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Morphological Image Registration and
Nonlinear Elasticity
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Classic modes of image acquisition like
computer tomography and magnetic reso-
nance tomography, along with a variety of
novel image sources, such as functional
magnetic resonance imaging, three-dimen-
sional ultrasound, and densimetric com-
puter tomography, provide a variety of
three-dimensional, usually scalar, grey-val-
ued images of the human body. Even when
such images show the same objects, how-
ever, corresponding parts of the objects
typically do not appear in the same posi-
tion.

For many reasons, beyond differences in
body positioning in the image-acquisition
devices, we cannot simply overlay images.
Physical deformation of the object struc-
tures, temporal changes in the object from
one acquisition time to the next, and un-
known distortions due to artifacts in the
image generation itself usually make it
impossible to overlay images, even after a
suitable rigid body motion. Hence, we need
a nonlinear transformation that ensures the
correlation of physically related object
structures in the images. Such correlation
becomes particularly challenging when the
images under consideration are of physi-
cally different objects with similar struc-
tures, such as images of different human
brains. We cannot usually expect a corre-
spondence of image intensity values at struc-
turally corresponding positions (compare
the CT and MR slices in Figure 1). What
remains, at least partially, in real applications is the local image structure, or “morphology,” of corresponding objects. Our aim is
thus to match images with respect to their morphologies.

A Variational Formulation

Mathematically, we take a variational approach to this problem. Our aim is to correlate two images—a reference image R and
a template image T, for simplicity defined here over the same image domain Ω.

In fact, we seek a deformation φ from the reference domain onto the template domain, such that

                                                                 Morphology(T ° φ) ≈ Morphology(R).

Before we can state the problem of morphological image matching in the language of the calculus of variations, we need to define
the morphology of an image mathematically. To this end, we consider level sets Mc of an image I on an image domain Ω
corresponding to an image intensity c, given by

                                                                         Mc[I] := {x ∈ Ω I(x) = c}.

We can now define an image I and an image R as morphologically equivalent if there exists a (usually monotone) grey-value

Figure 1. Sectional morphological registration of a pair of MR and CT images of a human
vertebra. Top left: reference, CT. Top right: template, MR. Bottom left: resulting
deformation applied to a lower-resolution uniform grid. Bottom right: result of the
registration. The dotted lines indicate structure originally found in the CT reference
image; they are always drawn at the same position and indicate the proper matching.
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transformation β such that β ° I = R.
Such a grey-value transform does not change the shape of the level sets; it simply exchanges level sets of different intensity values

(Mc[R] = Mβ(c)[I]). Hence, a morphology M[I]—which identifies the structure of an image but remains invariant under grey-value
transforms—can be identified with the set of all level sets

                                                                         Morphology[I] :={Mc[I] c ∈ � }.

The morphology M[I] can be identified with the normal field (Gaussian map) : ; /d
In x I I�� � �� � up to the orientations

of the normals. Indeed, the normal field uniquely identifies the set of level sets. A rigorous treatment of possible singularities of
the normal field can be found in [4].

Because morphological methods in image processing are characterized by invariance with respect to morphology, geometry
naturally enters the field of morphological image processing [6].  Aiming for a morphological registration method, we look for a
deformation φ : Ω → Ω such that each deformed level set φ(Mc[R]) of the reference image R coincides with a level set cM
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[T] of
the template image. In terms of the normal field, we can restate this as a requirement that the deformed normal of the reference image
nφ

R be aligned with the normal of the template image nT ° φ at the deformed position; the geometric configuration is sketched in
Figure 2. Normals are transformed by the co-factor Cof Dφ = det Dφ Dφ–T, and we get Cof Cof / .

RR R D nn D nG �� �  Hence, a
suitable first choice for a morphological matching energy is given by the least-square difference
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We are not restricted to this type of energy,
however, and can take non-monotone grey-
value transforms into account in our notion
of morphology.

Regularization

Any deformation that merely exchanges
level sets, or that only reparam-etrizes level
sets, does not change the energy. Thus, given
one minimizer we already have many, and
the structure of the set of minimizers is very
irregular. Seeking a regularization of the
energy that will overcome this problem, we
consider a second energy Ereg and look for
minimizers of the combined energy
Em + Ereg.

A suitable class of regularization energy
consists of polyconvex energy functionals,
which are well known from the theory of nonlinear elasticity [2]. As an example, we consider an energy controlling the change in
length, area, and volume separately:
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In particular, with Γ(D) = Dr + D–s for r, s > 0, we can penalize extensive volume shrinkage and expansion simultane-ously.
The outstanding property of regularization energy of this type is that it prevents the interpenetration of matter and thus enables us
to ensure that minimizers of the energy are homeomorphisms [1]. It also allows us to control singularities in the normal field, such
as edges or boundaries of flat regions. Furthermore, the term responsible for the area element transformation is again the cofactor
matrix of the Jacobian. We can thus treat the minimization problem via direct methods in the calculus of variations, even though
the regularization is actually not of higher order, as usually observed in energy regularization approaches.

The numerical implementation is based on a multiscale approach combined with a stepsize-controlled gradient descent method
(see the registration results in Figure 1). In fact, we begin by matching coarse representations of the image data and then proceed
with successively finer resolution [3]. Resolution of the coarse-scale representations of the images on coarse meshes turns out to
be sufficient, which significantly reduces the computation time.

Figure 2. The geometric configuration in morphological image matching and the mis-
match of deformed reference normal and template normal at the deformed position.
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Relation to Information Theoretic Registration Models

Information theoretic approaches to multimodal registration have become very popular during the last decade. Viola and Wells
[7], and Collignon et al. [5] independently, came up with the idea of interpreting the image intensities as random variables and then
using the concept of mutual information to measure how well the deformed reference image describes the template image in a
stochastic sense. For an infinitesimal volume, where the image can be approximated by an affine function, mutual information is
maximal if the tangent directions coincide. Thus, in a multiscale treatment of the problem, we see strong links between the
morphological approach and the mutual information approach that are especially worthy of further exploration.

Looking to the future, the real challenge is to generalize mathematical concepts of morphology, in such a way that they reflect
the physical reality and the actual output of image-acquisition devices. In medical imaging especially, morphology is a framework
that is not limited to mathematical morphology. Furthermore, multiscale methods, which truly reflect morphological structure, will
be a key to improved efficiency and robustness.
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