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Tossed Coins and Troubled Marriages:
Mathematical Highlights from AAAS 2004
By Barry A. Cipra

Attendees at the annual meeting of the American Association for the Advancement of Science, held February 13–16 in Seattle,
got a good dose of the mathematical sciences, with sessions on the changing nature of proof, analyses of the World Wide Web, and
phase transitions in computer science, among other topics. As described in this article, the program also included a talk on a
surprising new result in the age-old search for randomness and a session on mathematical analysis of the ever-vexing problem of
love and marriage.

Unfair Coins

Put a quarter heads up on the tip of your thumb, flick it into the air, and catch it on the way down. What are the odds it’ll land
heads up? The answer that springs to mind is 50:50. But according to Persi Diaconis of Stanford University, the actual odds may
be more like 51:49.

Diaconis and colleagues Susan
Holmes of Stanford and Richard
Montgomery of the University of
California at Santa Cruz have ana-
lyzed what happens when a thin
disk spins through space. Their
analysis indicates that no matter
how vigorously a heads-up coin is
launched, it invariably shows a bias
toward landing heads up. The re-
sults of empirical studies in which
a high-speed camera tracked the
gyrations of real coins suggest a
bias as great as 2%—which ex-
ceeds the (theoretical) house advantage in roulette (37:36). Diaconis presented the coin-tossing results in a topical lecture at the
AAAS meeting.

Coin tossing has long been the icon of randomness, but in fact there is nothing random about a spinning coin, Diaconis says. When
he was at Harvard in the early 1990s, Diaconis had the physics department build a coin-tossing device that launches coins with the
exact same initial conditions every time. A quarter placed heads up on the device goes up about a foot, turns over 12 times, and
lands heads up every time. In short, a tossed coin is simply a rigid body subject to Newton’s laws of motion. Randomness enters
via uncertainties in initial conditions, the inability of people to be perfectly precise. Everything else is classical mechanics.

In 1986, Joe Keller of Stanford published an analysis of the physics of tossed coins. Assuming that the coin starts heads up, spins
about its diameter with angular velocity ω, and is caught after t seconds (if the coin is tossed upward with velocity v and caught
at the height from which it was launched, t is easily seen to equal 2v/g, g = 32 ft/sec2 being the acceleration due to gravity), its
orientation on landing simply depends on whether cos(ωt) is positive (heads) or negative (tails). Keller showed that for any (smooth)
probability distribution of uncertainties in initial conditions, the integrated odds of heads to tails tends to 50:50 when the distribution
is translated far enough out in the (ω,t) plane—that is, coin tossing is fair in the limit of sufficiently vigorous flips as long as there
is some uncertainty in initial conditions.

Intuitively, fairness follows from the fact that the curves cos(ωt) = 0 tend, at the outer reaches of the plane, to look like
equispaced straight lines, and the farther outward you go the more closely spaced they become. If, for example, the probability
distribution is uniform in a box centered at (ω0,t0), then the odds are simply the ratio of the total area for heads to the total area for
tails, which tends to 50:50 as ω0 and t0 go to infinity.

Keller’s analysis would seem to have settled the matter, but he left out a key feature of real coins: precession. A real coin doesn’t
just spin around a diameter when it’s tossed: It also rotates around its center. Many coins, in fact, never turn over at all, but merely
wobble on their way up and down, like tiny metallic pizza dough crusts. (In a “low-tech” experiment with a ribbon taped to a coin,
Diaconis found that in 4 of 100 tosses the coin never turned over. “Now that’s bias!” he says.)

The complete description of a tossed coin has one more parameter: the angle ψ that the angular momentum vector makes with
respect to the normal to the coin (assumed to point upward initially). This extra degree of freedom, it turns out, is hugely important.
Keller’s analysis assumed ψ = π/2; in a “total cheat” coin—one that wobbles without turning over—ψ is close to 0. The question
is, what happens in between?

Diaconis, Holmes, and Montgomery (who is an expert in celestial mechanics—see SIAM News, July/August 2001, http://

A tossed coin—as shown in three frames (left to right, 48, 68, 88) taken by a high-speed camera—
does not simply (or even always) flip end over end, but also precesses. Persi Diaconis, Susan
Holmes, and Richard Montgomery have shown that precession introduces a bias into coin tosses,
making it essentially impossible to toss a coin fairly.
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www.siam.org/siamnews/07-01/dynsys.pdf) began with
a simple exercise in freshman physics: deriving a formula
for the angle that the normal to the coin makes with
respect to the up direction as the coin precesses around the
angular momentum vector. If ω is the rate of rotation
(angular momentum divided by the coin’s moment of
inertia, which depends on its mass, radius, and thickness),
a matrix calculation shows that the vertical component of
the normal at time t is

cos2ψ + sin2 ψ cos(ωt).

This implies that what separates heads-up from heads-
down regions in the (ω,t) plane is the equation cos(ωt) =
–cot2 ψ, from which it follows that the coin never turns
over if ψ is between 0 and π/4 (or between 3π/4 and π).
That large range of ψ values explains why it’s relatively
easy to cheat when tossing a coin—with practice, you can
make it look like the coin is spinning like mad, but still
have it come up heads almost all the time.

When ψ is between π/4 and 3π/4, regions in the (ω,t) plane do correspond to tails, but they are thinner than those for heads. The
main result of Diaconis and his colleagues is that for all (smooth, compactly supported) probability distributions, the limiting

probability of heads is identically 1 when ψ is between 0 and π/4 or 3π/4 and
π, and equal to

1/2 + (1/π) sin–1 (cot2 ψ)

for ψ between π/4 and 3π/4. In other words, except for Keller’s perfectly tossed
coin, all coins are biased to land heads up. In short, it is impossible to toss a
coin fairly.

The new formula is based on a limit of a coin tossed infinitely high with
infinitely much angular momentum. Real coin tosses, of course, aren’t that
vigorous. In most cases the coins ascend only about a foot, which corresponds
to an initial upward velocity of 8 feet per second and half a second in the air,
and spin at between 35 and 40 revolutions per second. The angle ψ also varies
from toss to toss. To get an idea of the actual distribution for people tossing
coins, Diaconis and colleagues recorded approximately 50 tosses  with a high-
speed camera and analyzed the images. In each frame, the coin looks like an
ellipse. The normal can be computed from the major and minor axes, and, if
hundreds of images are available, the data can be fit to the known equations
of motion. These empirical studies have led to the 51:49 estimate.

A true test of that estimate, Diaconis points out, would require a sample of
about thirty thousand coin tosses, which is not beyond the realm of possibility.
Other factors could affect the outcome, however. One is the actual angle at
which the coin leaves the thumb. The model assumes the normal at the start to
be straight up; in fact, the coin probably leaves at a range of angles. Another
is whether the coin is allowed to bounce on landing. Bouncing introduces a
whole new set of equations, with coefficients of restitution and friction, that
defy simple analysis. Lingering questions also include the effects of air
resistance (totally ignored in Keller’s and the current model) and of inhomo-
geneities in the mass distribution. Finally, in practice, when you take a coin out

of your pocket and put it on your thumb, do you bother to notice which side is up?

Can This Equation Be Saved?

Psychologist John Gottman and mathematical biologists James Murray and Kristin Swanson, all of the University of Washington,
described a mathematical model Gottman’s group has developed to identify—and possibly help—troubled marriages. (The AAAS
session, appropriately enough, was held on Valentine’s Day.) The model is based on a pair of difference equations that represent
the changing attitudes of a husband and wife during an intense, 15-minute conversation:

Wt+1 = b + rW Wt + IHW(Ht)
Ht+1 = a + rH Ht + IWH(Wt+1),

A coin placed heads up in a coin-tossing machine built for Diaconis by
Melissa Franklin in the physics department at Harvard University gives the
same result—heads up—every time.

Regions for heads (shaded) and tails (white) in the
region 0.4 < t < 0.6, 180 < ω < 240 determined by the
equation cos(ωt) = – cot2ψ for two values of the angular
momentum angle ψ:  Keller’s fair toss, ψ = π/2 (top), and
a highly biased toss, ψ = π/3 (bottom). Most actual
tosses are not nearly so biased.
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where Ht and Wt represent the husband’s and the wife’s attitudes after the tth interchange. Roughly speaking, the constants a and
b represent a base-level attitude that each person brings to the marriage, while rH and rW are “coefficients of inertia,” i.e., the tendency
to maintain the same attitude. Central to the model are the “influence functions” IWH and IHW, which express the extent to which the
wife’s attitude affects the husband’s, and vice versa. (The slight asymmetry in the subscripts t and t + 1 reflects the convention
that the wife speaks first.) Without the influence functions, the spouses may as well not be aware of each other’s existence (which
is actually the case for some couples—an individual’s influence function can be identically zero).

In principle, the influence functions can be arbitrarily complicated, but the marital modelers have found that piecewise linear
functions, with a single bend at the origin (i.e., neutral attitude), give a good fit to the facts. Intuitively, the kink corresponds to the
notion that the intensity of a person’s response to feedback depends on whether the feedback is positive or negative; some people
respond more strongly to negative feedback, others to positive.

Psychologists at Gottman’s “Love Lab,” as his research group is affectionately called, study videotapes of a couple’s
conversation and convert what they see and hear into numerical scores, the Ht’s and Wt’s. The time series is then analyzed to provide
estimates for the parameters a, b, rH, rW, and the slopes of the lines for the two influence functions. That’s where the math kicks
in. An elementary analysis of the equations guarantees at least one, and typically two, steady states. If there is a stable equilibrium
with both partners in the positive quadrant of the HW-plane, the marriage is in good shape; if the only steady state has one or both
partners in a negative quadrant, watch out.

Among the conclusions the researchers have drawn from their studies is that, the opening sentence of Anna Karenina
notwithstanding, a couple can be happy in more than one way. Conventional counseling wisdom holds that there is just one
“healthy” way for couples to interact: Each partner should “validate” the other’s point of view, even as each tries to get the other
to change her/his mind. But the Love Lab has found two additional styles to be consistent with marital longevity. One is the classic
volatile couple, who seem to argue endlessly but also seem to enjoy their rough strife. The other is the confrontation-avoiding
couple, who simply agree not to discuss sensitive subjects.

What characterizes marriages headed for disaster is hostility, either overt or detached. (Contempt, Gottman says, is the best
predictor of divorce.) Simple as the model is, the equations are uncannily accurate at distinguishing stable from unstable marriages.
In four studies of more than 700 couples over the last decade, the model has proved more than 90% accurate in predicting divorce.

 Moreover, the analysis of the dynamics offers insight into what goes right or wrong. Indeed, Gottman and colleagues have begun
to design interventions based on the model. Roughly speaking, they look at the parameters that describe a couple’s current
interactions, and then suggest behavioral changes (e.g., “you might want to stop sneering at your spouse”) that nudge the parameters
into a range that include a positive steady state.

Gottman, Murray, and Swanson, with co-authors Rebecca Tyson and Catherine Swanson, have written a book (The
Mathematics of Marriage, MIT Press, 2003) summarizing a decade of research. (They are currently working on intervention
strategies and are also studying gay and lesbian couples.) The application of mathematics to the study of human emotions may still
raise a few eyebrows, but the marriage of math and psychology is one that’s likely to last.

Barry A. Cipra is a mathematician and writer based in Northfield, Minnesota.


