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The successful use of computational models to predict physical events depends on several fundamental concepts and processes: the mathematical 
model itself, the particular quantities of interest (QoI’s) of the physical event, and, for predictability, experimental observations made for calibration 
and validation. Each of these concepts is described in detail in a two-part article, “Computer Predictions with Quantified Uncertainty,” that appeared 
in SIAM News in November and December,  2010. 

Tumor Growth Example
Using models of tumor growth, the present article provides a concrete example of the abstract concepts presented in the earlier articles. Of the many 

types of tumor growth models, only those derived through the continuum theory of mixtures are considered here [1–3]. This multiphase theory repre-
sents each constituent as a volume fraction, allowing multiple constituents to be present at the same point at the same time, and handles the interface 
between phases as a feature of the solution. Details about the theory can be found in [1,4].

For illustration, a two-phase isothermal mixture consisting of tumor u and non-tumor n (healthy tissue, extracellular fluid, etc.), along with a repre-
sentative nutrient c, say oxygen, is considered. Under a saturation assumption, only u and c are taken as unknown. M

1
 and M

2
 are two such models; 

they have the same boundary and initial conditions but differ in that M
1 
has constant parameters and M

2 
has time-dependent parameters:

					     u
t 
= ∇

 
· (Mu 2∇µ) + Pcu – Au     in  (0,T ) × Ω,

					     µ = f ´ (u) –  ε2∆ u –  εχc           in  (0,T ) × Ω,
					     0  =  ∇ · (D ∇c) – cu                in  (0,T ) × Ω

					     u
t 
= ∇

 
· (Mu 2∇µ) + Pcu – Au     in  (0,T ) × Ω,

					     µ = f ´ (u) –  ε2∆u  –  εχ(t) c      in  (0,T ) × Ω,
					     0 = ∇ · (D (t) ∇c) – cu              in  (0,T ) × Ω
 
    
M

2 
is used to generate (virtual) data (see Figure 1), against which the validity of M

1 
is assessed for the QoI of the final tumor volume. Snapshot images 

are taken at t
1 
= 3 and at t

2 
= 6 for calibration and validation data, respectively. The question addressed is thus: Based on the data observed in Figure 

1 at t
1 
and t

2
, is model M

1 
invalid for predicting the QoI, Q(u) = (tumor volume at t = 9)? 

We begin the process by defining the model param-
eters of interest for calibration, the form of the prior, 
the data that will be used for the calibration, and 
the form of the likelihood function. For M

1
, the key 

model parameters chosen for calibration are m = 
(χ,D). Due to “prior knowledge,” the prior pdf is taken 
as the uniform distribution ρ (χ,D) = U (3,19.5) ×
U (0.3,1.95). The simulation mesh provides an
analogue of a pixel array typical of an MRI image. For 
both the calibration and the validation steps, therefore, 
we consider as observational data the L2 norm of the observed pixels “recovered” from the image and the position of the pixels on which the inter-
face lies.

For simplicity, the pdf θ
noise

(e) is taken to be independent of m and is a bivariate, un-correlated, half-normal distribution, i.e., pdf θ
noise

(e)    =
(θ1θ2)/π

2 exp(–M2

d,1
θ2  

1/π) exp(–M2

d,2
θ2

2/π), where θ
1 
and θ

2 
are the distributional parameters and M

d,i
 = M

d,i
 (G (χ, D), dobs) denotes the distance between 

the simulation and the observed data. The parameters θ
1 
and θ

2 
are chosen to correspond to 10% relative error. The given prior and likelihood func-

tions are used to calculate the calibrated posterior pdf (Figure 2, left). The setup for the validation Bayesian update is the same as for the calibration 
update: Determine the prior, the data to be used, and the likelihood. Taking them to be of the same form as the calibration, we obtain the corresponding 
validation posterior pdf (Figure 2, right).

 Finally, we check the validity of the prediction of the model M
1 
by calculating the prediction QoI, q(u(χ,D)), chosen to be the tumor volume. To 

determine q, the values (χ,D) for which σ
M
 and σ

V 
were originally calculated are used to extend the calculation to compute the tumor volume from 

u(χ,D), and associate q(u(χ,D)) with the value σ
M

(χ,D|d
c
obs) (or σ

V
). Both of these QoI cumulative distribution functions are shown in Figure 3. Both 

σ
M 

and σ
V 
have the same most likely estimator (MLE); the prediction from M

1 
with these values is also shown in Figure 3. 
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Figure 1. Two-dimensional 
images of the progressive 
growth of a tumor at times t 
= 3 and 6 for use as calibration 
and validation data. The images 
were generated with model 
M2 with two-plane symmetry 
assumed.
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A final question remains: Is M
1 

a valid (a non-
invalid) model for this QoI? The metric used to com-
pare these two cdf’s is the largest difference between 
the inverse of the cdf’s with a tolerance γ

tol
 = 10% × 

Q(MLE) = 10% × 4.06 = 0.406. It is calculated that 
M (q

p
C, q

p
 V ) = 0.1478 ≤ γ

tol
, meaning that the model has 

not been found to be invalid.
The model having been declared “not invalid,” we 

need to find a way to answer the question, What will 
the volume of the tumor be at t = 9? There are, in 
fact, various ways to answer: the most likely estima-
tor volume ± the standard deviation, the mean of the 
QoI pdf ± the standard deviation, or an interval, say 
the 90% confidence interval associated with the QoI 
pdf. However the question is answered, the proposed 
framework offers an avenue for giving an answer with a meaningful level of uncertainty (confidence).

Conclusions
As new methodologies emerge for acquiring data on the evolution of tumors in specific subjects, the 

issue arises as to how these data ultimately inform the processes critical to predicting the behavior of 
cancer and the effects of treatments. The fidelity of such computer predictions depends on the models 
used, the knowledge of the key model parameters, and the quality of the data. This article presents a uni-
fied approach for statistical calibration and validation of models and prediction of quantities of interest 
based on Bayesian inference. Importantly, the approach can take into account uncertainties in param-
eters, observations, and the model itself and lead to predictions with quantifiable uncertainty. While the 
validation process exercised here uses models from mixture theory, the process itself is quite general and 
is applicable to virtually any modeling scenario.
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Figure 2. Left: Calibrated posterior pdf σM (χ,D|d 

c

obs). Right: Validation posterior pdf
σV (χ,D|dv

obs).

Figure 3.  Top: Cumulative distribution functions for the tumor 
volume at  t = 9, as determined with both the calibration (solid 
line) and the validation (dashed line) posterior pdf’s. Bottom: 
Prediction with the most likely estimate.
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