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By Desmond J. Higham, Peter Grindrod, and Ernesto Estrada

Many key ideas in the booming field of network science can be traced to the 1950s and 1960s, when researchers began to formalize the study of social 
interactions. The language and tools of mathematics, especially graph theory and linear algebra, offered a natural framework, and soon mathematicians were 
viewing social network analysis as a viable application area. By 1984, the social scientist Linton Freeman [7] observed that “There’s a whole lot of really high 
powered math types running around in the social networks arena.”

Fast forward to 2008; Freeman [8] now argued that

“When ideas and tools move from one field to another, the movement is generally from the natural to the social sciences. In recent years, however, there has 
been a major movement in the opposite direction. The idea of centrality and the tools for its measurement were originally developed in the social science field 
of social network analysis. But currently the concept and tools of centrality are being used widely in physics and biology.”

Whereas social scientists had painstakingly collected data in the field to build up networks link by link (see, for example the UCINET IV collection at http://
vlado.fmf.uni-lj.si/pub/networks/data/ucinet/ucidata.htm), advances in experimental techniques and computing power opened the possibility of studying and 
visualizing large-scale networks in nature and technology. The landmark small-world paper of Watts and Strogatz [17] raised the profile of network science 
outside the social science community; according to Freeman [8], “In the five years between 1998 and 2003 physicists turned out more publications on the 
subject than members of the social network community had produced over a period of 45 years.”

Networks were being “discovered” everywhere, and analysed with 
tools derived in the social sciences. Links could represent, for instance, 
scholarly co-authorships, Hollywood co-starring roles, WWW hyper-
links, Internet connections, linguistic similarities, electronic circuitry, 
online co-purchases, food web connections, physical protein interac-
tions, coordinated gene expression, metabolic regulation, amino acid 
residue similarities, transportation channels, electric power cables, and 
common street location. In-depth discussions of many examples can be 
found in [4].

The concept of centrality, first developed to identify important actors 
in various types of human social interaction networks [8], has now been 
applied extensively across almost every conceivable network scenario. 
Consider the simple network shown in Figure 1, in which each undi-
rected edge records a friendship between a pair of individuals. Who is the best person to invite to a “bring-a-bottle-and-some-friends” party? Who 
would start a rumour most effectively? Who is most likely to have heard the latest rumour? We can address such questions by assigning a centrality 
measure to each node. Some of the main path-based measures are defined precisely in Box A. More comprehensive treatments can be found in, for 
example, [13, 16]. Loosely:

■ Degree centrality simply records the degree (number of incident edges) of each node. High-degree nodes are good for the “bring-your-friends” events.
■ Closeness centrality records the reciprocal of the sum 
of the shortest path lengths between a node and all other 
nodes in the network. Nodes that score high are smart 
places to start a rumour.
■ Betweenness centrality records the propensity of a 
node to be involved in shortest paths. Nodes with high 
betweenness are more likely to learn the latest rumour.

Table 1 shows results for the simple network of 
Figure 1. We see that although Bob has the highest 
degree, Sue is at the top for closeness and between-
ness. This is intuitively reasonable, as Sue appears 
to occupy a more central position in the network. 
Similarly, Alf, who ranks below Bob in terms of 
degree and closeness, jumps into a very clear second 
place in terms of betweenness; to form a path to Oscar 
or Jens, the others have no choice but to go through 
Alf.

  Figure 1. A simple friendship network.

Box A: Centrality Measures
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These centrality measures are based on the con-
cept of the shortest paths between pairs of nodes. 
Considering more general routes through the network 
leads to a more relaxed view. As discussed by Borgatti 
[3], depending on the type of process being considered, 
it may be appropriate to account for:

■ Trails, where nodes can be revisited during the excur-
sion, but edges cannot be reused. In Figure 1, for example, 
Mary–Bob–Sue–Ramona–Bob–Joe is a trail but not a 
path. A piece of gossip typically spreads along a trail. Bob 
might hear the gossip from both Mary and Ramona. But if 
Bob did hear it from Mary, it is unlikely that he and Mary 
would repeat the gossip back to each other.

■ Walks, which allow the use of both nodes and edges more than once. For example, in Figure 1, Mary–Bob–Sue–Ramona–Bob–Mary–Joe is a walk, but not 
a trail or a path. A particular dollar bill flows through the person–person network along walks. Mary might give the bill to Bob in one transaction, and Bob 
might return it to Mary in another.

The walk scenario is attractive from a linear algebra point of view. Suppose that an undirected network has adjacency matrix A, where a
ij
 = 1 if 

nodes i and j are connected and 0 otherwise. The basic identity

then shows that (An)
ij
 counts the total number of walks of length n from node i to node j. To summarize this information with a single number, we 

could take a weighted sum over all walk lengths. A very influential 1953 paper [11,13] suggested that the number of walks of length n could be scaled 
by a factor an, for some suitably chosen parameter 0 < a < 1. We could then construct a closeness-style centrality score for node i by summing over 
all j the weighted total number of walks between i and j. Using the expansion (I + aA)–1 = I + aA + a2A2 + a3A3 + . . . , we obtain a centrality score of

for node i. Intuitively, summarizing over walks of all lengths, rather than using the all-or-nothing shortest-path convention, should make the measures 
less sensitive to spurious or missing information. This type of uncertainty is inherent in most data sets. In the case of “who e-mailed whom” infor-
mation, for example, false negatives might arise because we are overlooking other forms of communication; false positives can arise when, say, a 
manager’s e-mails are heavily filtered by a personal assistant.

In Box B we show how walk-based centrality measures can be constructed, using the general approach of [5].
In part II of this article we will discuss the recent 

boom in social network analysis that is being driven 
by the desire of businesses and governments to exploit 
the tell-tale fingerprints of our digital behavior. We 
will also show that the dynamic nature of this data, 
for example, the time-stamp that accompanies e-mails 
and cell phone communications, throws up fascinating 
challenges for the applied mathematician.
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 Node  Degree  Closeness  Betweenness
     i                 k

i 
                      CC

i
                           BC

i

   Joe      3     0.4375         0.5
   Mary      2     0.4118            0
   Ramona      3     0.5385         2.0
   Bob      4     0.5833         6.5
   Sue      3     0.6364       12.0
   Alf      3     0.5385       10.0
   Oscar      2      0.3889            0
   Jens      2     0.3889            0

Table 1. Centrality measures for the network shown in Figure 1.

Box B: Walk-based Centrality

Suppose that we have an appropriate sequence of non-negative real numbers {c
n
}

n≥1
, where 

c
n
 is the scaling factor that we intend to apply to the count for walks of length n. Defining the 

function f(x) through the Maclaurin series Σ
n≥1

 c
n 
x n, we can define the following measures

in terms of the adjacency matrix A; see [5] for more details.
The f-centrality of node i is given by f(A)

ii
.

The f-communicability between nodes i and j is given by f(A)
ij
.

The f-betweenness of node i is given by

where the matrix E(i) has nonzeros only in row and column i, and its row and column i have 
1 wherever A has 1. (A – E(i) is thus the adjacency matrix for the network that arises when 
we remove all edges involving node i.)

The particular case of c
n
 = 1/n! was introduced and studied in [6], and the corresponding 

f-centrality for f(x) = ex has come to be known as the Estrada index.
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