from S AM News, Volume 33, Number 8

Elimination of Variables In Parallel

By Hoon Hong, Richard Liska, Nicolas Robidoux, and Stanly Steinberg
Elimination of variablesisafundamental task that arisesfrequently inthe solution of scientific and engineering problems. Given

an expression, the task isto find an equivalent expression that involves fewer variables.
Asatrivia example, suppose that we want to solve the following system of equations:

X +y
X-Yy

3
1
We begin by adding the first equation to the second, obtaining an equation in x alone:
2x = 4
This, of course, isthe well-known Gaussian elimination procedure, which has been studied extensively by numerical analysts.

Gaussian eliminationisessentially avariable-elimination method. To makethispoint moreclearly, werestate our example, using
the language of elementary logic:

APPLICATIONS ON @y x+y=3Aax-y=1

ADVANCED & 2x=4

A R C H | T E C T U R E where 3, theexistential quantifier, denotes“thereexists’ and A isthe conjunction that denotes“and.”’
C O MPUTER S Notice that while both sides of the equivalence, <, arein fact equivalent, the right hand side does not

) involvey, i.e., thevariabley has been eliminated. In fact, the quantifier 3 has been al so eliminated; for
Greg Astfalk, Editor this reason, the procedure is al'so called “ quantifier elimination.”’

A serious deficiency of Gaussian elimination is that it works only for an existentially quantified
conjunction of linear equations. However, many real-life scientific and engineering problemsdeal with
nonlinear equations, inequalities(>,>,- - -),digunctions(v, whichstandsfor “or’"), implications(=), and theuniversal quantifier
(O, which denotes “for al”).

In studying the stability of a numerical method for solving a certain PDE, we encounter the following expression:

(O9)(Ot) (c>0) A

[0<s<1IAO0<Lt<L))>
—2stcd + 3stc? + sc?
—-2sCc +tc2—-2tc+1>0]

For this problem we areinterested in eliminating both the quantified variables sand t and the universal quantifiers, obtaining an
equivalent expression that involvesonly the “free’” variable c. Other nontrivial examples of such problems can befoundin|[6, 7].

Clearly, problems of this type cannot be solved by Gaussian elimination. Fortunately, new methods, much more power-ful than
Gaussian elimination, have been developed in the past several decades.

State of the Art

Around 1930, the renowned logician and mathematician Alfred Tarski [8] proved that al quantifier-elimination problems can
be solved by asingle method. In 1951, with the assistance of J.C.C. McKinsey (at the RAND Corporation), Tarski gave arigorous
and algorithmic description of the proof of thisfundamental result in mathematical logic [9], in the hope that the algorithm might
be programmed on a computer. The complexity of the algorithm, however, was prohibitive; the running time could not be bound
by any finite tower of exponential functions.

Another breakthrough, a completely new method whose time complexity was only doubly exponential [2], reduced the height
of thetower of exponential functionsfrominfinity tojust two. Themethod wasbased onageometric constructioncalled“ cylindrical
algebraic decomposition’’ (CAD). Thisalgorithm renewed hopes that a mechanical elimination procedure would be devised and
inspired many further improvements, aswell as severa new methods.

Resulting from the reduced complexity of the CAD method were several software packages that can mechanically solve many
problems of moderate size [1,3]. One such package, QEPCAD [4], solves the example given in the previous section in less than
a second, producing:

O<c<sl2vec=1

Thiswould not bean easy result to obtain by hand, or even with ageneral-
purpose computer algebra system!

Because of excessive computationtimesand memory requirements,
current quantifier-elimination software systems cannot solve large
practical problems. For this reason, we were led to consider the
possibility of utilizing parallel computers, and in particular to experi-
ment with parallelization of the CAD method. Because quantifier
elimination is not well known, we begin the discussion here with a
brief and intuitive explanation of the sequential CAD method.

The CAD Method

Twogenerd polynomids, P,(x,y) and P,(X,), in thetwo real variables
xandy can beusedtoillustratethe CAD algorithm. Figure 1 showsthe
plotted curvesP,(x,y) = 0and P,(x,y) = O, thecylindersdetermined
by these polynomials, and the division of these cylindersinto cells.

Thefirst part of the CAD algorithm projects out the y variable and X
istherefore referred to as the projection phase. This requires that we
look for al points along the x-axis where the polynomia curves
intersect—that is, where there are simultaneous solutions of P,(X,y) =
0 and P,(x,y) = 0, or where one of the polynomial curvesisvertical, i.e., where P(x,y) = 0 and 8 P(x,y) /oy = 0 (with P being one of
the polynomials).

We actualy proceed by using resultant and discriminant calcul ations to eliminate the y variable from the system of polynomial
equations and thus to produce polynomial equationsin only the x variable. The roots of these polynomials, marked along the x-
axis, are given by algebraic humbers.

The next phaseisthe construction of astack of cellsin each cylinder. Through each of the special points on the x-axis, we draw
avertical line. These lines represent one-dimensional cylinders, and the regions between the lines are two-dimensional cylinders,
asillustrated in the right-hand portion of Figure 1. The one-dimensional cylinders intersect the polynomial curves at points that
arezero-dimensional cells. Theregionsontheone-dimensional cylinders betweenthese pointsare one-dimensional cells. Thetwo-
dimensional cylinders are constructed so that they intersect the polynomial curvesin pieces that can be described as graphs of
functions. These graphs are one-dimensional cells, and the regionsin the cylinders between the curves are two-dimensional cells.
Thisisillustrated in the left-hand part of Figure 1.

Based on this description, we can illustrate the CAD algorithm for a simple example. Consider

Pl(X,y) =0 F2>(x,y) =0

Figure 1. Cylindrical decomposition of two polynomials.

Oy{x + y> > 0}

whose CAD isillustrated in Figure 2. We find the point where the parabola becomes vertical by eliminating y from the system
equations

P(xy) =x+y =0
oloyP(xy) =2y =0

which givesx = 0. Thecylindersarethusgivenby -0 < x < 0,x = 0,and0 < x < oo. For the cylinder that istheleft half of
the x-axis, wechoseapoint in each of fivecells, asshownin Figure 2, andthenevauaedthetruthof x + y? > Oat each of thosepoints.
The cylinder x = 0 has three cells, and, again as shown in Figure 2, we chose a point in each cell and evaluated the truth of the
polynomial at each of the points. For the cylinder on the right, which has only one cell, we chose a point in that cell. Because the
quantifier isuniversal, all pointsin the cells of acylinder must be true for the statement to be truein that cylinder. The quantifier-
free formula, then, is

X=0vx>0

which can be “simplified” tox > 0.

In higher-dimensional exampl es, both the proj ection and the stack constructionsbecome much more complicated. Theprojection
phase must berepeated, with the variableseliminated one at atime, until only oneisleft. The stack construction startswith the one-
dimensional projection to build cylindersand cellsin two dimensions. Over each cell intwo dimensions, acylinder of cellsisthen
built in three dimensions. It is not difficult to see that the complexity of the algorithm grows very rapidly with increased
dimensionality.

Many additional, important ideas are used in this algorithm, of course, but their explanation, involving ideas from modern
algebra, logic, and algebraic geometry, is beyond the scope of this article. All these ideas together yield provably correct, finite,
and imple-mentable algorithms for solving all quantifier-elimination problems.

The main difficulty for applications is computational complexity—the algorithm is doubly exponential in the number of input

2

y variables. Therefore, even for some modest problems, the algorithm
does not finish in areasonable amount of computer time—within, say,
aday. Thisisthe situation that led us to consider parallelism.

Going Parallel

L) e Hong[5] had previously parallelized the stack-construction phase of
(-4, 4) True the QEPCAD program on aworkstation cluster by using Unix sockets.
: * (4,4) True The use of sockets severely limitsthe number of processorsthat can be

used. We re-implemented the code using MPI on the IBM SP2.

For many problemsthe projection phaseisvery fast, and we decided
H8:0) Frie——————————— X not to consider parallelizing this phase in the first round of our effort.
The construction of the one-dimensional cells, i.e., breaking the real
e axisinto cells, isalso very fast; again, we decided not to parallelize this
portion of the algorithm. Theremaining cell-congtruction steps—building
the stack of cells over one-dimensiond cdlls—take most of the com-puter
(0,-6) True time. The statistics for our examples show that the number of cellscan

bequitelarge. Eveninsimple problems, devel opment of approximately

10,000 cellsis common. Thisisthefocus of our parallelization effort.

The"P’ inQEPCAD, whichstandsfor “partial,’’ refersto astrategy for

reducing the number of cellsthat need to be constructed. This strategy

Figure 2. Simple CAD. isdynamic and is one of the thingsthat requires an interrupt in parallel
implementations; thisis discussed later.

Our parallelization strategy usesamanager node, whichisresponsiblefor sending tasksto theremaining nodes, theworker nodes.
Inthiscasethetasksserveto expand aparticular cell—that is, to break the cylinder over that cell into astack of higher-dimensional
cells. The worker returns the constructed stack to the manager. The parallelization strategy, then, is as follows:

(—4,-2) Tri

~4,-4) Trye

m Manager sends atask to aworker.
m Worker completes the task and returns its results to the manager.
m Manager includes the results in the global result.

Our strategy hastwo important features: (1) To avoid communication overhead, aworker, after expanding agiven cell, continues
to expand its subcells until reaching a limit based on the number of constructed stacks and on processor time. (2) The manager,
afterincluding aresult returned by aworker, may find that someworkersare expanding cell sthat are no longer needed; the manager
must interrupt those workers.

Thegood newsisthat thisapproach produced speedupswhen the number of nodesdid not exceed approximately five. Essentially
no speedup was achieved for larger numbers of nodes. The reason isthat the stack construction for most cellswas very fast, with
only afew com-putationally hard cellstaking up most of the time. The approach had little scalability but was ableto solve at least
afew problems quickly. To gain scalability, we needed to move toward afiner-grain parallelization while, very importantly, not
losing what had already been gained.

Many computer algebraal gorithmsareemployedin stack construction. Fine-grained profiling reveal ed that most of the computer
time used for the hard cellsis spent in the computation of one, or just afew, greatest common divisors (GCDs) of polynomialswith
algebraic number coefficients. This algorithm was thus worth parallelizing. Before we discuss the parallelization of the GCD
computation, a slight diversion is needed for some background information.

Fast Computer Algebra

In exact algebraic calculations with exact integers and rational numbers of arbitrary sizes, the expressions being manipulated
grow large. A skilled user of acomputer algebrasystem can control, but not eliminate, thisgrowth. One of the most important tools
for bounding expression growth is modular arithmetic. Use of thistool can beillustrated by an example: Choose a prime number,
say 7. Modular arithmetic onintegersis defined as performing arithmetic operationsin the usual way and then dividing the answer
by the chosen prime and keeping the remainder. Inthe case of 7, we seethat we keep only thenumbersO0, 1, 2, 3,4, 5, 6 (the possible
remainders on division by 7). Noticethat -1 = 6,—2 = 5, - - -. For arithmetic modulo 7, notice that

21

2+3=5 4+5
2*3=6, 4*6-=3

Because 7 is prime, we can aways find a multiplicative inverse: 2 * 4 = 1,3* 5= 1,. ... Thatis, 1/2 = 2= 4,
1/3 = 3t =5,. . .. Theinteger Euclidean algorithm is used to find multiplicative inverses.

A critical point isthe classical Chinese remainder theorem. Suppose that we want to find aninteger | that has given remainders
when divided by two different primes:

| =3mod 5
3

| =4mod 7 :
Wall-clock time (s) 10 20 30 40 50 60

Itiseasytocheckthat| = 18plussomemultipleof5 * 7 = 35.TheChinese Workers 1 2 4 8 1 12
remainder theorem provides an algorithm for answering such questions, where pias 6 18 42 90162 234
the remainder is given for any number of primes. The answer is given to a
precision that isthe product of the primes. Modular arithmetic and the Chinese Table 1. Behavior of the parallel GCD algorithm.
remainder theorem form the core of many computer algebra agorithms. We
could not factor large polynomials in computer algebra systems without this or closely related techniques. The primes used are
typically much larger than 7, approximately half the integer word length or larger.

The advantage of modular arithmetic is that the arithmetic operations of addition, subtraction, multiplication, and division of
integerstake fixed amounts of time, just asfor floating-point arithmetic. The disadvantage isthat the Chinese remainder theorem
must be used to construct theanswer. Infact however, thistechnique makes many computer algebracal cul ationssignificantly faster
than the direct use of large integers.

We now return to our parallelization problem. The Euclidean algorithm used by QEPCAD to compute the GCD of two
polynomials with algebraic number coefficients uses the modular techniques just described. It has amain loop consisting of five
basic steps:

. Choose a prime p.

. Compute the GCD modulo p.

. Apply the Chinese remainder theorem.

. Compute the rational coefficientsfor the polynomial.
. Check the answer using atrial division.

b~ wOWNPF

Only thefirst two steps areindependent. The othersdepend on resultsfor all the previous primes. For hard GCDs alarge number
of primes, up to several hundred, must be used.

An obvious parallelization strategy isto choose several groups of primes and then pass each group to a different worker node.
The difficulty isthat we do not know, a priori, the total number of primes needed. It is only as the manager node sees the results
of the modular GCDs that it can tell whether the full GCD computation is done. A better approach to parallelization is required.

Profiling has shown that the computation of one GCD modulo p takes only a short time. This time is constant for a particular
problem because of the use of modular arithmetic. To reduce communication costs, we want each processor (i.e., worker node) to
work for atime At bef ore communi cating with the manager node; Atisan adjustable parameter. A nodeworking onaGCD measures
the time t, needed to compute one GCD modulo p and then setsn = At/t,. The strategy now isthat if aworker node spends more
than At time, it requests another worker nodeto help and sendsaset of n primesto that worker node. That worker node then returns
the set of n GCDsmodul o those primes. When k nodesareworking on aGCD and they are not finished at theend of At time, another
k nodes will be requested. Because the number of primes needed cannot be effectively estimated, the node working on a GCD
reguests help only after spending At time computing.

Table 1 presents timing results for our algorithm with a GCD that needed 234 primes; in thiscase At = 10 seconds. Thetimes
inthetable are wall-clock seconds. In thefirst 10 seconds, one worker finished six primes; it then asked for an additional worker.
In the second 10 seconds, the two workers each computed 6 = (18 — 6)/2 primes; both workers then requested additional helper
nodes, and so forth. In serial, this computation would take approximately 10 * 234/6 = 390 seconds. In parallel, it completed in
60 seconds—a speedup of more than 6. The number of workers used in achieving this speedup varied with time.

A complete profile for the GCD manager node with this example is shown in Table 2. These results confirm the estimate and
show a speedup of approximately 8 when 12 processors are used. Further examples show similar parallel speedup results.

The GCD workers are only computing GCDs mod p, while the GCD manager is also performing other steps of the algorithm,
suchaschecking whether enough primeshavebeen chosen. At later times, after 20 secondsfor example, the GCD manager isgetting
results from the GCD workers and processing those results, while the GCD workers continue. Table 2 indicates that the GCD
manager spends 50 seconds on the GCD mod p computation. Table 1 showsthat 60 seconds of wall-clock timewere used to finish
all the necessary GCD mod p computations. From the execution profile, it isobviousthat parallelization of trial division isneeded.
Here, most of the time is spent in algebraic number arithmetic.

Implementation Technique
Implementation of thisparallelization schemerequired arather complicated paradigm. . Time(s)

We have a manager node and a pool of worker nodes. The manager has overall control Computationphase Parallel Sequential

of the computation and the pool of workers. In particular, the manager assignstaskstothe

workers, A worker can request help from the manager, and the manager may or may not <P Mod P 50 400
. . o Chinese remainder 10 10
give a new worker to the requesting worker. The parallelization of the task has the Coefficients 70 70
following general structure: Trial divisions 500 500
m Worker asks manager for helper nodes. Total 630 980
m Manager gives, or does not give, helpersto aworker.
m Worker sends a subtask to a helper. Table 2. Execution profile for the GCD

manager node.

m Helper returns result to worker.
m Worker returns helpers to manager.

The QEPCAD algorithm is specifically designed to detect the possibility of early termination of tasks. For example, when the
algorithm isworking on an existence quantifier and finds atrue case, or on afor-all quantifier and finds afalse case, it terminates
the computations. Thisis adynamic process, however, and it must be possible to interrupt the workers.

Neither MPI nor, to our knowledge, any other message-passing library provides amethod for “ servicing” an interrupt. Because
we are using MPI, we needed to simulate an interrupt, which we accomplished by picking a suitably frequent function call, the
analog of the Lisp CONS function (a pointer allocation), and a parameter n. Every n times this function is called, a node checks
for areassignment message. If thereissuch amessage, the node goesto therestart point and followstheinstructionsinthe message;
otherwise, it continues the current computation.

All thismay seem easy, but there are quite afew possibilitiesfor deadlock, some of which we discovered only viatesting. When
interrupting a worker, for example, it isimportant to interrupt its helpers as well. Additionally, we found that the performance
depends critically on the manager’ s worker-allocation strategy.

Our strategy combining parallel stack construction and parallel GCD computationshasbeenimplementedin MPI andiscurrently
running on an IBM SP2 computer. In the context of computer algebra, with the goal being the ability to tackle significantly harder
problems, we believe that this work has been beneficial. There remain areas for significant improvement in performance, trial
division in particular.

Acknowledgments

This research was supported in part by National Science Foundation grants INT-9212433 and CCR-9531828 and by the Czech Ministry of
Education, grant Kontakt ME 050 (1997). The authors also thank the Maui High Performance Computing Center, the Albuquerque Resource
Center and the Joint Supercomputing Center (of Czech Technical University, University of Chemical Technology, and IBM) for providing
significant computing resources and assistance. The research was sponsored in part by the Phillips Laboratory, Air Force Materiel Command,
USAF, through the use of the MHPCC under cooperative agreement F29601-93-2—0001. The viewsand conclusions contained i nthisdocument
arethose of theauthorsand should not beinterpreted asnecessarily representing theofficial policiesor endorsements, either expressed orimplied,
of Phillips Laboratory or the U.S. Government.

References

[1] B. Cavinessand J. Johnson (eds.), Quantifier elimination and cylindrical algebraic decomposition (Collins' 65th Birthday), in Textsand
Monographsin Symbolic Computation, Springer-Verlag, 1996.

[2] G.E.Caoallins, Quantifier eliminationfor theelementarytheory of real closedfieldsby cylindrical algebraicdecomposition, inLectureNotes
in Computer Science, Springer-Verlag, Berlin, 33 (1975), 134-183.

[3] H.Hong (ed.), Computational Quantifier Elimination, Comput. J., 36:5 (1993).

[4] H.Hong, Improvementsin CAD-based Quantifier Elimination, PhD thesis, Ohio State University, 1990.

[5] H.Hong, Parallelization of quantifier elimination on a workstation network, in Lecture Notesin Computer Science, G. Cohen, T. Mora,
and O. Moreno (eds.), AAECC-10, 673, Springer-Verlag, 1993, 170-179.

[6] H.Hong and R. Liska (eds.), Applications of quantifier elimination, special issue of J. Symbh. Comput., 24 (1997).

[7] R.LiskaandS. Steinberg, Applying quantifier elimination to stability analysis of difference schemes, Comput. J., 36:5 (1993), 497-503.

[8] A. Tarski, The completeness of elementary algebra and geometry, 1930, reprinted, Institute Blaise Pascal, 1967.

[9] A. Tarski, A Decision Method for Elementary Algebra and Geometry, 2nd ed., University of California Press, Berkeley, 1951.

HoonHong (hong@math.ncsu.edu) isintheDepartment of Mathemati csat North Car olina StateUniver sity. Richard Liska (liska@siduri fjfi.cvut.cz)
iswiththeFaculty of Nuclear Sciencesand Physi cal Engineering, Czech Technical Universityin Prague. NicolasRobidoux (n.robidoux@massey.ac.nz)
is with the Mathematics Department at Massey University. Stanly Steinberg (stanly@math.unm.edu) is in the Department of Mathematics and
Satistics at the University of New Mexico.

