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Materials Science

Mathematics and Polycrystalline Materials:
An Entropic Approach to Texture Development

By Richard Sharp

Metals and ceramics are polycrystalline materials, solids formed from a dense network of grains (Figure 1). Function follows form for these materi-
als: The properties of the network affect the mechanical, electrical, thermal, and other properties of a sample. In a metal like copper, the grains are
chemically identical, and it is crystallographic orientation that distinguishes neighboring grains. Grain boundaries are dynamic, driven by an interfacial
energy that causes some grains to shrink and vanish, others to grow. The result is a general coarsening process that is fertile ground for mathematicians
as well as materials scientists.

Grain networks received significant attention at this year’s STAM Conference on Mathematical Aspects of Materials Science (see the article by Selim
Esedoglu). Indeed, the importance of treating poly-
crystalline materials as an interactive network rather
than a collection of individual grains was the prem-
ise of a presentation by Christopher Shuh. Network
dynamics, in particular mesoscopic PDE models based
on front tracking, was a frequent topic. Both for
two-dimensional thin films and in three dimensions,
such models prescribe that the normal velocity of an
interface is proportional to its mean curvature, the
interfacial energy, and mobility, a physical parameter.
A natural energy-minimizing boundary condition, the
Herring condition, determines the geometry of triple
junctions, the stable intersection of three grains. The
result is a large dissipative system of mesoscopic PDEs
in which energy is the integral of the interfacial energy
over all boundaries in the network [3].

A range of numerical methods are available for sim-
ulating such systems; a number of them were presented
at the conference, including implicit methods (by
Esedoglu, Elsey, and Smereka [2] and independently
by Wilson and Rollett); explicit methods (by Ta’asan
[3]); a dislocation-based approach (by Srolovitz [5]);
and grain network simulation via proxy, using closely packed colloids (by Frans Spaepen). Stable statistics of evolving grain networks were a com-
mon theme of the simulations: The distribution of grains by number of sides and the normalized distribution of grain size, for example, are robust
statistics across a wide range of parameters and initial configurations. An intriguing property, texture as measured by the grain boundary character
distribution (GBCD), is characteristic as well as robust [4]. Simulation reveals that high-energy boundaries are quickly eliminated and, strikingly, that
GBCD adopts a Boltzmann-like profile, dependent on the material-specific interfacial energy (Figure 2). A theory for the GBCD was the main topic
of Epshteyn’s talk.

GBCD is the distribution of boundaries (weighted by length in two dimensions, by area in three) with respect to interfacial energy. At the conference

Figure 1. Grains and grain networks: Beta brass grains (left) and visualization of a meshed
grain network (right).

2.5 T Epshteyn presented a theory for the development of GBCD in the context of a simpli-
Soet; Hiest fied critical-event model and Emelianenko gave a detailed introduction to the simplified
model. Barmak, Eggeling, Emelianenko, Epshteyn, Kinderlehrer, Sharp, and Ta’asan [1]

S 1 are investigating the topic as part of a collaborative effort.

A network is formed by a random partition of the unit circle, where the subintervals are
- | identified as grain boundaries with length L, (the subintervals are not “one-dimensional
o " 3 grains”) and a randomly assigned orientation o. Each boundary contributes L{(cv) to
the total energy of the system, where W\ () is a given function describing the interfacial
l e | energy. The dynamics of the boundaries are determined by gradient flow. A critical event
/] occurs when a boundary reaches zero length: It is removed and its former neighbors are
y ‘ connected. The network dynamics are dissipative between critical events.
i ] The energy conservation relation between critical events and Young’s law lead to an
1 energy inequality satisfied by the system in terms of X (dL/dr). A key observation is
il . . : ‘ , ~—_ | that this inequality can now be translated into a statement about GBCD: p(a,f). This is
fe:m  Fed Ee: o T done by identifying p as the length-weighted histogram of segments over o € 2. Now
Figure 2. GBCD evolution with energy comes the crucial step: addition of an effective entropy. Memoryless critical events have
b(a) = 1+¢(sin2a)’ ,—E Sas E e=1/2. produced an irreversible system, for which distributional dynamics are sought. Though




not the only choice, adding the standard configurational entropy leads to a dissipation relation involving the Wasserstein metric. It forms the basis for
a Wasserstein metric implicit scheme consistent with solutions to the Fokker—Planck equation,

o _ 0 [ 0p  dv
ot dal da  da')

The dissipative behavior of GBCD thus reveals an underlying Fokker-Planck form.
The value of the parameter o is not known a priori, but is revealed through simulation by finding the value that causes the Kullback-Leibler relative
entropy to vanish as t — oo,

o = X such that &, (p) =

prln

do — 0,

P
Px
where p, is the stationary Boltzmann distribution of the
Fokker—Planck equation with parameter X\ (Figure 3,
left). The result is an entropic theory for the develop-
ment of GBCD and a program for discovering the sys-
tem’s effective “temperature.” Numerical experiments

have revealed high-quality predictions for GBCD, as
shown in Figure 3, right.
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Richard Sharp recently completed a three-year postdoc in the Center for Nonlinear Analysis at Carnegie Mellon University.



