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People Who Read this Article Also Read . . . : 
Part II
By Desmond J. Higham, Peter Grindrod, and Ernesto Estrada

Ideas from network science, having forced themselves the wrong way down Linton Freeman’s one-way street [8] into the natural and engineering sciences, 
met a roundabout that speedily returned them to the realm of human social interactions. Many of the most important and exciting data sets of current interest to 
high-profile and high-spending users concern our behaviour: e-mailing, cell phoning, text messaging, satellite positioning, online socialising, online spending, 
movie renting. . . . Indeed, the most recent of the annual Network Science Conferences (Boston, May 10–14, 2010) was awash in analyses of networks obtained 
by crawling Facebook. Governments want to know about suspicious behavior. Businesses want to know whom to target and whom to leave alone, what products 
to develop, what infrastructure to plan for, and what charging systems to deploy. Social network analysis has become a huge, high-tech business that involves 
mathematicians, physicists, computer scientists, and, of course, social scientists. A recent article in The Economist [15] quantifies things:

“The market for such software is booming. By one estimate there are more than 100 programs for network analysis, also known as link analysis or predictive 
analysis. The  raw data used may extend far beyond phone records to encompass information available from private and governmental entities, and internet 
sources such as Facebook. IBM . . . says its annual sales of such software, now growing at double-digit rates, will exceed $15 billion by 2015. In the past five 
years IBM has spent more than $11 billion buying makers of network-analysis software.”

Mark Rogers, CEO of the London-based Market Sentinel Ltd, which specializes in semantic search and social network analysis, told us that

“The challenge of big consumer brands is to understand a media landscape fragmented into numerous ‘contexts’—semantic and social. A context could be 
‘people I was at university with’ or ‘Justin Bieber fans who also like my competitor’s product’. Brands have this incredibly rich cluster of groups to understand, 
enfranchise, co-opt. . . .

“The insights are extraordinary: for example, by using Skyttle to look at co-occurring hashtags on Twitter (if I use a particular hashtag, what other hashtags 
do I tend to use?) we can determine that people who tweet about how much they love their cats are also likely to tweet about depression. Brands can use the 
understanding gained from tools like this to drive everything from product design to communications language.”

The U.S. National Institutes of Health also take this area very seriously, having launched in 2010 a program in Social Network Analysis and Health, 
with a view to “encourage basic research that will: generate new theories that can further social network analysis; address fundamental questions 
about the relationship between social networks and health; and develop methodological and technological innovations to facilitate and extend social 
network analyses.”

The Palo Alto-based company Palantir Technologies, founded in 2004 by a group of PayPal alumni and Stanford computer scientists, offers software 
that analyses structured, unstructured, relational, temporal, and geospatial data. With no marketing department or sales team, the company employs 
more than 250 engineers and scientists and has earned contracts with counterterrorism analysts at offices of the FBI and CIA. The company also 
focuses on data security and fraud prevention; for example, the U.S. government’s Recovery Accountability and Transparency Board uses the Palantir 
government platform to share information with citizens via the web and to detect abuse of the economic stimulus fund.

Of course, a simple network-based view of the world is painted with a very broad brush. On one hand are practical and ethical concerns about 
gathering and storing data,  as in reports [2] of the objections of a former Army colonel alleging that the need for exhaustive network data for coun-
terterrorism purposes in Iraq led to the detainment of locals who were known to be innocent. On the other hand, even with access to all the relevant 
data, the network view—like any mathematical modelling approach—can represent only a simplified cartoon of a real complex system. As our ques-
tions become more probing, the benefits of the pared-down node and edge setting—allowing clean data structures, off-the-shelf algorithms, and clear 
visualization—start to be outweighed by the loss of information from the oversimplifications. Even allowing for directed or weighted edges does not 
get around the basic issue: “Nodes” and “interactions” cannot all be treated equally.

David Skillicorn, a computer scientist at Queens University in Ontario, Canada, mentions in his blog (http://skillicorn.wordpress.com/) that work- 
and leisure-derived connections may need to be treated differently, citing “embarrassing faux pas” resulting from “trying to get people to friend their 
boss’s boss.” As an example, he writes,

“Suppose that you have access to someone’s email and you want to work out who are their friends, and who are professional contacts. The structure of email 
addresses doesn’t help much because a friend’s work email might be used, and because email addresses tend to be surrogates anyway. Time of day doesn’t 
help much because many people send personal email at work, and many send work emails out of working hours. The content of emails might help, but many 
organisations have extensive in-house non-work emails (for example, Enron had many emails about fantasy football that circulated only within the company).”

The traditional tools of network science, then, can be only part of the solution. Indeed, the Palantir Technologies website makes it clear that securely 
integrating heterogeneous data sets is a major challenge:

“Probably the most central hard problem that we address in trying to enable the analyst is data modeling, the process of figuring out what data types are relevant 
to a domain, defining what they represent in the world, and deciding how to represent them in the system.”

For data sets like those emerging from telecommunications and online social networking, one clear limitation of the network science paradigm 
seems ripe for mathematizing: Interaction networks do not remain static but, rather, typically evolve over time—“who phoned whom,” “who e-mailed 



whom,” and “who Facebook-friended whom” informa-
tion is inherently dynamic. This issue was raised in 
August 2010 at the opening workshop of the SAMSI 
(Statistical and Applied Mathematical Sciences Insti-
tute) programme on complex networks. James Moody, 
a sociologist at Duke University, made the point that 
if A meets B in the morning and B meets C in the 
afternoon, an infection can be passed from A to C, but 
not from C to A. A network summarizing that day’s 
contacts, however, will contain the chain A–B–C, and 
imposing the usual Susceptible–Infected–Recovered-
type model at this level is likely to overestimate the 
rate at which a disease will spread. Analogously, 
consider a simple “who phoned whom” scenario, such 
as that shown in Figure 2, in which the three networks 
cover successive days. We see that Mary might be able 
to pass a message to Oscar via the links Mary–Bob–
Ramona–Sue–Alf on Day 1 and Alf–Oscar on Day 2, 
but there is definitely no way for Oscar to get a mes-
sage to Mary. This asymmetry arises even though each 
individual network is undirected. Kenth Engø-Monsen, 
a senior researcher for the Norwegian telecom com-
pany Telenor, told us that handling time-dependency 
may give a key marketing edge:

“What is marketing in a networked world? It is all about 
nodes and links! What are the better nodes at spreading 
your new service or a new product? Over what links is this 
spreading most probable? The challenge is in identifying 
the right set of nodes and links that accelerate the diffu-
sion. State-of-the-art network analysis used by telecoms 
today builds social networks among customers based on 
traffic data averaged over X weeks or Y months. Taking 
into account the dynamics of the customer networks is in 
my mind the next promising thing to consider in network-
based marketing techniques.”

 
One widely studied time-dependent interaction data 

set in the public domain lists the e-mail activities 
of 151 Enron employees; see http://www.cs.cmu.edu/~enron/. To produce Figure 3 we first summarized the e-mail interactions, including “to,” 
“cc,” and “bcc,” over a period of 1138 consecutive days. This leads to a sequence of 1138 symmetric adjacency matrices of dimension 151 × 151, 
which can also be regarded as a 1138 × 151 × 151 ten-
sor. Figure 3 shows the total number of edges per day. 
In Figure 4, for the purpose of illustration, we lump 
the first 1080 days into 12 lots of 30-day “months” and 
display the monthly adjacency matrices.

Using the notation of [10], for a fixed set of nodes 
we can consider an ordered sequence of symmetric, 
binary adjacency matrices, A[k], for k = 0, 1, 2, . . . , M, 
corresponding to an ordered sequence of time points t

0
 

≤ t
1
 ≤ . . . ≤ t

M
. Continuing from the examples quoted 

for Figure 2, a dynamic walk of length w from node 
i1 to node iw+1 

could then be defined as a sequence of 
edges i1 

↔ i2, i2 
↔ i3 . . . iw ↔ iw+1 

and a non-decreas-
ing sequence of times tr1

 ≤ tr2 
≤ . . . ≤ trw

 , such that
(A[rm])im,im+1

 ≠ 0.

This time-dependent context offers a rich variety 
of alternatives, however. In some circumstances 

it may be appropriate to allow the use of at most one 
edge per time point, in which case the constraint on the 
time sequence would involve strict inequality: tr1

 < tr2
 < 

. . . < trw
. At a formal evening ball, for instance, with 

each dance you have the choice of finding a partner or 
sitting it out. Alternatively, it may be appropriate to 
force the use of exactly one edge per time point, so that 

Figure 2. A simple dynamically varying interaction network.

Figure 3. Total number of links per day in Enron e-mail data.



r
n+1

 = r
n
 + 1. Suppose, for example, that the school’s 

pet hamster is taken home each day: Yesterday’s lucky 
pupil passes it on to a current friend to take home 
today.

We can define dynamic paths and dynamic trails 
analogously. In the case of a path, we would insist 
that no node be visited more than once—this concept 
was developed recently in [14] and used to construct 
dynamic centrality measures. The issue of discovering 
well-connected communities in time-varying networks 
is addressed in [12]. We also note that the extra “time” 
dimension takes us into the realm of tensors, where 
data-mining issues are currently an active topic [1]. 
The dynamic walk concept has been pursued in [10] via 
the observation that element i,j in the matrix product
A[r

1
] A[r

2
] . . . A[r

w
]  counts the number of dynamic walks 

of length w from node i to node j, where the mth step 
of the walk takes place at time trm

. It follows that the 
matrix product

                   (I – aA[0])–1 (I – aA[1])–1 . . .  (I – aA[M])–1                (1)

does the job of collecting all dynamic walks: Its 
element i, j gives the overall number of dynamic 
walks from i to j, where a walk of length w is scaled 
by aw. This leads naturally to centrality measures. 
Furthermore, even though each resolvent (I – aA[r])–1

 

is symmetric, the overall product of resolvents will 
generally be asymmetric, reflecting the inherent non-
commutativity arising from the arrow of time. Results for the Enron data shown in Figures 3 and 4, including quantifications of the best broadcasters 
and receivers of information, can be found in [10].

To emphasize that these ideas must be fine-tuned to the particular application, we note that in many cases A[k] will itself be an aggregate of activ-
ity over a time window, as in the case of daily e-mail communication. Suppose that we refine the time window—to hours, minutes, seconds, . . . . 
At some stage the product in (1) would settle at a fixed value. We can see this intuitively from the fact that with at most one link per time period, no 
further walks can be created through refinement. We could also argue directly from the linear algebra setting of (1) that no new non-identity factors 
will arise. With such a high sampling rate, it is then tempting to argue that (1) should be replaced with the “at most one link per time window” version

                                                                                                 (I  + aA[0]) (I + aA[1]) . . . (I + aA[M]),

so that simple, inter-window closed walks like i  j  i are avoided. As with the bid–ask spread issue in mathematical finance, however, this “high 
frequency equals high accuracy” argument may be scuppered by noise—in our experience, the order in which e-mails are dealt with does not usually 
match the order of arrival.

We have focused here on data-driven issues: summarizing, ranking, and extracting key features. Applied mathematicians also strive to understand 
the mechanisms that govern a system and to express them in terms of a quantitative, predictive model. In the case of evolving networks, what are the 
laws of motion that regulate the appearance and disappearance of edges? Some basic stochastic models for edge dynamics were proposed and analysed 
in [9], and the related issues of (a) how to calibrate a model and (b) how to analyse a dynamic process taking place over a dynamic network were 
addressed. With evolving data of this type, there are some very natural, real-time issues. Given the past behaviour of the network and its current state:

■  Is the network operating normally?
■  Is a dramatic event (such as a power blackout or computer virus outbreak) about to happen?
■  Are there any pockets of suspicious activity?
■  Which nodes in the network are currently most vulnerable?
■  Is this a good time to start a rumour, or to hear the latest rumour? If so, where?

We began this article (SIAM News, January/February, page 1) by arguing that the emerging ideas from the quantitative realm of social network analysis 
have spawned a fascinating two-way interplay with the mathematical sciences. The recent explosion in the quantity and variety of available data concerning 
our patterns of behaviour has turned this into a very high-profile pursuit, raising the stakes and opening many new challenges. We finish with a view from 
Mark Rogers, of Market Sentinel Ltd, who told us that

“Some of the big industries which will emerge from current developments in semantic and social search are going to be in the marketing/comms area. 
Conventional market research and product/communications planning are being replaced wholesale. Of course, marketing is only one industry to be impacted 
in this way, it will be followed by many others.”

Figure 4. Evolving adjacency matrices for Enron e-mail data aggregated over 30-day periods.
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