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Metals and ceramics are polycrystalline materials, solids formed from a dense network of grains (Figure 1). Function follows form for these materi-
als: The properties of the network affect the mechanical, electrical, thermal, and other properties of a sample. In a metal like copper, the grains are 
chemically identical, and it is crystallographic orientation that distinguishes neighboring grains. Grain boundaries are dynamic, driven by an interfacial 
energy that causes some grains to shrink and vanish, others to grow. The result is a general coarsening process that is fertile ground for mathematicians 
as well as materials scientists.

Grain networks received significant attention at this year’s SIAM Conference on Mathematical Aspects of Materials Science (see the article by Selim 
Esedog– lu). Indeed, the importance of treating poly-
crystalline materials as an interactive network rather 
than a collection of individual grains was the prem-
ise of a presentation by Christopher Shuh. Network 
dynamics, in particular mesoscopic PDE models based 
on front tracking, was a frequent topic. Both for 
two-dimensional thin films and in three dimensions, 
such models prescribe that the normal velocity of an 
interface is proportional to its mean curvature, the 
interfacial energy, and mobility, a physical parameter. 
A natural energy-minimizing boundary condition, the 
Herring condition, determines the geometry of triple 
junctions, the stable intersection of three grains. The 
result is a large dissipative system of mesoscopic PDEs 
in which energy is the integral of the interfacial energy 
over all boundaries in the network [3].

A range of numerical methods are available for sim-
ulating such systems; a number of them were presented 
at the conference, including implicit methods (by 
Esedog– lu, Elsey, and Smereka [2] and independently 
by Wilson and Rollett); explicit methods (by Ta’asan 
[3]); a dislocation-based approach (by Srolovitz [5]); 
and grain network simulation via proxy, using closely packed colloids (by Frans Spaepen). Stable statistics of evolving grain networks were a com-
mon theme of the simulations: The distribution of grains by number of sides and the normalized distribution of grain size, for example, are robust 
statistics across a wide range of parameters and initial configurations. An intriguing property, texture as measured by the grain boundary character 
distribution (GBCD), is characteristic as well as robust [4]. Simulation reveals that high-energy boundaries are quickly eliminated and, strikingly, that 
GBCD adopts a Boltzmann-like profile, dependent on the material-specific interfacial energy (Figure 2). A theory for the GBCD was the main topic 
of Epshteyn’s talk.

GBCD is the distribution of boundaries (weighted by length in two dimensions, by area in three) with respect to interfacial energy. At the conference 
Epshteyn presented a theory for the development of GBCD in the context of a simpli-
fied critical-event model and Emelianenko gave a detailed introduction to the simplified 
model. Barmak, Eggeling, Emelianenko, Epshteyn, Kinderlehrer, Sharp, and Ta’asan [1] 
are investigating the topic as part of a collaborative effort.

A network is formed by a random partition of the unit circle, where the subintervals are 
identified as grain boundaries with length L

i
 (the subintervals are not “one-dimensional 

grains”) and a randomly assigned orientation a
i
. Each boundary contributes L

i
y(a

i
) to 

the total energy of the system, where y(a) is a given function describing the interfacial 
energy. The dynamics of the boundaries are determined by gradient flow. A critical event 
occurs when a boundary reaches zero length: It is removed and its former neighbors are 
connected. The network dynamics are dissipative between critical events.

The energy conservation relation between critical events and Young’s law lead to an 
energy inequality satisfied by the system in terms of Σ

i
 (dL

i
/dt)2. A key observation is 

that this inequality can now be translated into a statement about GBCD: r(a,t). This is 
done by identifying r as the length-weighted histogram of segments over a Î W. Now 
comes the crucial step: addition of an effective entropy. Memoryless critical events have 
produced an irreversible system, for which distributional dynamics are sought. Though 
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Figure 1. Grains and grain networks: Beta brass grains (left) and visualization of a meshed 
grain network (right).

Figure 2. GBCD evolution with energy 
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not the only choice, adding the standard configurational entropy leads to a dissipation relation involving the Wasserstein metric. It forms the basis for 
a Wasserstein metric implicit scheme consistent with solutions to the Fokker–Planck equation,

The dissipative behavior of GBCD thus reveals an underlying Fokker–Planck form.
The value of the parameter s is not known a priori, but is revealed through simulation by finding the value that causes the Kullback–Leibler relative 

entropy to vanish as t ® ¥,

where rl is the stationary Boltzmann distribution of the 
Fokker–Planck equation with parameter l (Figure 3, 
left). The result is an entropic theory for the develop-
ment of GBCD and a program for discovering the sys-
tem’s effective “temperature.” Numerical experiments 
have revealed high-quality predictions for GBCD, as 
shown in Figure 3, right.
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Figure 3. Relative entropy determines s. Left: Relative entropy as a function of time for various 
s. Right: GBCD and the Boltzmann distribution when s = l.


