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A Wavdet Bassfor Euclidean Invariant
Computation of Visual Contours

By John Zweck and Lance Williams

Visionishby far themost highly devel oped sensein humans. Much of our knowledge of theexternal worldisbased oninformation
presented to usin visual form, and alarge portion of the brain is devoted to visual information processing. One of the basic tasks
of human—and computer—vision systemsis to complete the boundaries of partially occluded objects. The goal of our research
istodevelop abiologically plausibletheory of boundary-contour completion. Inthisarticlewe describethefirst discrete numerical
algorithm [11] for completing contours in a Euclidean invariant manner and then discussits parallel
implementation.

APPLICATIONSON  Afirst stepintheprocessof identifying objectsintheenvironmentistolocatethe contoursthat define
ADVANCED the boundaries of the objects. Because the boundaries of objectsin complex environments are often

partially hidden (or occluded) by other objects, arobustly functioning visual system must be able to
ARCHITECTURE fill in, or complete, the missing portions of the boundaries. The boundary of an object, even when not

COMPUTERS actually hidden by another object, is often difficult to detect; typically, this happens when the
_ reflectance of the object matches the reflectance of some part of its background.
Greg Astfalk, Editor The human visual systemis particularly good at filling in missing object boundaries. Theresultsare

called “illusory contours.” To test your own visual system'’s ability to form illusory contours, take a
look at the well-known Ehrenstein stimulus and Kanizsa triangle (Figure 1).

Our new algorithm is based on arecently developed computational theory of contour completion [9, 10]. Like computationsin
the human visual cortex (and unlike all previous models of illusory contour formation), our computation is Euclidean invariant—
anarbitrary rotation and translation of theinput image produce anidentical rotation and translation of theresultingillusory contours
(seeFigure 2). We achievethisinvariance by representing the various states of the computation in abasis of “ shiftable-twistable”
functions. Neuroscience experiments sug-
gest that ensembles of neuronsin thevisual
cortex can be modeled by a shiftable— (a) (b)
twistable basis. From amathematical point
of view, the novelty of our approach comes
from the use of a shiftable-twistable basis
to eliminate grid orientation effectsin the
numerical solution of an advection—diffu-
sion equation.

Since our algorithm uses abasis of fine-
scale three-dimensional functions to com-
plete object boundariesin complex scenes,
it is not practical to perform the computa-

tion, at the high resolutions required, on

serial machines. Furthermore, in the next  Figure 1. The Ehrenstein stimulus (a) and the Kanizsa triangle (b).

stage of our research, the main routine in
the algorithm will be iterated to produce

contoursthat areapriori closed curves. For
these reasons, we decided on a parallel \

implementation of our algorithm (on an
IBM—SP2 parallel computer).

The Human Visual System
The architecture of the visual cortex—

the region of the brain responsible for
visual information processing—provides
several clues as to how illusory contour \/—I

formation might occur inthebrain. Two of
the most important areas for visual infor-
mation processing are the primary visual
cortex (V1) and the secondary visual cor-

tex (VZ_) (Wh_i ch recei\_/e_s itS. input from  Figure 2. Stochastic completion fields, for the Kanizsa triangle (left) and after rotation
V1). Orientation selectivity first emerges and translation of the initial conditions (right).




in V1, and there is strong evidence to suggest that illusory contour formation occursin V2.

Any computational model of human visual information processing must reconcile two apparently contradictory observations:
On the one hand, computationsin the primary visual cortex are largely Euclidean invariant; on the other hand, the discrete spatial
sampling of the visual field by V1 is exceedingly sparse. Put succinctly: Why doesn’t our perception of the world change
dramatically when we tilt our head by 5 degrees? A similar issue was raised in a 1999 Nature paper [2]:

“On average, aregion of just 1 mm?on the surface of the cortex will contain all possible orientation preferences, and, accordingly, can analyze
orientation for one small area of the visual field. This topographical arrangement allows closely spaced objects with different orientations to
interact. But it also means that a continuous line across the whole visual field would be cortically depicted in a patchy, discontinuous fashion.
How can the spatially separated elements be bound together functionally?’

These issues are precisely the ones we address in this article. One of our main goalsisto show how the sparse sampling of the
visual field can be reconciled with the Euclidean invariance of visual computations. To realize this goal, we introduce the notion
of ashiftable-twistable basis of functions on the space R? x S' of positions and directions. This notion is a generalization of the
notion of ashiftable-steerablebasisof functionsonthe plane R?, introduced by Simoncelli et al. [8] to perform Euclidean invariant
computations on R% Since many computationsin V1 and V2 likely operate on functions on R? x S, rather than on R? (e.g., [3,
5, 7, 9]), we propose that shiftability—twistability (in addition to shiftability—steerability) is the property that binds spatialy
separated elements together functionally to perform Euclidean invariant computations in the visual cortex.

Neuronsinthevisual cortex are characterized by their receptivefields. Classically, thereceptivefield of such aneuronisdefined
asthe two-dimensional function that indicates the response (i.e., the firing rate) of the neuron to a point of light at every location
on theretina. Typically, receptive fields are localized in both space and frequency.

There are neuronsin V1 called simple cellswhose receptive fields exhibit amarked preference for narrow stimuli of a specific
orientation. Traditionally, these cells have been described as edge (or bar) detectors. Accurate models of the receptive fields of
simple cells can be produced with two-dimensional Gabor functions[1], which are the product of a Gaussian and acomplex plane
wave. Gabor functions, uniquein being maximally localized in both space and frequency, arewell suited to the encoding of visual
information. Based on experimental observations, Daugmann[1] (and others) suggest that an ensembl e of receptivefieldsof simple
cells can be regarded as performing awavelet basis expansion of the image, in which the responses of the neurons correspond to
the coefficients in the expansion and the receptive fields correspond to the basis functions.

Results of arecent experiment by von der Heydt et al. [4] suggest that illusory contour formation occursin V2. They observed
that the firing rate of certain neurons in V2 increases when their receptive fields are crossed by illusory contours (of specific
orientations) induced by pairs of bars flanking the receptive field. Significantly, when the same bars are presented singly, the
neurons do not respond; they respond only to pairs.

Although our new contour-completion algorithm does not provide a model for illusory contour formation in the visual cortex
thatisrealisticinevery respect, it doeshave several biol ogically plausiblefeatures, none of which arefoundin previousalgorithms,
e.g. [3,5,7,10]. Specifically, inour algorithm: (1) all states of the computation are represented in awavel et-like basis of functions
that are localized in both space and frequency (with the spatial localization making it possible to perform the computation in
paralel), (2) the computation operates onthe coefficientsinthewavel et-like expansion, (3) the computationisEuclideaninvariant,
and (4) the basis functions used in the computation have centers lying on arelatively sparse grid in the image plane.

Stochastic Completion Fields

Like many problemsin vision, illusory contour formation isill-posed: The visual system cannot know the precise shape of the
portionsof an object’ sboundary that are hidden fromview. In[9] itisargued that the visual system computesthelocal image plane
statisticsfor thedistribution of all possible completions, rather than simply the most probable one. Asin[6], the assumptionisthat
any prior probability distribution of completion shapes encoded in the human visual system would favor smoother, shorter shapes,
moreover, the distribution of completion shapesthat can extend a contour at a point depends only on the position and direction of
the contour at that point, i.e., the distribution can be modeled by aMarkov process. These assumptionsled to the use of the device
of a particle undergoing a stochastic motion in modeling the distribution of completion shapes. Particles, which possessaposition,
X = (xy) € R%andadirection of motion, 8 € S, move with constant speed in directions governed by Brownian motions. In
[6], it was observed that the probability P(X, 8t) that a particle is at (X, 8) at time t evolves according to the Fokker—Planck
advection—diffusion—decay equation:
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where ¢ and 1 are the 6-diffusion and decay parameters.

Given a set of position and direction constraints, called sources and sinks, that represent the beginning and ending points of a
set of contour fragments, the stochastic completion field [9] at (X, 0) is defined as the probability that a contour from the prior
distribution of completion shapeswill passthrough (X, ) on apath from asourceto asink. Because the stochastic processisMarkov,
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thecompletionfieldisthe product of asourcefield and asink field. At (X, 0) the sourcefield measuresthe probability that acontour
beginning at a source will pass through (X, 6), and the sink field measures the probability that a contour beginning at (X, 6) will
reachasink. Thesourceand sink fieldsare obtained by integrating sol utions of the Fokker—Planck initial-valueproblem (1VP) over
time. Figure 2 shows the completion field for the Kanizsa triangle stimulus.

The Algorithm

In the computation of stochastic completion fields, the input and output are functions on R? x S', and the appropriate notion of
invarianceisdetermined by the symmetries Tx,,o, of R* x S that perform ashiftin R*by X, 6, followed by atwistin R*x S' through
an angle, (i.e., arotation of R? and a corresponding trandation in S by 0,). A visual computation on R? x S'is called shift—twist
invariant if it isinvariant under all the transformations Txe, for (X,, 6,)€ R* x S. Shift—twist invariance is the appropriate notion of
invariance for completion field computations because, in the continuum, the transformations Tx,,, are symmetries of the Fokker—
Planck equation.

A shiftable—twistable basis of functionson R? x S'isa set of functions with the property that whenever afunction P(X, 8) isin
their span, then sois P(Tx,e,( X, 8)), for every choiceof (X, 8;) in R* x S'. (Wecall such aset of functionsabasis, even though the
functions need not be linearly independent.) As such, the notion of a shiftable-twistable basis on R? x S generalizes that of a
shiftable-steerable basis on R The discrete numerical algorithm described in this article computes completion fieldsin a shift—
twist invariant manner by evolving the Fokker—Planck equationin
a shiftable-twistable basis.

A discrete Dirac basisconsisting of functionsWy ,(X,0) = 8( X
— kA = 8(6 — mA,), where (k, m) is a triple of integers, is not
shiftable—twistable. (Thisistrue because aDirac function located
off the grid of Dirac basisfunctionsisnot in their span.) A major
shortcoming of all previous contour-completion algorithms (e.g.,
[3,5,7,10]) isthat thecomputationsare performedin such abasis.
Asaconsequence, initial conditionsthat do not lie directly onthe
grid cannot be accurately represented in the basis and the com-
pleted contour will containvisibleartifacts. Furthermore, comple-
tion fields computed by the finite differencing scheme of [10]
exhibit a second visible artifact—namely, a marked anisotropic
spatial smoothing because of the manner in which two-dimen-
sional advection is performed on agrid (see Figure 3). Although
probability mass(i.e., particles evolving according to the Fokker—
Planck equation) advects perfectly in either of the coordinate
directions, mass moving at an angle to the grid will gradually
disperse, since bilinear interpolation is used to place the mass on
the grid.

For our new algorithm, wefirst definethe concept of ashiftable—
twistable function on R? x S' and construct a shiftable-twistable
basis by taking a discrete number of transformations Ty, .., Of @ Figure 3. Completion fields for rotations of the Ehrenstein
given shiftable-twistable function. We then design a shiftable— st_imulus_ shown in Figure 1(a), obtained_ with the finite
twistable basis in which the initial conditions (the sources and g’tﬁfnre('gf)’ftg ;Crhoev';)"e of [101 {top row) and with the new algo-
sinks) can be accurately represented. To solve the Fokker—Planck
equation, we express its solution in terms of the basis functions
¥, (X, 0) as

P(X.6:t) = 3 ¢ ()W (X.6) )

where the coefficients c,(t) depend on time. Finally, we derive a linear transformation, c(t + At) = (A ° D)c(t), to evolve the
coefficient vector. Thistransformation isthe composition of an advection transformation, A, which transports probability massin
directions 6, and a diffusion-decay transformation, D, which diffuses massin 6 and decays mass over time.

Shiftability—twistability isused in two ways to obtain shift—twist invariant completion fields. First, it enablesall pairsof initial
conditionsrelated by anarbitrary transformation Tx, to berepresented equal ly well inthebasis. Second, itisusedto deriveashift—
twist invariant advection transformation.

Shiftable-Twistable Bases

The concept of the shiftability [8] of afunctionisclosely related to the Shannon sampling theorem. A periodic function y(x) of
period Xisshiftableif thereisaninteger K such that theshift of y by an arbitrary amount, x,, can beexpressed asalinear combination
of K basic shifts of v,

K-1

W(X=%) = 3 b (Xo)W(x —ka) &)

k=0
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for someinterpolation functionsb,(X,), where A = X/K. The simplest shiftablefunctionisapure harmonic. More generally, we can
shift any band-limited function by choosing K to be the number of frequencies in the band and setting b(x,) equal to b(x, — kA),
where b(X) is the complex conjugate of the corresponding band-pass filter. Although they are linearly dependent, an appropriate
collection of discrete dilations and transl ations of a shiftable function of mean zero formsan over-compl ete self-inverting wavel et
basis (i.e., atight frame).

A periodic function (X, 0) onR*x S'is called shiftable-twistableif, for each (X, 8), there are interpolation functions b; (X, 8,)
such that

)3 bﬁ‘m(xo,eo)w(TmAe (%, e)) 4)

for some choice of A and A,. Examples of shiftable-twistable functionsinclude functions of the form ¥(X,0) = y(X)f(6), where
y isaGaussian, Gabor, or directional derivative of Gaussian and f isa pure harmonic or Gaussian. In particular, receptive fields
in V1 can be modeled by shiftable-twistable functions.

Solution of the Fokker-Planck Equation

Theinitial conditions for the Fokker—Planck IV P are modeled by fine-scale, three-dimensional Gaussians whose centers are
determined by the locations and directions of the edge fragments to be completed. For simplicity, we solve the Fokker—Planck
equation in a Gaussian—Fourier basis consisting of functions ¢, (X,0) = w(X —kA)€*®, where y isaradial Gaussian of the same
fineness asthe Gaussian initial conditions. These choi ces enable usto use shiftability to accurately represent theinitial conditions
in the basis. The computation of completion fields in the Gaussian—Fourier basis, as explained in [11], can be interpreted as a
computation in adirectional derivative of the Gaussian—Fourier basis, whose elements look more like receptive fieldsin V1.

The solution of the Fokker—Planck equation in the basisis given by alinear transformation, c(t + At) = (A o D) c(t), of the
coefficient vector cot) ={ cx, (1)}, which evolves the probability density function,

P(%.68:1)= Y ¢, (W, (%6) )

according to the Fokker—Planck equation.

Let b (X,) denote the interpolation functions used to shift y(X) by X,. The advection transformation A, which has the effect of
translating P(X, 6; t) indirection 6 at unit speed for time At, is given by

Ct+20) =3B, (8, (0 (6)
where b « o(At) denotesthe mth Fourier seriescoefficient, with respect to 6, of b (At(cos6, sin®)). In particular, A isaconvolution
operator on the vector space of coefficients ci,,,.

To derive the expression for the advection transformation A, we exploit the fact that shiftability can be used to perform perfect
spatial advection in direction 8, with shiftable basis functions y (X) in R* and the continuous variable ® € S'. The similarity
transformation given by the standard analysisand synthesisformulaefor Fourier seriesin 6 isused to obtaintherequired expression
for A in the shiftable—twistable basis.

Parallel Implementation

For a spatially parallel implementation of our algorithm on an IBM-SP2, we used the Fastest Fourier Transform in the West
(FFTW) software (see SAM News, November 1999, page 1). The output of our algorithm is a picture of the completion field
obtained for an input configuration of sources and sinks. The main computational task is to compute the coefficient vectors c;
= Gk Of thesourceand sink fields. FFTW dictated that we use asl ab decomposition of the coefficient vector, which, tominimize
communication between processors, was chosen with respect to k,. If the number of processors divides the number K of basic
translates of y(X) in the x variable, then the computation is |oad-bal anced.

Theiterative computation of the source (or sink) field coefficient vectorsis performed in the three-dimensional Fourier domain
of the coefficient vector cg,,,, where the advection transformation isamultiplication operator and the diffusion—decay transforma-
tionisgiven by an explicit, stable, three-point stencil finite differencing schemein onevariable. For the source and sink fields, the
processors need to communicate only when the three-dimensional FFT and itsinverse are computed. We avoid aliasing effectsin
the advection transformation by making the number of frequencies in 6 proportional to the number K of basic translations.
Consequently, doubling the resolution of the Gaussian initial conditionsin all three variables requires multiplying the number of
basis functions by 16.

Pictures of the three-dimensional completion fields are computed by analytically integrating out the 6 variable in the product
of the source field, XR,wCE,wwE(i)e@e’ and the sink field, Zz,ncz,n%(@e‘”e- Because y(X) decays exponentially, for each k, we
needed to sum only over nearby 7's. Hence, each processor needs to communicate only with itsleft and right neighbors. Each of
the completion fields in Figure 2 and Figure 3 took about 12 minutes to compute on 16 processors.
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Experimental Results

The results of two experiments demonstrate the Euclidean invariance of our algorithm. In each experiment, the shiftable—
twistable basis consisted of K = 160 translates, in x and y, of a Gaussian (of period X = 40.0) and 92 frequenciesin 0, for atotal
of 2.355 x 10°basisfunctions. Picturesof completionfieldswere obtained by analyticintegration over 6 and rendering of thefield
ona256 x 256 grid. For both experiments, the decay constant wast = 4.5 and the timeincrement was At = 0.1. The diffusion
parameter wasc = 0.14 in the first experiment and ¢ = 0.08 in the second.

Inthefirst experiment we computed completion fields of Kanizsatriangles. Theleft-hand side of Figure 2 showsthe completion
field for the Kanizsatriangle stimulusfrom Figure 1(b); on theright-hand side of Figure 2, theinitial stimulushasbeen rotated and
translated. The completion field ontheright isitself arotation and translation of the completion field on the left—ademonstration
of the Euclidean invariance of our algorithm.

Inthe second experiment we compared our algorithmwith thefinitedifferencing schemeof [ 10]. For thefinitedifference scheme,
the 40.0 x 40.0 x 2n space was discretized using a 256 x 256 spatial grid with 36 discrete orientations, for atotal of 2.359 x 10°
Dirac basis functions. The intent was to use approximately the same number of basis functions for both algorithms. Trilinear
interpol ation was used to represent theinitial conditions on the grid. Pictures of the completion fields are shown in Figure 3; those
in the top row were computed by the method of [10] and those in the bottom row by the new method. The completion fieldsin the
left-hand column are for the Ehrenstein stimulus from Figure 1(a); for the picturesin the right-hand column, theinitial conditions
have been rotated by 45°. The completion fields in the bottom row demonstrate the Euclidean invariance of the new method, as
compared with the obviouslack of Euclidean invariance in the completion fieldsin the top row. Thevisible straight line artifacts
in these completion fields, oriented along the coordinate axes, result from the anisotropic nature of the advection processin the
algorithm of [10].

Conclusion

Animportant initial stagein the analysis of a scene isthe completion of the boundaries of partially occluded objects. In[9] the
ideaof astochastic completionfield wasintroduced to measurethe probability distribution of completed boundary shapesinagiven
scene. As required of any computational model of human visual information processing, the method we have described for
computing compl etion fields attemptsto reconcil e the apparent contradi ction between the obvious Euclidean invariance of human
visual computations and the observed sparseness of the discrete spatial sampling of the visual field by the primary visual cortex.
Our method reconciles this contradiction by performing computations in a shiftable-twistable wavel et-like basis consisting of
functions that are similar to the receptive fields of visual neurons.
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