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Celestial Mechanics Theory Meets
the Nitty-Gritty of Trajectory Design
Capture Dynamics and Chaotic Motions in Celestial Mechanics: With Applications to the Construction of Low Energy
Transfers. By Edward Belbruno, Princeton University Press, Princeton, New Jersey, 2004, xvii + 211 pages, $49.95.

In January 1990, ISAS, Japan’s space research institute, launched a small spacecraft into low-earth orbit. There it separated into
two even smaller craft, known as MUSES-A and MUSES-B. The plan was to send B into orbit around the moon, leaving its slightly

larger twin A behind in earth orbit as a communications relay. When B malfunctioned, however,
mission control wondered whether A might not be sent in its stead. It was less than obvious that this
could be done, since A was neither designed nor equipped for such a trip, and appeared to carry
insufficient fuel. Yet the hope was that, by utilizing a trajectory more energy-efficient than the one
planned for B, A might still reach the moon.

Such a mission would have seemed impossible before 1986, the year Edward Belbruno discovered
a class of surprisingly fuel-efficient earth–moon trajectories. When MUSES-B malfunctioned, Belbruno

was ready and able to tailor such a trajectory to the needs of MUSES-A. This he did, in collaboration with J. Miller of the Jet
Propulsion Laboratory, in June 1990. As a result, MUSES-A (renamed Hiten) left earth orbit on April 24, 1991, and settled into
moon orbit on October 2 of that year. Without the assistance of Belbruno and Miller, Japan might not have become the third nation
in history to send a spacecraft to the moon. After performing a series of maneuvers and scientific experiments, Hiten was purposely
crashed onto the lunar surface on April 10, 1993.

N-Body Problems Revisited

Belbruno and Miller modeled Hiten as a particle P of negligible mass moving under the influence of gravitational forces from
the earth (E), the sun (S), and the moon (M). Before getting close to M, P is only slightly affected by it, suggesting comparison with
the three-body problem involving only E, S, and P. In the immediate neighborhood of M, the forces exerted on P by E and M far
exceed that exerted by S, inviting consideration of a second three-body problem involving only P, E, and M. Accordingly, Belbruno
devotes an entire chapter of his three-chapter book to a review of N-body problems, with special attention to small values of N.

The classic N-body problem concerns the motion of N mutually gravitating point masses P1, P2, ... , PN of magnitude
m1 > m2 > ... > mN  in 3-space. Although the case N = 2 (aka the Kepler problem) is completely soluble in closed form, it remains
useful to distinguish certain special cases. Among the most frequently encountered are circular Kepler motion, in which both bodies
move in concentric circles about a common center of mass, and elliptic Kepler motion, in which each body traces out an ellipse
focused at the common center of mass. If one of the bodies far outweighs the other, as the sun does the earth, the more massive
will appear fixed and the other will seem to gyrate around it.

 Belbruno describes the various coordinate systems appropriate to the planar three-body problem, and points out that the so-called
Jacobi coordinates are particularly well suited to the study of three-body problems in which the least massive body is “restricted”
to be of negligible mass. In that case it is often convenient to choose mass units in which m1 + m2 = 1, and to write
m2 = µ < 1 – µ = m1, which implies 0 < µ < ½. When m3 = 0, the equations of motion separate into an autonomous pair of
second-order ordinary differential equations, which can be solved explicitly for the motion of the more massive bodies about their
common center of mass, and a non-autonomous pair involving the solutions of the first two and describing the motion of the
massless third body relative to that same center of mass.

In the special case in which the two massive bodies move in concentric circles about their common center of mass, it is possible
to introduce a system of rotating coordinates in which one of the axes coincides with the line joining the two massive bodies. In
such coordinates, the second set of equations assumes the autonomous form
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and in which f(x) = x = (x1, x2)
t is the familiar centrifugal force vector and g(x) represents the gradient of an appropriately defined

potential function. The points x at which f and g both vanish are known as the Lagrange points L1, ..., L5 because Euler—who found
them before Lagrange was born—already has too many things named after him. L1–L3 lie on the line joining the two massive bodies;
L4 and L5 are symmetrically placed on opposite sides of that line. During the 1960s, L1–L3 were shown to be unstable, and L4 and
L5 to be stable.
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Belbruno then demonstrates that a certain function � �,J x x� —
commonly known as the Jacobi energy function—is a constant of the
motions (1), making the sets � � � �� �1 4,J C x x R J C� � � ��  invariant under
those motions. By evaluating the quantities Ck = J(Lk,0) at
each of the Lagrange points Lk, k = 1,2,3,4,5, one obtains an energy scale
C4 = C5 < C3 < C1 < C2  of particular significance for the planar re-
stricted three-body problem.

The projections of the manifolds J –1 (C) onto the x1,x2-plane are known
as Hill’s regions. Their shapes vary with C, more or less as indicated in
parts (a)–(e) of Figure 1. They are significant because P3 is necessarily
contained in one of them—it cannot enter the shaded regions.

When C > C2, for instance, P3 cannot pass from the unshaded region
containing P1 to that containing P2, or vice versa. Nor can it pass from
either of those regions to the unshaded exterior. Until C < C2, P3 cannot
hope to escape from whichever unshaded region originally contained it.
When C1 < C < C2, however, a passage opens between the unshaded
regions surrounding P1 and P2, permitting P3 to pass from one to the other. Yet it still cannot pass between the interior and the exterior
unshaded regions. Only when C < C1 does P3 become free to roam between those two regions as well. The unshaded region remains
connected until C < C3, then breaks apart into an upper and a lower component when C4 < C < C3, before vanishing entirely
when C < C4. Without the ability to move between P1 = E and P2 = M, there can be no earth–moon trajectories for P3 = P.

“Ballistic” Capture

To maneuver a spacecraft into orbit around the moon, one must arrange for M’s gravitational field to “capture” P. It is far from
clear, however, what “capture” means in this context. Permanent capture in the three-dimensional N-body problem has traditionally
been taken to mean that all the distances rij between point masses Pi and Pj remain bounded as t → ∞, while at least one such distance
grows without bound as t → –∞.

Permanent capture is difficult to achieve, even in the case N = 3. Indeed, it was proved in 1918 that the set of initial positions
and momenta leading to it constitute a set of measure zero in phase space. Proof that the set is non-empty came only in 1960, when
K.A. Sitnikov considered a special case of the elliptic restricted three-body problem depicted in Figure 2. What is now known as
the Sitnikov problem requires that µ = ½ and that P3 be constrained to lie on the vertical (Q3) axis. Such constraint is possible
because the vertical axis is invariant when µ = ½. Sitnikov then proved
that Q3(t) remains bounded for t > 0 if and only if � � � �3 30 0Q Q� �  is
sufficiently small.

Motions for which � �3Q t ld  and � �3 0Q t ��  as t → ∞ are known as
parabolic orbits, and can be regarded as “critical” escape orbits. Sitnikov
also demonstrated the existence of trajectories for which
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�

� . V.M. Alekseev and others
subsequently demonstrated the existence of a neighborhood of the
parabolic orbits in trajectory space in which the motion is chaotic.

Recognizing that permanent capture is too much to hope for in lunar
trajectory design, Belbruno introduces a weaker concept called “ballistic
capture.” He declares P to be ballistically captured by M’s gravitation if
P approaches M in such a way that their combined total energy—kinetic
plus gravitational potential—is negative. For then, were they alone
together in space, P would enter a (bounded) elliptic orbit, rather than a
(boundless) hyperbolic one, about M. Practically speaking, this means
that P must carry enough fuel to reduce its speed relative to M—
presumably by firing its retro rockets on arrival at the desired distance
from M—until its kinetic energy is exceeded by its gravitational potential
at that distance. Although guidance rockets typically fire for seconds or even minutes, their effects are treated as instantaneous
impulses for the purposes of trajectory design.

Impulsive Control in Lunar Mission Design

Lunar missions typically involve three impulses. The first propels P out of its initial (ordinarily circular) earth orbit into a more
eccentric orbit,  headed in the general direction of M; the second effects a mid-course correction, and the last slows P enough to
permit capture. Unlike the simpler “Hohmann transfers” employed by previous lunar missions, the trajectory transfers discovered
by Belbruno in 1986 require no third impulse.

The older class of transfers, discovered by W. Hohmann during the first quarter of the 20th century, involves (ideally) no mid-
course correction. Whereas the initial impulse results in an almost parabolic (eccentricity ≈ 0.97) orbit around E, calculated by
ignoring the moon’s gravity, the final impulse, obtained by ignoring the earth’s gravity, produces a far less eccentric elliptic orbit
around M.

Figure 1. Hill’s regions for various values of the pa-
rameter C. The massless particle P3 can lie anywhere
in the unshaded portions of the x1x2-plane but
cannot enter the shaded parts. Figures from Capture
Dynamics and Chaotic Motions in Celestial Mechanics.

Figure 2. In the three-dimensional elliptic restricted three-
body problem, the massive particles P1 and P2 des-cribe
elliptic orbits with a common focus at the origin of coordi-
nates, undisturbed by the approach of the
massless P3.
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For C = C2, Hill’s regions about E and M osculate at L2; for slightly
smaller values of C, a narrow “neck” opens up between them, through
which P can pass. For C < C2, L2 vanishes, bifurcating into a family of
unstable periodic orbits known as Lyapunov orbits. Inside the neck, the
projections of solutions of (1) onto x1x2-space become chaotic, as shown
in Figure 3.

The intersection of two tubular invariant manifolds in J –1(C) includes
a single Lyapunov orbit Λ, which forms a simple closed loop in 4-space.
All the solutions on one of the tubes spiral in toward Λ, and all those in
the other tube spiral away from it. Hence, in the immediate vicinity of Λ,
a small but timely impulse imparted to P as it approaches Λ along an
inwardly spiraling solution of (1) will transfer it onto an outwardly
spiraling solution. If the inwardly spiraling solution originates near E,
while the outwardly spiraling one is bound for M, the resulting compound
trajectory connects E to M.

Belbruno calculated just such an earth–moon trajectory in 1986 (Figure
4). That trajectory would not have been of much use to the Japanese, since
its initial distance from E far exceeds the requisite rE + 200 km and the
final distance from M far exceeds the desired rM + 100 km. Here, rE and
rM denote the mean radii of the earth and the moon. Belbruno’s trajectory
does, however, demonstrate the feasibility of navigating through the neck
of Hill’s region when C < C2. Belbruno devotes a significant portion of
his third chapter to detailed descriptions of this trajectory and of
the more complicated one he and Miller designed for Hiten.
Because the latter lies in J –1(C) for C < C1, the shaded portion of
Hill’s region does not separate the plane into an interior and an
exterior component. This made it possible for the spacecraft to
venture almost four times as far from the earth as the moon ever
does.

Belbruno’s accomplishments are well known in the
astrodynamical community, and many recent mission designs
have been influenced by his work. He himself mentions the
SMART1 lunar mission of the European Space Agency, a NASA
mission to Jupiter’s moon Europa, Japan’s Lunar A mission, and
a Japanese mission to Mars called Planet B. Jerrold Marsden was
quick to acknowledge via e-mail that Belbruno’s work on Hiten,
along with Belbruno’s joint work with Brian (no relation) Marsden
on “resonance hopping,” has influenced a lot of the work his own
group has been doing lately, and suggests that more than a few
others in the field are following his lead.

Belbruno’s book combines the latest theoretical results in celestial mechanics with the nitty-gritty of successful trajectory design.
It is possible to gauge the breadth of its coverage by the extent of its bibliography, which contains 231 references to authors as
diverse as Kepler, Newton, Euler, Lagrange, Hamilton, Poincaré, Sundman, Moulton, Morse, Moser, Milnor, J. Marsden, B.
Marsden, Smale, Saari, and Xia. A truly startling array of mathematicians has contributed to our current (practical and theoretical)
understanding of the N-body problem.

James Case writes from Baltimore, Maryland.

Figure 3. The closed orbit in the “neck region” of the
unshaded portion of the x1x2-plane is the limit cycle of the
inwardly spiraling pair of solutions and, with time re-
versed, of the outwardly spiraling pair as well. A small
impulse can thus divert P3 from an inwardly spiraling
course to an outwardly spiraling one, causing it to enter
one side of the neck and exit the other.

Figure 4. Representation of a complete transition from an out-
wardly spiraling earth orbit, through the neck of a three-dimen-
sional Hill’s region, to an inwardly spiraling lunar orbit.


