from S AM News, Volume 33, Number 5

Portable Memory Hierarchy Techniques
For PDE Solvers: Part |

By Craig C. Douglas, Gundolf Haase, Jonathan Hu, Markus Kowarschik, Ulrich Ride, and Christian Weiss

| amtaking the unusual step of writing an editorial foreword for thisarticle. The main reason isthat the article, thefirst of two parts, is highly
pedagogical and thereforeatypical for thiscolumn. The content of thisfirst partisrequired for a full understanding, and appreciation, of themore
application-focused second part, which will appear in the next issue of SIAM News. Additionally, | feel that many readerswill benefit fromthis
exposition, especially those who are not familiar with the impact that caches can have on application performance—GA

In recent years, computer processing power has vastly outstripped advancesin the ability of memory chipsto read or write data.

Superior use of memory hierarchies, in which each level’smemory isreferred to asacache, isaremedy that leadsto dramatically
faster codes.

APPLICATIONS ON Cache-awaresolversfor (coupled) partial differential equations(PDES) are now absolutely essential
to achieving anything other than poor performance when measured against possible peak performance

ADVANCED figures conjured up by vendors. Wedescribe aset of techniquesfor achi eving arespectabl e percentage

ARCHITECTURE of peak performance. Some of these techniques are utterly invasive and should be left to software
library writers. Others can be added to an existing code in amatter of minutes.

COMPUTERS Not long ago, cache experts believed that portable, cache-aware algorithms were a myth. The

Greg Astfalk, Editor folklore was that only by using every last detail of the CPU and its memory hierarchy wasit possible

! to design afast, cache-aware algorithm. Today, CPUs are even faster; memory subsystemsstill run at

about the same speeds, al beit with somewhat larger caches. Userswho maintain acollection of portable

algorithmsin their code portfolios have suddenly discovered they are cache-wealthy on awide variety of platforms, from laptops

and PCs to supercomputers.

This two-part article is an overview of the efforts of two cooperative research groups to solve partial differential equation
problems using (primarily) iterative, multilevel, cache-aware algorithms. The cache-aware algorithms discussed here provide
resultsthat are bitwiseidentical to those of standard i mplementations. This meansthat two implementations, one cache-aware and
the other in standard form, can be compared. If the norm of the difference of the two computed solutionsis not identically zero,
then thereisabug in the cache-awareimplementation. |n addition, the convergence rates of our cache-awareiterative methodsare
identical to those obtained with the standard methods (see [4, 7].

Webeginwith atutorial on how computerswork. In Part 11, to appear in the next i ssue, we continue with some simple, constant-
coefficient, matrix-free problems and methods and end up considering variable-coefficient, coupled PDEs on unstructured grids.

Hyperlinks to our individual cache-aware algorithm research projects are provided through MGNet [3] at http://ww.mgnet.org/.

Processors and Memory Subsystems

When aprogram is executed, the computer’ s central processing unit performs the numerical and logical calculations. The data
for the CPU is stored in main memory. When the CPU requires data that it does not already have, it makes a request to memory.

Computers have been getting faster and faster over the years, while the memory chips that are used to store data have become
only marginally faster. Sadly, current CPUs can perform numerical operations much faster than memory can deliver data, which
leadstofast CPUsbeingidle most of thetime. Thissituationisresponsiblefor thewidespread skepticismthat greetsvendors’ claims
of peak CPU speeds.

Many hardware and software strategies have been devised to reduce the time a CPU spends waiting for data. The most common
hardware strategy (in recent years) isto divide computer memory into ahierarchy of layers, withthe CPU linkeddirectly to the highest
level (see Figure 1(a)). These layers are referred to as the cache or the memory subsystem [5, 6].

Cacheisfast, expensive memory that replicates a subset of data from main memory. The purpose of cacheisto provide datato
the CPU faster than main memory can. The goal isto reduce the idle time for the CPU.

Cachesaremotivated by two principlesof locality: intimeandin space. Theprincipleof temporal locality statesthat datarequired
now by the CPU will also benecessary againinthenear future. The principle of spatial locality statesthat if specific dataisrequired,
its neighboring data will also be referenced soon.

The cacheisitself ahierarchy of levels, called L1, L2,. . . , each with adifferent size and speed. A typical cache has one or
two levels. The L1 cacheissmaller and 2—6 timesfaster thanthe L2 cache. The L2 cache, inturn, issmaller but 10—40 timesfaster
than main memory (see Figure 1(b)).

Thedataheld in any level of cache isasubset of the data held in the next larger level on all processors that we consider in this
article, although there are some exceptions. The smallest block of data moved in and out of a cacheisacacheline. A cacheline



CPU Level Clocks

register 1
L1 cache 2-3
L2 Other Main L2 cache 6-12
cache —— (caches ) — memory near main memory 6-100
L1 cache if present far main memory 100-250
distributed mainmemory 0 (100)
message-passing 0(1000) — 0(10000)

Figure 1. Memory hierarchy (a, left) and speeds (b, right) [1].

holds data that is stored contiguously in main memory. A typica cachelineis 32, 128, or 256 bytesin length, with 32 being most
common.

If the datarequested by the CPU isin acache, it is called acache hit. Otherwise, it isacache miss and datamust be copied from
alower level of (i.e., slower) memory into acache. The hit rateistheratio of cache hitsto total memory requests. The missrateisone
minus the hit rate.

Given that cacheisfaster than main memory in fulfilling the CPU’ s memory requests, we clearly want to maximize the number
of cache hits. In designing algorithmsto maximize cache hits, we must first decide which cacheto optimizefor. Many CPUs have
asmall L1 cache (8-96 Kbyte), which is not sufficient for 3D simulations involving coupled PDEs. A larger L2 cache, found on
most computers, isthe cachefor which wetailor our algorithms. An exceptionisthe HP PA seriesof CPUs, which now havealarge
on-CPU L1 cache (e.g., 1.5 MB on the PA-8500), but no L2 cache.

Caches on any level can be unified or split. Unified caches mix computer instructions and data. A split cache consists of two
separate caches, with instructionsin one and datain the other. Split caches, because of their much better hit ratiosfor instructions,
are superior to unified caches. The possibility of cache thrashing (defined below) is also reduced with split caches.

A final, quite subtle issue needs to be considered, as it leads to nondeter-ministic cache behavior. Programs are loaded into
memory using avirtual addressing scheme. A programmer thinks of memory asalinear space, with addressing beginning at zero.
In reality, the program is loaded into a set of physical memory pages that are neither contiguous nor linear. A hardware-based
schemeisusedtotranglatevirtual to physical memory addresses. Almost all cachesusethephysical address, not thevirtual address,
to determine where in a cache a piece of memory should be copied. Because a program run more than once will usually be loaded
into different physical memory pages, the cache effects are rarely reproducible.

Memory to Cache Mappings

In order to service CPU requests efficiently, the memory subsystem must be abl e to determine whether requested datais present
in acache and where in the cache that data resides.

The oldest method is the direct-mapped cache. The location in cache is determined using the remainder of the (physical) main
memory address divided by the cache size:

cache address = (main memory address) mod (size of cache)

Several addresses in the cache are located in the same cache line,

Hence, a given main memory address can occupy only one location in cache. Traditionally, the number of lines, N, in acache
isawaysapower of two, so that the remainder operation is equivalent to taking the last log,(N) bits of the main memory address.
The set bits are the last bits of the main memory address corresponding to the cache address. The tag bits are the remaining bits
of the main memory address. The set bits of arequest determinewherein cacheto look, and thetag bits determine whether amatch
occurs.

Another hardware technique is the n-way set-associative cache, which maps memory to n “ways,” or segments, inside acache.
A given memory address can be placed in any of the n segments of the cache. (A direct-mapped cache can be considered a one-
way set-associative cache.) A policy for choosing the“way” inwhich apiece of datashould be storedisrequired for set-associative
caches. Thethreea gorithmscommonly used are: | east recently used (L RU), least frequently used (L FU), and random replacement.
These are denoted replacement policies because a cache line placed in cache replaces a cache line that is aready there.

For memory access on amemory chip, an address is passed through a small collection of AND, OR, and XOR gates. A cache
can be considerably more complex; it must havelogic to copy or replace a collection of memory locations from main memory, all
of which takestime.

LRU cachestrack how long ago cachelineswerereferenced. L FU cachestrack how often cache lines have been referenced. For
many PDE algorithms, LRU caches generally provide the best performance. However, both of these algorithms are expensive to
implement in hardware.

Therandom replacement policy isvery popular with computer architects: It isrelatively inexpensive, and studies show it to be
almost equivalent to LRU (see[5] and itsreferences). The problems studied obviously did not involve the solution of PDEs.

In afully associative cache, any data can occupy any location in cache. Thisis an n-way set-associative cache, where n isthe
number of linesin cache, i.e., each way is exactly one line of cache. The hardware required for thistype of cacheis prohibitively
expensive in comparison with other cache types discussed here [6].

One drawback of a direct-mapped cache is the possibility that several commonly used data items will map to the same cache

2



address. Consider the following code fragment:

1. fori=1,ndo
2 C(i) = A®) + B(i)
3: end for

Supposethat A, B, and C each mapsto the same cachelocation. Each referenceto A(i), B(i), or C(i) will then causethe same cache
lineto be used. The cachelineis constantly emptied and refilled, causing cache thrashing. Hence, in terms of the memory latency
time, L, the cost of running the code fragment is at least nL.

Two simple fixes can be applied to this example. First, the vectors can be padded by a small multiple of the cache line length
(common paddings are 128 or 256 bytes, independent of whether or not they are good values). Thisis hardly a portable solution,
however, since the correct size of a padding is very machine dependent.

The second fix is to change the data structure, combining A, B, and C into a single array. Then the code fragment becomes:

1. fori = 1,ndo
2 r(30)=r(Li)+r (20
3: end for

In this case, we assume that the vector elements are in adjacent memory locations. This fix reduces the number of cache misses
by approximately three on any of the cache designs discussed, and it is highly portable.

Memory can be arranged into memory banks, with each bank containing many memory chips and an addressing mechanism. All
banks can be accessed simultaneously, providing parallel accessto memory. Many computers, from the 1960s on, have had this
feature, which allows for memory to be accessed in a “vector style.”

Suppose, for example, that the CPU requests four words of data that are stored in one bank of memory. The penalty just for
retrieving the data from memory is4L, where L isthe response time (or latency) of the memory. Thislatency occurs because the
words are retrieved one at atime. Now suppose the memory is divided into four banks, with one word isin each bank. The delay
due to memory latency is now L because the banks retrieve the data simultaneously.

Many algorithms using vectors of data operate on sequential vector elements. These algorithms, known as stride-1 algorithms,
work well with memory banks. However, some algorithmswork with every mth vector element (stride-malgorithms). If there are
m memory banks, the stride-m algorithms once again produce slow memory access, with NL latency, where N is the number of
vector accesses, since all accessed vector elements are in the same memory bank.

Common Strategies for Enhancing Cache Performance

Severa dtrategiesfor enhancing cache performance are in wide use. All try to avoid CPU stalls, defined as periods dur-ing which
the CPU isidle because necessary datais not immediately available.

Prefetching—Dbringing datainto cache beforethe CPU actually needsit—isamethod for reducing the effect of mem-ory latency.
Having cache lines longer than one word is one example of pre-fetching. Data brought into cache is accom-panied by surrounding
data; if the data ex-hibits spatial locality, then the surrounding data has effectively been prefetched.

Prefetching satisfies CPU requests at the speed of cache rather than of slower memory. Prefetching can be accomplished with
compiler flags, via programmer intervention, or by hardware.

Prefetching is particularly effective within loops. Unfortunately, it is highly machine dependent and, therefore, not portable.
Consider, for example, the following code fragment:

1: (intervening code)
2: fori =1,ndo

3 A@) = A@l) + B+ B(i)

4. (more intervening code)

5: D(i) = D(i) + y = C(i)
6: (yet more intervening code)
7: end for

Assumethat theintervening code dependson dataalready in cache. Oniterationi, it may bepossibletobring A(i + 1),B(i + 1),
C(i + 1),andD(i + 1) into cache before the CPU needs them by means of explicit prefetch instructions:

1. PREFETCH A(1), B(1), and
2. (intervening code)
3: fori = 1,ndo
4. A() = A@) + B * B()
5. PREFETCH C(i) and D(i)
6: (moreintervening code)
7. C(i) = C(i) + y * D(i)

3



8. PREFETCHA(+1)andB(i+1)
9:  (yet moreintervening code)
10: end for

Prefetching is often used with software pipelining, which breaks complex calculations into simpler steps, analogous to an
assembly line. Theresult of asimple calculationisinput for the next simple cal culation. Although this scheme does not affect the
speed of asingle calculation, it can speed up the same cal culation repeated many times.

Pipdining can be implemented either by hardware (asin many RISC processors) or by software. In the latter case, loops are un-rolled and
complex calculations are broken into very simple steps. Because cal culationsand thefetching of datafrom mainmemory aredone at the
sametime, pipe-lining a so helps hide memory latency.

Consider the following code fragment illustrating a scalar multiply and add (SAXPY):

1. fori = 1,ndo
2 A@) = A@) + v = B(i)
3: end for

Provided that the CPU supportspipe-lining (i.e., hasseveral independent arithmetic units), agood compiler can generate pipelined
code. Intheexecution of such code, onearithmetic unit performsthe scalar multiply whiletheother unit performsan addition. Once
the pipeline hasbeen filled, a SAXPY operation is completed at each cycle. Hence, the time to complete the operation isthe time
toload the pipeline (arithmetic units) plusn, thelength of vector A. The programmer can provide ahint to the compiler by breaking
the SAXPY into two simpler operations:

: fori = 1,ndo
t =y * B()
Al) = A@) + t
end for

AwbhrE

Some CPUs can perform out-of-order execution. The processor tracks the data dependencies of the instruction queue and marks
which instructionsareready to run. If aninstruction isblocked but another isready to run, the latter is executed immediately. This
is particularly useful in short loops on vectors.

Padding, mentioned earlier as away to avoid cache thrashing, involves the lengthening of an array by the addition of a small
number of extra elements, usually the amount in one cache line. In thisway, arrays that originally thrashed the cache are forced
tomapto different cache addresses. Stride-1 accessto arraysenhances spatial locality—bringing one array element into cachealso
brings in neighboring elements in the same cache line.

L oops are blocked by areordering of data accessin away that minimizes the number of accesses. The reordering depends on
both the data and the cache sizes. A beneficial result isthat datain cache can be reused many times. For example, matrix—matrix
multiplicationisblockedto enhance performancein vendor-suppliedlibraries. The ATLAS project [ 2] isanumerical linear algebra
package that relies extensively on blocking to tune the Basic Linear Algebra Subroutines (BLAS) automatically.

Epilogue

In the second part of this article, which will appear in the next issue of S AM News, we will cover techniques that will exploit
cachefor bothlogically tensor product grid-based problemsaswell asthe more challenging variable-coefficient, unstructured grid
problems.

Acknowledgments

Thework presented here—atruly international effort—was supported in part by the DFG Ru 422/7-1,2, NATO grant CRG 971574, and NSF
grants DM S-9707040, ACR-9721388, and CCR—9902022.

References

[1] G. Astfalk, Relative memory speeds, private communication, 1999.

[2] J. Dongarraand R.C. Whaley, Automatically tuned linear algebra software, http://www.netlib.org/atlas, 1999.

[3] C.C. Douglas, MGNet: A multigrid and domain decomposition network, ACM SIGNUM Newsletter, 27 (1992), 2-8.

[4] C.C.Douglas, J. Hu, M. Kowarschik, U. Rude, and C. Weiss, Cache optimization for structured and unstructured grid multigrid, ETNA,
10 (2000), 21-40.

[5] J. Handy, The Cache Memory Book, Academic Press, New Y ork, 1998.

[6] D.A. Patterson and J.L. Hennessy, Computer Architecture: A Quantitative Approach, Morgan Kaufmann Publishers, San Mateo,
California, 1996.

[7] C. Weiss, W. Karl, M. Kowarschik, and U. Riide, Memory characteristics of iterative methods, Proceedings of the Supercomputing
Conference, Portland, Oregon, 1999.

Craig C. Douglas (douglas@ccs.uky.edu) is a professor at the University of Kentucky and is affiliated with Yale University. Gundolf Haase
(ghaase@numa.uni-linz.ac.at) is an assistant professor at Johannes Kepler Universitat Linz and a visiting professor at the University of

4



Kentucky. Jonathan Hu (jhu@ccs.uky.edu) is a graduate student at the University of Kentucky (and is moving to Sandia National Laboratories
shortly). MarkusKowar schik (kowar schik@cs.fau.de) and Ulrich Rude (ruede@cs.fau.de) arearesear ch assistant and a professor, respectively,
at the Universitat Erlangen—Nirnberg. Christian Weiss (weissc@in.tum.de) is a research assistant at the Technische Universitat Minchen.



