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Parallelized Simulations of Two-fluid Dispersions

By Yuriko Renardy and Jie Li

Two-fluid dynamicsisachallenging subject, rich both in physicsand in practical applications, which range from manufacturing
to lubricated transport. Mechanisms unique to a flow can be exploited to enhance functionality in applications. For example,
density-matching can be used to depressthe effect of gravity, or of centripetal accelerationin rotating
systems, making it possible to manipulate the locations occupied by the fluid, aswell as the shapes of
APPLICATIONS ON theinterfaces between thefluids. Viscosity segregation can be used to promote mixing and demixing,
ADVANCED and thus the displacement of one fluid by another (asin the problem of oil recovery), or to segregate
ARCHITECTURE one molten plastic from another by encapsulation. The lubrication of one (highly viscous) fluid by

another (less viscous) fluid is a particularly important branch of two-fluid dynamics.

COMPUTERS Many configurationsare possiblefor theflow of twoimmisciblefluids: layers, fingers, encapsul ated
) regimes, and drops. One of the difficulties in the study of flows of two immiscible fluidsis that the
Greg Astfalk, Editor domain contains an interface. The interface moves under the effects of the flow and can sometimes

undergo severe deformations, including breakup. In the numerical treatment of these flows, we must
answer three questions: (1) How do we represent the interface on a mesh? (2) How will the interface
evolvein time? (3) How should we apply the boundary conditions on the interface?

There are many interface-tracking methods, such as the moving-grid method, the front-tracking method, the level-set method,
and the volume-of-fluid (V OF) method. The VOF method provides asimple way to treat the topol ogical changes of the interface,
aswell as ease of generalization to the three-dimensional case. The interested reader isreferred to arecent review article[4] and
its references.

Our two-fluid code is composed of three parts: a second-order V OF method for tracking the interface, a projection method for
solving the Navier—Stokes equations on the MAC grid (to be defined later), and, finally, a continuum method for modeling the
interfacial tension.

The Equations of Motion

In our two-fluid model, the density p and viscosity u of each fluid are constant, but a jump across an interface is possible. A
concentration, or color, function C is used to represent and track the interface:
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This concentration function istransported by the velocity field u. The average values of the density and viscosity are given by

p=Cp, + (1-C)p,andpu = Cu; + (1 — C)u,, where the subscripts refer to fluids 1 and 2.
We assume that the flow isincompressible, i.e,, V - u = 0, and governed by the Navier—Stokes equation:
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Here, Sisthe viscous stress tensor:
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The body force F includes the gravity and interfacial tension force. Theinterfacial tension force F, = oxngds, Where o isthe
interfacial tension, « isthe mean curvature, and ng is the normal to the interface.

Temporal Discretization and Projection Method

The solution of the large system of equations resulting from discretization of the governing equations is very costly. Thisis
especially trueinthree spatial dimensions. For an efficient approximation, aprojection method can be used to decouplethe solution
of the Navier—Stokes equations from the solution of the continuity equation.

In the projection method, the momentum equations arefirst solved for an approximate u* without the pressure gradient, with the
velocity field u" assumed to be known at a given time-step:
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In general, the intermediate flow field u* does not satisfy the incompressibility equation. It is corrected by the pressure
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so that a divergence-free velocity u™* will be produced at the next time-step. The pressure field is not known, but when the

divergence of the equation istaken, it is found to satisfy a Poisson equation:
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Intheproblemsaddressed here, theboundary conditionsfor thevel ocity are periodicity andthe Dirichl et condition. Analogously,
the boundary conditions for the pressure are periodicity and the Neumann condition, respectively.

Spatial Discretization and Interface Advection

The spatial discretization of the momentum equation and the Poisson equation for the pressure is based on a finite-difference
scheme known asthe MA C method. An Eulerian mesh of rectangular cellsisused, with variablesizesin all threedimensions. The
pressure and the concentration function C are given at the node at the center of each rectangular cell. Thethreevelocitiesaregiven

at the centers of the faces of the cell.

At the discrete level, the concentration function is the volume fraction field C;. Whenacell |sf|IIedbyfIU|d1 C, = Lwhenacell

containsno fluid 1, C; = 0. Theinterfaces are in the cells for which C; is between 0 and 1.

Given aninterface, we can calculate aunique volume fraction field. When werepresent the
interface by a volume fraction field, however, we lose interface information and cannot
determineauniqueinterface. Theinterface should bereconstructed. Piecewiselinear interface
calculation (PLIC) methods have been developed for two- and three-dimensional cases. The
essence of these methodsisto cal cul ate the approximate normal n to theinterfacein each cell;
this determines a unique linear interface with the volume fraction of the cell. The discrete
gradient of the volume fraction field yieldsn = V"C/ [V"C |.

The second step of theV OF method isto evolvethevolumefractionfield C. TheLagrangian
method isthe natural choicefor interface evolution. Inthisscheme, oncetheinterface hasbeen
reconstructed, the velocity at the interfaceisinterpolated linearly. The new interface position
isthencalculatedviax™ = x" +u (At). Figurelillustratestheperformanceof the L agrangian
method on an arbitrary two-dimensional mesh. In comparison with the Eulerian method, the
Lagrangian method has two advantages: (1) When the Courant condition ( Max |u |) At/h <
1/2 is satisfied, the method is stable; and (2) the volume fraction always satisfies the physical
constraint 0<C< 1.

In the VOF method the interfacial tension condition across the interface is not applied
directly, but rather as a body force over the cells that contain the interface. Two such
formulations have been implemented in this work. The first is the continuous surface force

Figure 1. The Lagrangian method
on an arbitrary two-dimensional
mesh. The shaded polygon repre-
sents the portion of the central cell
occupied by the fluid. The broken
line shows the polygon position
after advection in the local veloc-
ity field (represented by arrows).
The fluid is redistributed between
neighboring cells, which are par-
tially overlapped by the new poly-
gon.

formulation, inwhichf, =okngandF, = f,VC. The second isthe continuous surface stressformulation, inwhichF, = V-T= ¢
dxnsand T = [(1—ns® ng) 6ds]. The latter approach leads to a conservative scheme for the momentum equation.

Semi-implicit Stokes Solver

The characterization of our numerical method is now complete, except for one weakness that needs to be considered: Being an

explicit method, it isnot suitable for simulations of low-Reynolds-number flows. For an explicit method, the time-step At should
besmaller thantheviscoustimescale, T, = ph*p, whereh denotesthe mesh size. Thisstability limitismuch morerestrictivethan
the CFL condition for simulations of low-Reynolds-number flows. In calculations for times of 0(1), implicit treatment of the
viscous terms isim-perative.

Our approach is an original semi-implicit method. The time integration scheme is constructed to be implicit for the Stokes
operator, and explicit otherwise. In the u component of the momentum eguation, we treat only the terms related to u (those with
upper index *) implicitly, leaving the others (those with upper index ") in the explicit part:
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This can be expressed as:
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Thisproceduredecouplestheucomponent fromthepreviousparabolic system. Itisstill afirst-order method, but theeffort needed
to solveitissignificantly less than for the fully implicit treatment. The same idea applies to the other velocity components.

The viscous terms in our semi-implicit scheme are unconditionally stable. In addition, the left-hand side of the equation is
factorized as:
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The error of thisfactorization is 0 (At®). Inversion of the left-hand side of the preceding equation requires only the solution of
tridiagonal matrices, which results in significant reductions in computation and memory. Moreover, the scheme involves the
solution of alarge number of tridiagonal systems, which areindependent of each other and can therefore be solved in parallel. The
solution of thesetridiagonal systemscan bedoneino(N) operations, where Nisthe number of grid points. In summary, thisscheme
isfirst-order accurate and unconditionally stable. This stability is crucial for the simulation of low-Reynolds-number flow.

Simulation of Drop Breakup in 3D

Study of the deformation and breakup of adrop in shear flow lies at the foundation of dispersion science and multiphase flow.
The topic has been evoking the interest of the scientific community since the time of Taylor [5]. More recently, experimental
observations of sheared breakup have been recorded [3]: A strong shear is applied to asingle drop; the drop el ongates, followed
by the pinching off of drops at the ends. Such processes, with their yield of daughter drops, are paradigms for theoretical
investigations of emulsification and mixing.

Theexperimental work in[3] focused onaviscousdrop suspendedinasecondimmiscibleliquid, thematrix liquid, inacylindrical
Couette device. Thedifferencein density betweenthetwoliquidsisaminor effect, and theflow issufficiently slow that centrifugal
effectsin the cylindrical device are not important. A corresponding theoretical model is simply three-dimensional Couette flow
with zero gravity; the matrix liquid is undergoing asimple shear flow between two parallel plates, separated by adistanced’. The
liquid drop has an undeformed radius a and viscosity 4, and the matrix liquid has viscosity ... The undisturbed velocity field
u=yz ,where y istheimposed shear rate.

Additional parameters for our numerical simulations are the interfacial tension ¢ and the spatial periodicities A, and A, in the
xandy directions, respectively. There are six dimension-less parameters: acapillary number Ca = ayy,, o, where an average shear
rateisdefined as y =U’d" , theviscosity ratio . = pqu,,, the Reynolds number Re= p, ya®,, the dimensionless plate separation
d = d*, and dimensionless spatial periodicities ., = Ay, and A, = A,,,. The shear stress induced by the flow competes with the
interfacial tension to deform and rupture thedrop. The capillary number denotestherati o between these two competing effectsand
provides a useful measure of the efficiency of the shear flow in deforming the drop.

Recently, highly accurate computations of drop deformation and breakup for Stokesflow have been performed [1]. We present
a numerical exploration of breakup. Periodic conditions are imposed in the x and y directions (streamwise and cross-flow,
respectively). The top and bottom plates have constant velocities, and the shear rate is therefore constant during the entire
computation.

When the shear rateisincreased past acritical value, thedrop ruptures. For the case of equal viscositiesand densities, thecritical
capillary number isapproximately 0.41. When the capillary number exceedsthecritical value, thedrop ruptures. Below thecritical
value, the drop attains a steady unruptured state.

Our computation for Ca = 0.42 in adimensionless 3 x 1 x 2 box, witha 96 x 32 x 64 mesh, is shown in Figure 2. The
competition between the externally imposed shear flow and the surface tension-driven flow isclearly evident. The most noticeable
initial motion is elongation of the drop, stretched by the viscous shear stress of the external flow (for timesless than 20). At time
T = 30.0, formation of awaist is seen near the center of the drop, and the drop is steadily thinning. Asthe drop slowly lengthens,
avisible neck is seen near the bulbous end. Because of thisneck, theendswill eventually pinch off and theliquid thread remaining
in the middle will form small satellite droplets.

The deformation and breakup of adrop in shear flow were recently investigated experimentally [3]. Figure 3 shows some of the
experimental observations. Figure 4 showsour simulation for parameters closeto the experimental case. Thelargest daughter drops
areformed by the pinching off at the elongating end, as shown in both of these figures. Subsequently, there is a sequence of small,
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and then larger drops, as shown in both of
these figures. The reader is referred to [2]

for more details. T= 350

Parallelization

For transient 3D Navier—Stokes simula-
tionslikethose of drop breakup, itisneces-
sary to use parallel computers. When cod-
ing, we essentially use large Fortran DO
loops, which are made to step through the
array in the same way the array islaid out
in memory. Using the system routine
/ bi n/ ti me,weprofiled the codeto find
the time-critical components and, through
tuning, toimprovetheefficiency. We have
paralelized the entire code on the Ori-
gin2000, using the C8DOACROSS direc-
tive. For the code dealing with explicit
schemes, which consists of independent
loops, there is no difficulty in the
parallelization. It is not easy to break the
data dependencies in the solution of
tridiagonal systems. However, there are Figure 2. Evolution of a drop shape for Ca = 0.42 in a dimensionless 3 x 1 x 2 domain,
many such systems to be solved, and we with equal viscosities and densities.
parallelizethiscomponent by solving them
Smltaneously. _

The numerical solution of the pressure equation isthe most time
consuming part of our Navier—Stokes solver; consequently, an Ry
efficient solutioniscrucial for overall performance. The multigrid
method is known to be an optimal choice. The basic idea of the
multigrid method is to combine two complementary procedures:
one basic iterative method to reduce the high-frequency error, and
one coarse-grid correction step to eliminate the low-frequency
error. Our most challenging task has been to parallelize this Figure 3. Reproduction from Marks (1998), showing a typical
multigrid solver. We have chosen atwo-color Gauss-Seidel itera-  drop breakup. Here, the viscosities are 7.0 Pa.s for the matrix
tive method because it breaks the dependencies between the  537% 7% %18 P TOF TR TR S T TR e
variables and therefore allowsfor parallelization of thescheme. A 5 17/s; densities are equal.

Galerkin method provides a good coarse-grid correction.
On the finite grid, the discretization for the Poisson equation has the form:

T=38.0

T=45.0

T =540
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The Jacobi iteration method used to solve this system is

n+1 — h ik
- aﬁ,j,kﬂ—],j,k - h,j,knnﬂ,j,k
- Cl,j,knrjj—l.k - di,j,knr,]jﬂ,k
- Q,j,knrjj,k—l - fi,j,k nr,]j,kﬂ
Inthisform, theiterationis easily parallelized because the components p,”]*lk can be computed independently of each other. In
the Gauss-Seidel iteration, on the other hand, the components of p™* are computed successively; in the computation of each new
component, the already computed components of p™* are used on the right-hand side of the equation instead of p". Algorithms of
this type cannot be parallelized. The Gauss-Seidel iteration converges much faster than the Jacobi iteration.
In our calculations, we used a two-color scheme, with grid points divided into two categories according to whetheri + | + k

isevenor odd. Theright-hand side of the above equationinvolvesonly thevaluesof p" at pointswith parity oppositetothat of (i,j,k).
Hence, we can use atwo-step method, first updating the values at “odd’’ points and then, using the previously updated values at
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the odd points, updating the Sorafnkr
T=0 | ® | values at “even’’ points. For .
each of the two substeps, the e
calculationsat different points _ o
T=20 f | areindependent of each other o A
and can therefore be carried . .
out in parallel. -
T=30 | | Thethreemaincomponents o
of the code are the interface- T
tracking scheme, the projec- &
f tion method for solving the
Navier—Stokes equations I L
(semi-implicit and explicit  Figure 5. Scalability curve for 3D Navier -
termsintimei ntegrati on, mul- g;okes simulation of drop rup.ture onup fo
A processors. The drop, with an initial
tigridpressuresolver), andthe  ragjus of 0.25, is placed at the center of a
T =60 l ®- - e -® | continuous surface force or,  computational box with a 128° mesh.
alternatively, the continuous
surfacestressalgorithm. All the
T=65 | -- -- ‘e -- | components have been par-  Processors CPU minutes Speedup
allelized. The algorithms that

account for the major portion 1 22.0 1.0
T=70 |- - ®- - . -- - -] of thecomputationtimearethe 2 16.0 14
multigrid scheme for the pres- 4 9.2 2.4
s {. e e o 2 __| sure solver and the semi-im- 8 5.0 4.4
plicit scheme for time integra- 16 2.5 8.8
tion. 32 12 18.3

We have used up to 32 pro-

cessors and 512 megabytes of  Table 1. CPU time for 10 time-steps in a 3D
Figure 4. Interface evolution as viewed from the top ofa physical memory to run our  simulation of drop breakup in a 128°-mesh
12 x 1 x 1 computational box durin_g_ breakup for_Ca = parallelized code. Large stor- cube.
‘2’;5565; ’é[xoéy' and equal densities. The grid is ane capacity is preferable but not essential. Once the code has been
parallelized, animportant measureof performanceisscal ability. Scalability
describes how much faster the code will run as the number of processorsisincreased. Figure 5 shows the scal ability of the paral-
lelized version of our code. The speedup factor denotes the time required to solve the problem on one processor vs. the time for
the same problem on N processors. These tests were performed on the 3D Navier—Stokes simulation of drop rupture discussed in
the previous section. For each test, 10 time-stepswere run on a128° uniformgrid. At each time-step, the divergence-free condition
was satisfied to V - u" < 107®. The timings were recorded by the Unix / bi n/ t i me command and are given in Table 1.
Efficiency in multiprocessing isdefined astheratio (time on N processors)/((MN) x (time on M processors)). In going from one
totwo processors, theefficiency for our codeisabout 69%, but improvementscan beachieved with theuse of additional processors.
When the number of processorsisincreased from two to 32, for instance, the efficiency is 83%.

T=280 #- S - = s-® s e se s e S-8 S -B -{

Summary

Direct simulation of two-fluid flowsisoften limited by the computational effort required and by theavailablememory, especially
inthe 3D case. For improved performance, wefound threeissuesto be of the utmost importance: accuracy, stability, and efficiency.
We parallelized our entire code, including the semi-implicit Stokes solver; on an Origin2000 with 32 parallel processors, the
efficiency of the parallelized code is greater than 57%.
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