
�

from SIAM News, Volume 33, Number 6

APPLICATIONS ON
A D VA N C E D
A R C H I T E C T U R E
C O M P U T E R S
Greg Astfalk, Editor

Portable Memory Hierarchy Techniques
For PDE Solvers: Part II
By Craig C. Douglas, Gundolf Haase, Jonathan Hu, Markus Kowarschik, Ulrich Rüde, and Christian Weiss

The first part of this article, which appeared in the June issue of SIAM News, detailed the architecture and behavior of
microprocessor caches. The impact of caches on the performance of applications was also made clear.

Here, in the second and concluding part of the article, we apply the lessons of the previous article to application codes, and we
quantify the performance benefits that can be achieved by the user who thinks and codes in a “cache-aware” fashion.

Numerical Techniques for PDEs

Computational solutions for PDEs involve discretization and linearization. The problem then becomes one of linear algebra:
solving a linear system with several millions of unknowns. These systems are too large to be solved by classical direct methods
on any contemporary computer. Direct methods are not competitive on these very large systems because they cannot efficiently

exploit the sparsity of the system matrices.
The methods of choice are all iterative. Instead of an elimination process, iterative methods use

repeated multiplications of the solution vector with the system matrix. Even when a significant (but
limited) number of iterations are required, an iterative method is usually less costly than a direct
method.

The most basic iterative solvers are the Jacobi and the Gauss–Seidel methods. Although not
competitive with the more advanced methods, they are useful either as models for more complex
methods or as building blocks from which better methods can be constructed. The latter is true
particularly for multigrid methods, which are the fastest known solvers for many elliptic PDEs. In
multigrid, application of a method like Gauss–Seidel for several iterations—known as the smoother—

is followed by the activation of coarser or finer grids, with additional smoothing steps. Repeated execution of a simple method like
Gauss–Seidel is responsible for most of the computational cost in a multigrid algorithm—commonly more than 80% for a simple
multigrid solver.

Logically Tensor Product Grid-based Problems

Many PDE problems today are still solved on uniform, tensor product, or logically uniform grids. A problem may be part of a
domain-decomposed grid with different mesh spacings in each of the domains. Researchers in many disciplines use grids of this
type to attain high levels of performance, even though the number of vertices in the global problem can be greater than it would
be with an adaptively chosen, (quasi)unstructured grid.

With a structured grid, it is natural to use a two- or three-dimensional array for storing the vector of unknowns. The system matrix
can also be stored in a grid-oriented manner. If the PDE has constant coefficients, no matrix needs to be stored—all the entries
(corresponding to the same edge in the mesh) are identical. If this is the case, only a few vectors (e.g., the solution, the right-hand
side, and possibly the residual) have to be stored. In general, the memory needed is a small multiple of the size of the solution vector.

No matter how the data is stored, the fundamental memory access problem is a consequence of the way all iterative algorithms
are designed. The core of these methods consists of repeated matrix–vector multiplications or simple variants. In some cases (e.g.,
relaxation methods like Gauss–Seidel) the matrix–vector multiplication is hidden by being directly combined with an update of
the solution vector.

Generally, the full data set for an approximate solution must be completely read from memory for use by the processor, and it
must then be written back to memory. In the interesting cases, the vector and the matrix together are too large to be stored in any
of the caches. As the vector and matrix elements are accessed, some of the older elements are expelled from the cache. With an
LRU (least recently used) strategy for cache replacement, the first vector and matrix elements are no longer in cache when the sweep
completes. Every sweep must start from scratch and load everything from main memory; all or almost all the data from the previous
sweep will have been displaced from the cache. Temporal locality can be exploited only when the whole data set is small enough
to fit into the cache.

Consider a standard implementation of a two-dimensional, red–black, Gauss–Seidel relaxation method based on a five-point
discretization of the Laplace operator, as shown in Figure 1. The matrix is not stored, because we use a uniform mesh. The
coefficients are typically kept in registers. The data that has to be loaded from main memory consists of the solution vector and
the right-hand side vector. This problem is particularly difficult to optimize because so few variables are available.

The runtime behavior of the standard red–black Gauss–Seidel program on a Digital PWS 500au is summarized in Table 1. For
the smallest grid size, the floating-point performance is good when compared with the peak performance of 1 Gflops. Increasing

�

the grid size improves the performance to approximately 450 Mflops on a
64 � 64 grid. Increasing the grid size to 128 � 128 reduces the performance
to 200 Mflops. On even larger grids (>512 � 512), the performance deterio-
rates further, to below 60 Mflops.

To learn why these performance drops occur, we profiled the program, using
the Digital Continuous Profiling Infrastructure (DCPI). DCPI quantifies the
number of processor cycles for execution (Exec), no-operations (Nops), and
stalls of several different kinds (see Table 1). Kinds of stalls measured are data
cache misses (Cache), data table lookaside buffer misses (TLB), branch
mispredictions (Branch), and register dependencies (Depend).

For the smaller grid sizes, the limiting factors are branch mispredictions and
register dependencies. For the larger grid sizes, the cache behavior of the
algorithm has a large impact on the performance. For the largest grids, data
cache miss stalls account for more than 80% of all processor cycles.

Because data cache misses are the principal factor in the disappointing
performance of this code on larger problems, we examined this effect more
closely. Table 2 shows the percentages of all array references satisfied by the
corresponding levels of the memory hierarchy. To obtain this data, we counted the total number of array references that occur in
the relaxation method and measured the number of L1 data cache accesses, as well as the number of cache misses for each level
of the memory hierarchy, again using the DCPI tool.

The difference between the measured and the estimated numbers of L1 data cache accesses is shown in the column labeled “±.’’
Small values can be interpreted as measurement errors. Higher values indicate that some of the array references are implemented
not as loads or stores, but as register accesses. The number of references satisfied by a particular level of the memory hierarchy
is the difference between the number of accesses into it (misses of the memory level above it) and the number of accesses not
satisfied by it (misses for that particular memory level). For example, the number of references satisfied by the L2 data cache is
the number of L1 data cache misses minus the number of L2 data cache misses.

Clearly, for the 32 � 32 and 64 � 64 grids, the L1 and L2 caches hold all the data. When the data no longer fits into the L2 cache,
some data will have to be fetched from the L3 cache. For the larger grids (>256 � 256), the data does not fit completely into the
L3 cache.

The same principle governs processors with only one or two cache levels. Problems above some threshold size cause memory
traffic, either to the next level of cache or to main memory.

The standard red–black Gauss–Seidel algorithm (see Figure 1) repeatedly performs complete sweeps through the grid, from
bottom to top. One sweep updates all the red nodes, and another then updates all the black nodes. As mentioned earlier, there is
no temporal reuse between sweeps. A closer look reveals some temporal locality within a sweep, which is actually exploited.
Assume that the grid is structured and that the cache is big enough
to hold at least a certain number of grid lines. When a grid line is
processed, data from neighboring grid lines is also accessed.
Provided that the cache does not have associativity conflicts, it
should contain the data for two of the three grid lines, because these
two grid lines were used recently (i.e., encached). Additionally, we
can expect help from the caches in exploiting spatial locality. This
is also obvious from Table 2, which shows that even for the largest
grids only 7.2% of the references go to main memory.

Improving the temporal locality of successive relaxation sweeps
is not trivial in that it requires the blocking of several iteration
sweeps. In terms of linear algebra, this is equivalent to computing
several matrix–vector products simultaneously. Data dependencies
are induced in the process because, in general, the vector product Ax
must be computed before A(Ax) can be computed. Fortunately, PDE
problems give rise to “special’’ matrices, and several strategies are
available for computing Ax and A(Ax) simultaneously.

Loop-fusion and loop-blocking are standard techniques for im-
proving the temporal locality with dense matrix algorithms. For the
case of iterative algorithms operating on sparse matrices, improv-
ing temporal locality is not easy. Several iterations must be blocked,
which means that data dependencies will have to be handled. The
program must be transformed in a way that maintains the original
semantics. With the techniques described here, cache-aware algo-
rithms will have results that are identical, bit-wise, to those of the
original algorithm, but the modified algorithms will run faster.
Modifications and variants of iterative algorithms that improve the

Figure 1. Standard implementation of red–black
Gauss–Seidel.

double u(0:n,0:n), f(0:n,0:n)
do it = 1, It {
 do i = 1, n-1 { // red
nodes
 do j = 1+(i+1)%2, n-1, 2 {
 Relax(u(i,j))
 } }
 do i = 1, n-1 { // black
nodes
 do j = 1+i%2, n-1 , 2 {
 Relax(u(i,j))
 } }
 }

Table 1. Runtime behavior of red–black Gauss–Seidel.

 Percentage of cycles used for

 Grid size Mflops Exec Cache TLB Branch Depend Nops

 16 347.0 60.7 0.3 2.6 6.7 21.1 4.5
 32 354.8 59.1 10.9 7.0 4.6 11.0 5.4
 64 453.9 78.8 1.4 15.7 0.1 0.0 4.2
 128 205.5 43.8 6.3 47.5 0.0 0.0 2.4
 256 182.9 31.9 60.6 4.2 0.0 0.0 3.3
 512 63.7 11.3 85.2 2.2 0.0 0.0 1.2
 1024 58.8 10.5 85.9 2.4 0.0 0.0 1.1

Grid

Data Set

 Percentage of all accesses satisfied by

size size (byte) ± L1 Cache L2 Cache L3 Cache Memory

 32 17 K 4.5 63.6 32.0 0.0 0.0
 64 66 K 0.5 75.7 23.6 0.2 0.0
128 60 K –0.2 76.1 9.3 14.8 0.0
256 1 M 5.3 55.1 25.0 14.5 0.0
512 4 M 4.9 29.9 50.7 7.3 7.2
1024 16 M 5.1 27.8 50.0 9.9 7.2

Table 2. Memory access behavior of red–black Gauss–Seidel.

�

cache performance are of interest as well, but modifications that
alter the semantics are not the objective of this article.

Consider again red–black Gauss–Seidel relaxation. Assume that
a five-point stencil is placed over one of the black nodes. All the red
points required for relaxation are up to date provided that the red
node above the black node is up to date. Consequently, we can
update the red nodes in any row i and the black nodes in row i – 1
in pairs. This technique is a fusion technique: Two consecutive
sweeps through the grid, which would have updated the red and
black points separately, are fused into one sweep through the grid.
Fusion techniques for red–black Gauss–Seidel were developed in
the mid-60s when the CDC 6600 became available. A comprehen-
sive review of such fusion techniques for five- and nine-point
operators can be found in [2]. For the actual codes, see http://
wwwbode.in.tum.de/Par/arch/cache.

This technique applies only to a single red–black Gauss–Seidel
sweep. If several successive red–black Gauss–Seidel iterations
must be performed, the data in the cache is not reused from one
iteration to the next. If a five-point stencil is placed over one of the
red nodes in any line i, the node can be updated for the second time
provided that all neighboring black nodes have been updated once.
This is the case as soon as the black node in line i + 1 directly above
the red node has been touched once. As described before, this black
node can be updated as soon as the red node in line i + 2 directly
above it has been updated for the first time. Consequently, we can
update the red nodes in rows i + 2 and i and the black nodes in rows
i + 1 and i – 1 in pairs. This technique, a blocking technique, can
be generalized to more than two successive red–black Gauss–Seidel sweeps [1].

Each of the techniques just described requires that a certain number of rows fit entirely into the cache. The fusion technique
assumes that the cache can hold at least four rows of the grid. The blocking technique assumes that at least 2m + 2 rows of the
grid fit into the cache, if m successive sweeps through the grid are performed together. Blocking and fusion can reduce the number
of accesses to memory, but these techniques do not make efficient use of the higher levels of the memory hierarchy, especially the
registers and the L1 cache. Efficient utilization of the registers and the L1 cache, however, is crucial for very good performance
of any algorithm.

Results for a problem with a 1024 � 1024 grid, with the optimizations discussed here, are shown in Table 3. Clearly, the blocking
strategies improve the effectiveness of the different cache levels. Fusion and blocking reduce the main memory accesses from 7.2%
to only 1.2%. As expected, the working set is too large for the L1 cache, and only L2 is big enough to hold the data.

To further increase performance, we developed a two-dimensional blocking technique, which is described in detail in [4].
Utilization of the L1 cache should be much better with this technique than with the other strategies. However, if no array padding
is used, conflict misses in all levels of the memory hierarchy will preclude any efficiency gain. This can be seen in the table in the
drastically increased number of memory accesses for this technique; in fact, this variant has by far the highest number of references
that must be satisfied by main memory. Only when these conflict misses are eliminated by array padding, as shown in the row
labeled “2D–Blocking/p,’’ does the two-dimensional blocking technique demonstrate its potential; 54% of all references are now
satisfied from L1, and an additional 37.7% are satisfied directly from the register set. The efficiency of the L1 cache is drastically
improved, and this program runs the fastest of all those tested. This is also reflected in the performance gains obtained for the
different codes, as shown in Table 4. The two-dimensional blocking technique yields better performance provided that it is
combined with array padding.

Problems on Unstructured Grids

Unstructured grids arise in many application areas for PDEs. Advocates of unstructured grids point to several advantages:
reduced grid-generation time, geometric flexibility, and potential for adaptive refinement.

Unstructured grids result in linear systems that are sparse and unstructured. When assembled, such systems must be stored in,
for example, compressed row or column format. A central feature of such formats is the indirect addressing required, which can
lead to poor cache performance because of low spatial locality. Techniques used to optimize dense matrix operations cannot be
applied to sparse matrix operations. A variety of techniques have been proposed to enhance the speed of sparse matrix operations;
among them are a preprocessing step that identifies repeating sparsity patterns.

We propose two strategies for enhancing cache usage with the Gauss–Seidel method. Each has a preprocessing phase that blocks
the underlying grid to find a matrix renumbering. The second phase in each strategy is a modified Gauss–Seidel method that takes
advantage of the new ordering to increase cache performance. The modified Gauss–Seidel method returns an answer that is bit-
wise the same as that of a standard Gauss–Seidel method based on the same mesh ordering.

Relaxation
 Percentage of all accesses satisfied by

 method ± L1 Cache L2 Cache L3 Cache Memory

Standard 5.1 27.8 50.0 9.9 7.2
Fusion 20.9 28.9 43.1 3.4 3.6
Blocking (2) 21.1 29.1 43.6 4.4 1.8
Blocking (3) 21.0 28.4 42.4 7.0 1.2
2D-Blocking (4) 36.7 25.1 6.7 10.6 20.9
2D-Blocking/p (4) 37.7 54.0 5.5 1.9 1.0

Table 3. Memory access behavior of different red–black Gauss–
Seidel variants with a 1024 � 1024 grid.

Implementation

 Grid size

 variant 16 32 64 128 256 512 1024 2048

Standard 347 355 454 206 183 64 59 56
Fusion 403 458 564 363 357 123 113 79
Blocking (2) 391 489 610 404 365 180 149 90
Blocking (3) 397 444 561 404 368 227 151 93
2D-Blocking (4) 337 331 361 315 299 46 87 57
2D-Blocking (4)/p 328 406 413 389 392 265 266 251

Table 4. Performance (Mflops) for a five-point Gauss–Seidel
method with blocking and fusion on a Digital PWS 500au with
a peak performance of 1 Gflops.

�

Strategy 1: Fixed Grid Blocking for Cache
The first step of the grid-blocking strategy is to decompose the grid that arises from the discretization into cache blocks. A cache

block consists of nodes that form a connected set; that is, between any two nodes i and j there is a path that is contained entirely
within the set and has i and j as endpoints. The cache block boundary is defined as the subset of nodes in a cache block that are
adjacent to nodes in another cache block. The distance of node i is defined to be one more than the number of edges in a minimum-
length path between i and the cache block boundary.

A cache block should have the property that the corresponding matrix rows, unknowns, and right-hand side values all fit into
cache at the same time. The decomposition of the problem grid into cache blocks should also have the property that boundaries
between blocks are minimized while the number of nodes in the interior is maximized. Many readily available load-
balancing packages for parallel computers are designed to produce such decompositions. The package we use is the METIS library.

After a cache block has been identified, the next step is to determine the number of Gauss–Seidel updates that can be done on
a particular unknown without violating data dependencies and without referencing data from another cache block. This problem
is equivalent to identifying the distance of the associated grid node from the cache block boundary. If m updates are required, then
any node with distance greater than m is said to have distance m.

Once the nodal distances have been found for all nodes and all cache blocks, the grid is renumbered. This renumbering is used
in the reordering of the matrix. Within a cache block, the nodes are partitioned into sub-blocks. Sub-block Lp is the set of all nodes
at distance p from the cache block boundary. If m Gauss–Seidel smoothing steps will be performed, there will be a total of m sub-
blocks. The renumbering of mesh nodes begins in the innermost sub-block Lm and works toward the cache block boundary. This
ordering has the property that nodes closer to the block boundary have higher numbers than those farther from the boundary. The
ordering is contiguous within blocks and sub-blocks.

We have bounded the maximum cost of finding distances for all nodes in a grid at approximately four fine-grid Gauss–Seidel
updates if each node has one degree of freedom. If each node has two degrees of freedom, the bound is approximately one fine-
grid Gauss–Seidel update. With some additional information, such as identification of the nodes that are on the mesh boundary,
the cost is even less. Experience shows that these bounds are pessimistic; in actual examples, the preprocessing time is negligible.

In the application of Gauss–Seidel, each cache block is visited once and as many updates as possible are performed without
referencing information from other cache blocks. In general, the nodes in sub-block Li can be updated i times in this manner. All
unknowns associated with sub-block Lm (the innermost sub-block) can be fully updated with information from within the cache
block. For 1-Mbyte caches we have found experimentally that more than 50% of the unknowns in a cache block reside in the
innermost sub-block Lm. After each cache block has been visited once, the unknowns associated with sub-block Lm are fully updated,
but the other unknowns have been updated fewer times. The modified Gauss–Seidel method backtracks through the cache blocks
to finish updating these unknowns. The solution is the same, bit-wise, as that of a standard Gauss–Seidel method sweeping through
the entire grid with the same ordering.

Strategy 2: Bandwidth-reduction Scheme
An alternative to the grid-based blocking scheme is to reorder the underlying mesh with a bandwidth-reduction algorithm. This

strategy avoids the backtracking phase of the cache-aware Gauss–Seidel method just described. However, the size of the problem
may preclude use of this method. Motivation for the idea can be found in [2]; we point out that the idea of bandwidth reduction
to enhance data locality is not new.

We define the bandwidth of a matrix A = a(i,j) of order N to be B = max1� i�N{� (i)}, where �(i) = max{j – i : a(i,j) � 0,
j > i}. In the Gauss–Seidel method, the updated value of unknown i depends on the values of unknowns j, j > i and a(i,j) � 0,
from the previous iteration. Hence, unknown i can have, at most, one more update than unknowns j, j > i and a(i,j) � 0. In general,
unknown i can be updated as soon as unknowns i + 1, . . . , i + B have been updated.

The first step is to apply a bandwidth-reduction scheme, such as reverse Cuthill–McKee, to the adjacency matrix. The matrix
and multigrid intergrid transfer operators are then renumbered, based on the new grid ordering.

Next, the unknowns are partitioned into subsets of contiguous unknowns. The matrix rows are partitioned in the same way. The
result is a partition {P1, P2, . . . , PN}, where Pk contains B contiguous rows. We require that the matrix, the right-hand side, and
the unknowns associated with m consecutive subsets fit into cache. Here m is the desired number of updates. Otherwise, this cache-
blocking method cannot be applied.

Finally, a modified Gauss–Seidel method is applied. The updating schedule is very similar to the fixed grid-blocking strategy.
As many updates as possible are done on P1, . . . , Pm. All unknowns in P1 can be fully updated with data already present in cache.
Pm+1 is updated, and subsets Pm, . . . , P2 are updated in order. At this point P2 is fully updated. Proceeding in this manner, m Gauss–
Seidel updates are done. The unknowns in the last subsets must be treated in a slightly different manner.

This scheme offers the benefit of increased reuse of data already present in cache while producing the same answer, bit-wise,
as a standard Gauss–Seidel method doing m updates by sweeping through the entire grid m times.

Numerical Results for the Unstructured-grid Techniques

All experiments were carried out on two platforms: (1) an SGI Origin2000 with an R12000 ip32 processor, 128 Mbyte of memory,
and a 1-Mbyte two-way set-associative unified L2 cache; and (2) one node of an HP SPP2200, consisting of an HP 200-MHz PA-8200
chip with a 1-Mbyte direct-mapped data cache.

We solved a two-dimensional linear elasticity problem on a domain in the shape of Austria. Forces act inward from the northwest
and the northeast. A portion of the northeastern border is fixed with respect to x. Portions of the southeastern border and the south

�

central border are fixed with respect to x
and y. All other boundary conditions are
homogeneous Neumann. Results are given
in Table 5. More examples can be found in
[3], and color pictures can be viewed from the
Kentucky Full Caches (KFCs) page, http://
www.ccs.uky.edu/~douglas/ccd-kfcs.html.

Acknowledgments

The work presented here—a truly interna-
tional effort—was supported in part by the DFG
Ru 422/7–1,2, NATO grant CRG 971574, and
NSF grants DMS–9707040, ACR–9721388,
and CCR–9902022.

References

[1] C.C. Douglas, Caching in with multigrid algorithms: Problems in two dimensions, Paral. Alg. Appl., 9 (1996), 195–204.
[2] C.C. Douglas, J. Hu, M. Iskandarani, M. Kowarschik, U. Rüde, and C.Weiss, Maximizing cache memory usage for multigrid algorithms,

in Multiphase Flows and Transport in Porous Media: State of the Art, Springer-Verlag, Lecture Notes in Physics, Z. Chen, R.E. Ewing and Z.-
C. Shi, eds., Berlin, 2000.

[3] C.C. Douglas, J. Hu, M. Kowarschik, U. Rüde, and C. Weiss, Cache optimization for structured and unstructured grid multigrid, ETNA,
10 (2000), 21–40.

[4] C. Weiss, W. Karl, M. Kowarschik, and U. Rüde, Memory characteristics of iterative methods, in Proceedings of the Supercomputing
Conference, Portland, Oregon, 1999.

Craig C. Douglas (douglas@ccs.uky.edu) is a professor at the University of Kentucky and is also affiliated with Yale University. Gundolf Haase
(ghaase@numa.uni-linz.ac.at) is an assistant professor at Johannes Kepler Universität Linz and a visiting professor at the University of
Kentucky. Jonathan Hu (jhu@ccs.uky.edu) is a graduate student at the University of Kentucky (and is moving to Sandia National Laboratory
shortly). Markus Kowarschik (kowarschik@cs.fau.de) and Ulrich Rüde (ruede@cs.fau.de) are a research assistant and a professor, respectively,
at the Universität Erlangen–Nürnberg. Christian Weiss (weissc@in.tum.de) is a research assistant at the Technische Universität München.

 HP SPP2200 SGI Origin2000

 No. of relaxations

Smoother

Table 5. V-cycle times for the fixed block Gauss–Seidel method on a linear elasticity
problem on the “Austria’’ domain.

V(2,2) V(3,3) V(4,4) V(5,5) V(2,2) V(3,3) V(4,4) V(5,5)

Standard GS 1.27 1.60 1.92 2.21 3.31 4.27 5.46 6.26

Cache-aware GS 0.80 0.92 1.04 1.18 2.00 2.33 2.83 3.09

Speedup 1.59 1.74 1.85 1.87 1.66 1.83 1.93 2.03

