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Abel Prize Science Lecture: Revolutionary Work
in Geometry and Shape Analysis
By Guillermo Sapiro

On May 19, at a ceremony held in Oslo, Mikhail Gromov received the 2009 Abel Prize from His Majesty King Harald of Norway. Gromov,
who was honored “for his revolutionary contributions to geometry,” divides his time between the Institut des Hautes Études Scientifiques in
France and the Courant Institute of Mathematical Sciences at New York University.

Stylish Celebration of Outstanding Mathematics
The award ceremony was the highlight of a weeklong celebration in Oslo, held in great style and marked by warm Norwegian hospitality. On

May 18, the Norwegian Academy of Science and Letters hosted a dinner in honor of the Abel Laureate, following a wreath-laying at the Abel
Monument (the Norwegian mathematician Niels
Henrik Abel died in 1829, at the age of 26).
Present at the May 19 award ceremony, in addi-
tion to Gromov and King Harald, were Her
Majesty Queen Sonja and Tora Aasland, the
minister of research and higher education. The
ceremony included speeches by Kristian Seip
(current chair of the Abel Committee), Øyvind
Østerud (president of the Norwegian Academy
of Science and Letters), and Gromov himself.
Beautiful music by trumpeter Arve Henriksen
and the musicians of Trio Mediaeval (which
many of us hurried to download from iTunes)
added to the elegance of the ceremony.

That evening, the Norwegian government
gave a banquet in honor of the Abel Laureate at
the Akershus Castle (and provided a unique
chance to see a lot of mathematicians in tuxe-
dos!). Ingrid Daubechies of Princeton Univer-
sity, a former member of the Abel Committee, gave a memorable speech in which she connected mathematics and science with Maurice Sendak,
author of beloved children’s books, including Where the Wild Things Are. The celebrations ended on May 20 with a reception at the Norwegian
Academy of Science and Letters, where Enrique R. Pujals of IMPA (Brazil) was awarded the Ramanujan Prize for young mathematicians from
developing countries.

The scientific component of the celebrations consisted of four Abel Lectures, given at the University of Oslo. Mikhail Gromov led off with
an inspiring chalk-and-board lecture in which he showed, once again, how real problems from the physical sciences can motivate very deep and
difficult mathematical challenges. Gromov’s NYU colleague Jeff Cheeger followed with the second Abel Lecture, titled “How does he do it?”
Along with some of Gromov’s deep mathematical results, Cheeger recalled numerous interactions he has had over the years with the Abel
Laureate. Through such anecdotes, he provided helpful insight into Gromov’s extraordinary thinking and mathematical approach and philoso-
phy. In the third Abel Lecture—titled “Geometry everywhere: Fiat lux!”—Martin Bridson of Oxford University focused on revolutionary ideas
that Gromov has brought to discrete group theory.

Both Cheeger and Bridson made it clear that the important theorems proved by Gromov are just the beginning of his contributions; equally
important are the actual proofs and methodologies, filled as they are with brilliant and unexpected innovations. The speakers provided numer-
ous illustrations of Gromov’s new, unpredictable, and very innovative approaches into different areas of mathematics. The lectures, in the words
of the Abel Committee, are intended “to give a general audience a glimpse of the mathematics of the Abel Laureate and to convey to the gen-
eral mathematician the importance and impact of his work.” Cheeger and Bridson achieved this aim and more, leaving the audience with a clear
understanding of the committee’s decision to award the prestigious Abel Prize to Gromov.

The scientific component of the ceremonies ended with the Science Lecture, which “is intended for the broader scientific community and
aims to highlight connections between the work of the Abel Laureate and other sciences.” I had the honor of presenting this year’s Science
Lecture, which I titled “One small step for Gromov, one giant leap for shape analysis: A window into the 2009 Abel Laureate’s contribution in
computer vision and computer graphics.”

The Gromov–Hausdorff Distance and Shape Analysis
One of the major challenges of computer vision and shape analysis is object recognition. This is an extremely difficult problem, in that we

have to be able to distinguish thousands of object categories, each characterized by tremendous variability. Consider, for example, the many dif-
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ferent types of chairs that have been fabricated,
or the many different types of bikes in use over
the years. The same object, moreover, can pres-
ent itself in very different forms (Figure 1). The
Science Lecture concentrated on the application
of Gromov’s contributions to perform three-
dimensional object recognition that is invariant
(or at least robust) to such deformations. At the
heart of this work are Gromov’s metric approach
to shape and the Gromov–Hausdorff distance.

The Hausdorff distance, which is very well
known in computer vision and shape analysis, is
defined as follows:

Here Ur (.) stands for the r-dilation of the set. For shapes in 3D Euclidean space (in which case d is the Euclidean distance), it is often
assumed in the shape analysis community that one of the shapes is allowed to optimally rotate and translate before the Hausdorff distance is
computed and a shape comparison is obtained via

where R stands for a rotation. Computing the Hausdorff distance is impractical, and very good approximations have been developed (see, for
example, [10] and references therein).

An important observation from the above definition is that Z is fixed. Even if rotations and translations are considered, or any d-metric-pre-
serving transformation in the general case, the optimization does not include changing Z. The Gromov–Hausdorff distance (which Gromov, in
[5], originally called simply Hausdorff distance), introduces flexibility in Z as well. More formally, Gromov considers shapes as metric spaces
themselves, and distances between shapes accordingly become distances between metric spaces. For the case of shape analysis described here,
the Gromov–Hausdorff distance is then defined as follows:

Notice that the optimization includes Z. Isometric embedding in a predefined finite-dimensional space, such as Euclidean space, as common-
ly done in the vision and manifold learning communities, is in general suboptimal (an explicit example can be found in [5]). It is quite clear that
dGH is invariant to isometric transformations—that is, transformations of the object that preserve the intrinsic distances (often called bends in
the computer vision literature). This is in part what motivated the introduction of the Gromov–Hausdorff distance into computer vision in [7,9].

The Gromov–Hausdorff distance dGH has a number of important properties, one of which is that it is equivalent [3] to

Here, C is a correspondence, meaning that every point in X has at least a corresponding point in Y, and vice versa (see Figure 2). In other words,
the Gromov–Hausdorff distance dGH measures the deformation of the intrinsic distances on the shapes (dX and dY) when the shapes are matched.
It is this interpretation that permits the development of computational techniques for approximating the Gromov–Hausdorff distance. Such tech-
niques are based on explicit bounds [7,9], optimization approaches [1], or relaxations motivated by this distance [6,8].

Gromov’s metric framework provides a lot of flexibility for the selection of the intrinsic pair-wise dX and dY. In the work mentioned so far,
geodesic distances have been used; recently, the use of diffusion distance [4] has been proposed [2]. This distance, which is related to and can
be computed from the Laplace–Beltrami operator, is an average among all intrinsic paths (of certain lengths) connecting the corresponding
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points, and as such is significantly more robust to noise, topological changes, and
missing data; see Figure 3 for examples of such scenarios. Any of these shape
modifications can create drastic changes in the geodesic distance, but are in gen-
eral not so critical for the diffusion distance. Therefore, when considering dX = dY
= “diffusion distance” and the Gromov–Hausdorff distance dGH, we obtain a bend-
ing invariant 3D shape recognition framework that is robust to real shape defor-
mations like those depicted in Figure 3.

Figure 4 shows significant improvement in the optimal correspondence C with
the diffusion distance in the presence of point-wise topological changes. In this
figure, Voronoi regions around the corresponding points are shown in different
colors, and we can see how the colors on the right (diffusion) match much more
nicely than those in the middle (geodesic), indicating a better point-wise match-
ing, as in the ground truth (left). This is reflected in a significantly improved 3D shape clustering and recognition [2]. Figure 5 shows the pair-
wise Gromov–Hausdorff diffusion distances for sets of shapes undergoing all the changes illustrated in Figure 3 (darker colors indicate lower
dGH); as expected, objects from the same class are closer.

This short article only begins to introduce Gromov’s work in computer vision. Without even covering all of chapter 3½ in his Green Book
[5], it has already mentioned leading results in 3D shape analysis, recognition, and matching. Applications in 3D shape analysis also open a
number of questions in the metric approach to shape analysis introduced by Gromov that have yet to be answered. Among them are the devel-
opment of a computational theory with tight bounds, like the one developed for the Hausdorff distance by the computational geometry commu-

nity; further analysis of the shape manifold re-
sulting from the Gromov–Hausdorff distance;
and development of further connections with the
Cheeger isoperimetric constant when the diffu-
sion distance is used. As indicated in the title of
the Abel Science Lecture, this represents just a
small step for Gromov, and a very small window
into his revolutionary contributions.

Acknowledgments
I thank Facundo Mémoli, with whom the trav-

els into the Gromov world started during his PhD; my
colleagues and co-authors of [2]; the Abel Committee for
giving me the opportunity to present the Abel Science
Lecture; and Doug Arnold for guidance. Special thanks
of course to Professor Gromov for hosting me at IHES in
June 2009 and for creating a structure as beautiful as the
Gromov–Hausdorff distance.

Figure 2. Shapes come with a metric, indicated here by pair-
wise distances and paths between points.

Figure 3. Common shape deformations of various types, including
bends, topological changes, triangulation differences, and missing
data.

Figure 4. Considering diffusion distances (right) in the Gromov metric
framework for shape correspondence leads to better matching than with
the geodesic distance (middle), as indicated by the corresponding match-
ing colors for the same body parts (ground truth on the left).

Figure 5. Distances from null transformations of each shape class (rows) to all instances in the
dataset (columns), which includes topological deformations, bends, missing data, and changes
in the triangulation (see Figure 3). Brighter color represents larger distances (lower similarity).
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