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Accurate Eigenvalues
for Fast Trains
By Ilse C.F. Ipsen

Participants from Berlin, Bologna, and
Basel arrived by train, as did those who
had flown into Frankfurt or Düsseldorf
from Madrid, Manchester, and Raleigh/
Durham. The occasion: IWASEP5* and a
workshop of the GAMM activity group in
linear algebra†, both held in Hagen, Ger-
many, during the week of June 28, 2004.
The subjects: accurate solution of eigen-
value problems, and linear algebra in
systems and control theory. One applica-
tion: trains.

Vibration Analysis of Rails Excited
by High-Speed Trains

With new ICE (Inter-City Express)
trains crossing Europe at speeds of up to
300 kilometers/hour, sound and vibration
levels in the trains are an important con-
cern. To address the problem, Volker
Mehrmann and Christian Mehl of the
Technical University of Berlin, working
with SFE, a structural engineering firm in
Berlin, have studied the resonances of
railroad tracks excited by high-speed trains.

The trains are modern, Mehrmann and Mehl explained in talks at the Hagen workshops, but the numerical methods used to design
them are at least 30 years old. More often than not, classic finite element packages produce answers that fail to deliver even a single
correct digit. Mehrmann and Mehl showed how modern methods from linear algebra can provide answers accurate to three digits
in single(!) precision, with no change in the finite element model. Central to their idea is a careful exploitation of the structure of
the eigenvalue problem.

An understanding of what Mehrmann, Mehl, and their collaborators have done starts with a model of the railroad track. If the
rails are straight and infinitely long, a simple finite element discretization, as shown in Figure 1, produces an infinite-dimensional
system of ordinary differential equations:
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where the matrices M, D, and K are block-tridiagonal. If the sections of track between crossties are identical, the system is also
periodic. Application of a Fourier transform and combination of all unknowns located between crossties j and j + 1 into one vector
yj produce a three-term difference equation with constant coefficients:
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where the complex coefficient matrices depend on the excitation frequency (and with the superscript T denoting the transpose).
The matrix A0 is symmetric ( 0 0

TA A� ); A1 is singular. Setting yj+1 = k yj leads to a rational eigenvalue problem:

Figure 1. Discretization of the rail.

* The fifth International Workshop on Accurate Solution of Eigenvalue Problems (http://www.fernuni-hagen.de/mathphys/iwasep5/); see
Beresford Parlett’s article on page 3.

†For information about GAMM (Gesellschaft für Angewandte Mathematik und Mechanik), the activity group in applied and numerical linear
algebra, and the workshop, see http://www-public.tu-bs.de/~hfassben/gamm/gamm_fa_anla.html.
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Because R (k) = (1/k)T, this eigenvalue
problem is palindromic (named for verbal
palindromes, such as: Was it a car or a cat
I saw?). As a result, the eigenvalues occur
in pairs (k, 1/k). Such a spectrum is called
“symplectic”; an example is shown in Fig-
ure 2. For an analysis of the track vibra-
tions, all finite, non-zero eigenvalues and
eigenvectors have to be computed for many
frequencies in the 0–5000 Hz range.

Eigenvalues

A popular approach to the rational eigen-
value problem R(k)y = 0 is to convert it to
a polynomial eigenvalue problem, which
in turn is linearized. In this approach,
R(k)y = 0 is written as the polynomial
eigenvalue problem
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Application of a classic linearization z = ly leads to something like

This is a generalized eigenvalue problem, which can be solved by public-domain software, such as the MATLAB function eig. That’s
it, problem solved! Right?

Not quite—in fact, nothing we have produced is useful. The two big matrices in the linearized problem are not symmetric; the
structure of the original problem has been destroyed. This means that numerical methods are not going to deliver a symplectic
spectrum—that is, the computed eigenvalues are not going to exhibit mirror symmetry, and computed eigenvalues at 0 and ∞ are
not going to occur in pairs. We cannot trust any of the computed eigenvalues. The conventional methods, unable to recognize the
structure in the original problem, have produced inaccurate, useless eigenvalues.

What can be done? Accurate computed eigenvalues should, at the very least, retain the mirror symmetry of a symplectic spectrum.
If it is to have a chance at delivering a symplectic spectrum, a numerical method is much better off if it can work on a palindromic
polynomial. What we need, in other words, is a way to linearize without losing the palindromic structure.

To this end, Mehrmann and Mehl, working with Niloufer and Steve Mackey, have developed a theory of structure-preserving
linearizations that yields a whole vector space of linearizations. Not all the linearizations are useful, and choosing one that is “best”
(whatever that means) is an open problem. For the application at hand, one that works is:
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Figure 2. Example of a symplectic spectrum.
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which is a palindromic linearization‡ of P(l).
We are still not home free. As it turns out, the computed eigenvalues in this problem are badly scaled: Their magnitudes range

from 10–15 to 1015. This is so because many of the exact eigenvalues of P(l) are located at 0 and ∞. An essential step is thus a similarity
transformation that removes (deflates) the eigenvalues at 0 and ∞, while managing to preserve the palindromic structure. Only then
can the remaining eigenvalues of P(l) be computed, with a carefully customized Jacobi method.

The Upshot

It pays to preserve structure, if this can be done in a numerically viable fashion. In the train problem described here, structure-
preserving linear algebra methods rescued an otherwise moribund computation. They made it possible to compute accurate
answers—even in the face of a simplistic computational model and a coarse discretization.

Many details were swept under the rug in the preceding description. A fuller version of the story can be found in the following
sources, which represent just a few of the many papers on structure-preserving methods in linear algebra. A general survey of
quadratic eigenvalue problems, including conventional linearizations, is given in [5]. A first attempt at structure-preserving
linearizations for matrix polynomials is described in [4]. A forthcoming paper [2] introduces vector spaces of linearizations for
matrix polynomials, and another presents linearizations for palindromic polynomials  [3]. The work on the SFE project is the subject
of a master’s thesis [1].
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‡ Strictly speaking, it is a linearization only if –1 is not an eigenvalue; if –1 is an eigenvalue, the eigenvalue must be removed (deflated) first.


