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A Welcome Addition to the Chaos Literature
Chaotic Transitions in Deterministic and Stochastic Systems: Applications of Melnikov Processes in Engineering, Physics,
and Neuroscience. By Emil Simiu, Princeton University Press, Princeton and Oxford, 2002, xiv+224 pages, $49.50.

For all that has been written about chaos, there seems to be a gap between the popular expositions (of which James Gleick’s Chaos
is deservedly the best known) and the scholarly treatises. There ought to be an intermediate text that quickly conveys the reader from
a standing start to at least a few of the more accessible applications. Now Emil Simiu, a fellow at the National Institute of Standards

and Technology and a research professor in the Whiting School of Engineering at Johns Hopkins
University, has written such a book. One can imagine others, stressing different aspects of the theory and
aimed at different areas of application, but here at least is one.

Among Simiu’s applications are small boats at anchor, which are kept in virtually perpetual motion
by the action of wind and waves. If wind effects are negligible, and if successive wave fronts are parallel
to the line from stem to stern, such a boat will neither pitch nor yaw. It will merely roll from side to side,
in a motion governed by a single second-order system of ordinary differential equations. The boat will

continue to roll to and fro until θ—the angle between the boat’s plane of symmetry π and a vertical plane that meets π in a horizontal
line—exceeds a critical value θc, usually between 30° and 35°, at which time it will capsize.

Reduced to nondimensional form, the equations of rolling motion become

(1)

where x = θ, t = ωτ, a, b, c, and ω are measured constants, and overdots denote differentiation with respect to the dilated clock
time t. The unperturbed system is of the Hamiltonian form x��  = –V´(x), where ´ = d/dx, H =
y2/2 + V(x), V(x) = x2/2 + ax 4/4, and the point x = y = 0 lies at the bottom of a lens-shaped basin of attraction. Wave action
appears only in the perturbed system, where it is incorporated into the forcing term f(t). If the waves are sufficiently violent, the “state
vector” (x(t),y(t)) can escape from its basin of attraction, causing the boat to capsize. Opinions vary as to whether f(t) should vary
harmonically, periodically, almost periodically, stochastically, chaotically, or whatever.

In addition to boats at anchor, a large number of physical devices can be modeled as second-order Hamiltonian systems, perturbed
by noise. Such systems can exhibit arbitrarily many basins of attraction, and their state vectors can be driven by noise to jump
repeatedly from one such basin to another. If the noise is loud enough, the resulting motion is all but certain to be chaotic. Emil
Simiu illustrates the use of specific techniques, mainly those of Melnikov, for analyzing the motion of such systems. Although the
techniques have analogues in higher dimensions, the underlying ideas are most easily explained in just two. Moreover, the relative
abundance of significant applications in the plane suggests that a two-dimensional introduction to the subject, easily accessible to
engineers and scientists, should be of considerable value.

Most of the systems discussed in the book are of the form

           .x = f(x;m) + εg(x,t;m)                                                                               (2)

where (x = x1,x2)
T,  f = (f1,f2)

T = (Hy,–Hx)
T, and  g = (g1,g2)

T, while m = (µ1, . . . , µn) is a vector of parameters. When H is of
the form y2/2 + V(x), x and y can be referred to as the position and momentum components, respectively, of the state vector x.
Potential wells are features of potential functions V(x), and typically correspond
to basins of attraction in the plane containing all possible state vectors x = (x,y)T.
On occasion, Simiu also considers three-dimensional systems—in which x = (x1,
x2, x3 )

T and x3 = z is a slowly varying quantity such that  ·z = εg3(x, y, z, t; m). In
the absence of specific warnings to the contrary, the func-tions H, V, g1, g2, and g3 are
assumed to be many times differentiable in all arguments.

The basins of attraction of such systems can be as distinct as those in Figure 1, or
as intertwined as those in Figure 2. In three dimensions, the geometry can be vastly
more complex. In all cases, it is important to know whether and how often the state
vector of the perturbed system can be expected to jump back and forth between the
several basins. The Melnikov method is designed to answer such questions. When
jumps are possible, the position component of the state vector tends to oscillate
first around one value, and then around another, as indicated in Figures 3a and 3b,
obtained by forcing the system of Figure 1 in different ways. Can you guess which
history corresponds to harmonic, and which to stochastic, forcing? (Answer: (a)
is harmonic.)

Saddlepoints like the ones at the points O in Figures 1 and 2 are of particular
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Figure 1. Homoclinic orbits and typical peri-
odic orbits in an unperturbed system (from
Allen, Samelson, and Newberger, 1991). All
figures from Chaotic Transitions in Determinis-
tic and Stochastic Dynamical Systems.
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significance in phase plane analysis. They are isolated stagnation points (in the sense that
x vanishes nowhere else in a neighborhood of O) at which two stable solutions end and
two unstable ones begin. The Melnikov function M(.) assumes its simplest form in cases
in which at least one of the unstable solutions beginning at a saddlepoint O bends back
on itself to become a stable solution, ending where it began. This occurs on both sides
of Figures 1 and 2. In such cases, there are many solutions φ(t) of the unperturbed system
(2) for which φ(∞) = φ(–∞) = O. If P is a point on an arc Γ traversed by a continuum
of such solutions, and if φp(.) denotes the particular solution for which φ(O) = P, then
every point Q of Γ is characterized by the time t = tQ at which φp(t) = Q. Indeed,
φp(t + tQ) =  φQ(t) is the solution of (2) for which φ(O) = Q. The Melnikov function
is then

M(tQ) = ∫ [    f (φp(u)) × g(φp(u),  u + tQ)]du, (3)

the integral (3) running from –∞ to ∞, and the cross product of  a = (a1, a2)
T and b = (bl, b2)

T being the scalar a × b = a1b2 – a2b1.
M(.) contains a surprising amount of qualitative information about the solutions of (2), which correspond to small values of ε > 0.

As ε increases from 0, a particular Γ typically bifurcates into distinct arcs Γ´ and Γ´´, traversed, respectively, by stable and
unstable solutions of (2). For small values of ε, both Γ´ and Γ´´ will approximate Γ. Hence, a perpendicular to Γ through a point
Q ∈ Γ will meet Γ´ at Q´ and Γ´´ at Q´´. Let A(tQ;ε) denote the distance between Q´ and Q´´. Direct calculation reveals that

       ∆(tQ;ε) = εM(tQ) + O(ε2) (4)

and hence that, for sufficiently small values of ε, Γ´ and Γ´´ cross near simple zeros of M(.). A significant portion of the second
chapter is devoted to calculating M(.) for specific types of perturbation  g. The integral (3) is shown, in many cases of interest, to
differ by at most a constant from a convolution. In other words, M(tQ) = h * f – k,   where f = f(t) is a time-dependent forcing
function and h = h(t) is an impulse response. The utility of the Melnikov function is limited by the fact that, since the integral in
(3) extends from –∞ to +∞, the relationship between f(.) and M(.) is anticipative rather than causal.

The principal results concerning M(.) are that the “separatrices” Γ´ and Γ´´ must cross near simple zeros thereof, and that—as
suggested by Figure 3—the motion of the system is chaotic whenever the forcing term f(t) is large enough to cause jumping from
one basin of attraction to another. When f(.) becomes a stochastic process, M(.) becomes one too, and the integral in (3) becomes
stochastic. Yet the resulting “Melnikov process” retains much of its former significance, yielding an estimate of the mean escape
time from a given basin of attraction, of the probability of nonescape during a specified time interval, and more. Many of the stated
results remain valid even when f(t) is non-Gaussian.

To make the book reasonably self-contained, Simiu is obliged to include a chapter on deterministic chaos, including Lyapunov
exponents, Cantor sets, fractal dimensions, Smale’s horseshoe map, the shift map, and symbolic dynamics, along with a chapter on
stochastic processes, before proceeding to stochastic chaos. The more technical aspects of all this are relegated to seven appendices.

Readers already acquainted with chaos and stochastic processes will be able to skip more or less directly to the second part of
the book, on applications. Included here are chapters on boat capsizing, wind-induced ocean currents, auditory nerve fibers (which
can also experience abrupt transformations
in state), sudden transitions of a heavily
loaded and transversely excited column from
one deformed state to another, and more.

For this reviewer, the chapter on “sto-
chastic resonance” was particularly enlight-
ening. When certain systems of the type
described by equation (2) are excited by
both noise and a periodic signal, it is pos-
sible to increase the signal-to-noise ratio by
the paradoxical means of increasing the noise
intensity. This phenomenon is known as
stochastic resonance. The Melnikov ap-
proach provides a unifying approach to such
problems, permitting comparison between
this and other (typically more mundane)
means of improving the signal-to-noise ra-
tio. The approach reveals, in particular, that
the improvement is greatest when the spec-
tral power of the noise is concentrated at or
near the frequency at which a readily comput-
able quantity known as the “Melnikov scale
factor” achieves its maximum.

Figure 2. Point attractors and their basins
of attraction for an unforced, dissipative
double-well oscillator (after Thompson and
Stewart, 1986).
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Figure 3. Records of chaotic motion for (a) harmonic forcing and (b) realization of
stochastic forcing.
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All in all, Simiu has written an interesting and broadly accessible book—a welcome addition to the rapidly expanding literature
of chaos.

James Case writes from Baltimore, Maryland.


