with the same parameters is

a possible trade-off emerges in the relative Reynolds number scaling of the two models, provided resolution down to the Taylor microscale. (In
practice, users of the LANS–α model often obtain acceptable results by setting the resolution scale at just half the size of alpha.)

Should these estimates not prove overly optimistic, the implication would be a two-thirds power scaling advantage for use of the LANS–α
model. In other words, in needing to resolve only the Taylor microscale, the LANS–α model could compute accurate results (at scales larger
than alpha) by using two decades of resolution in situations that would require three decades of resolution for the Navier–Stokes equations, at
sufficiently high Re. This is because the number of degrees of freedom for the two models scales as

Re3/2 Scaling Estimate for the Hausdorff Dimension of the LANS–α Global Attractor

These dimensional arguments were substantiated by a slightly better estimate with the same Re3/2 scaling when the fractal and Hausdorff
dimensions of the global attractor for the LANS–α model were estimated in [11]. In addition, the well-posedness of the LANS–α model in a
bounded domain was confirmed in [23].
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Numerical Speed-up of LANS–α over Navier–Stokes

A numerical argument for the speed-up advantage of the LANS–α model in comparison with direct simulations of the Navier–Stokes equa-
tions goes as follows. The LANS–α model gains one factor of (Ndof

NS / Nαdof )1/3 in relative increased computational speed for each spatial dimen-
sion and another factor (at least) for the accompanying reduced Courant–Friedrichs–Levy (CFL) time-step restriction. Altogether, the gain in
speed would be

Because α/L 1 and Re 1, the two factors on the right side do compete; the Reynolds number should eventually win out, however,
because Re can continue to increase, while α/L is expected to tend to a constant value, say α/L = 1/100, at high (but experimentally attainable)
Reynolds numbers, at least for simple flow geometries. Empirical indications of this tendency were found in [4–6] in comparisons of steady
LANS–α solutions with experimental mean-velocity-profile data for turbulent flows in pipes and channels.

Thus, according to this scaling argument, a factor of 104 in increased speed for accurate computation of scales greater than α could be
achieved, by using the LANS–α model at the Reynolds number for which kKo /kα = 10. An early indication of the feasibility of obtaining such
increases in computational speed was realized in the direct numerical simulations of homogeneous turbulence reported in [7], in which
kKo /kα 4 and the full factor of 44 = 256 in computational speed was obtained with spectral methods in a periodic domain at little or no cost of
accuracy in the statistics of the re-solved degrees of freedom, i.e., those with kα < 1.

Outlook

Further steps are being taken at Los Alamos National Laboratory, the National Center for Atmospheric Research, and elsewhere to test
whether the LANS–α model will continue to live up to its promise for fast accurate numerical simulations of turbulence when additional phys-
ical processes are included in these computations. At Los Alamos, the LANS–α model has been extended to include rotation, topography, and
buoyancy stratification for applications in ocean and atmosphere circulation studies for global climate modeling. At NCAR, the LANS–α model
has been extended to include magnetic fields, so that researchers there now stand at the threshold of being able to model the effects of turbu-
lence on the dynamics of the geodynamo and the solar dynamo.

Several other variants of the LANS–α model have also been investigated analytically and numerically for incompressible turbulence, e.g., in
pipes and channels. The steady solutions of all of these variants compare well with the measurements of mean velocity in turbulent flows in
pipes and channels over a wide range of Reynolds numbers and for a constant value of alpha that is small (about one percent of the pipe diam-
eter or channel width). Numerical results for two of the primary variants, the Leray–α model [8], [15] and the Clark–α model [2], are promis-
ing; analytical estimates prove that everything said here about the computability, energy spectrum, and finite-dimensional global attractor for
the LANS–α model also holds true for these two alternative models. The characteristic preservation of the Kelvin circulation theorem for
Navier–Stokes of the LANS–α model, however, is not a feature of the Leray–α and Clark–α models. 

The challenge first enunciated in [14] of developing a regularization of the Navier–Stokes equations that preserves Kelvin’s circulation theo-
rem was answered (accidentally) in the development of the LANS–α model. After a promising beginning, the eventual roles of both Kelvin’s cir-
culation theorem and the global analysis of PDEs in developing and analyzing computational turbulence models remain to be fully determined.
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