from SIAM NewsVolume 32, Number 1

Parallel Implementation of the Split-step
Fourier Method
For Solving Nonlinear Schrodinger Systems

By Scott Zoldi, Victor Ruban, Alexandre Zenchuk, and
Sergey Burtsev

Large-scale simulations of the nonlinear Schrédinger equation (NLSE) are required in the solution of many problems in fiber
optics—among them accurate modeling of wavelength division multiplexed transmission systems. The split-step Fourier (SSF)
method, commonly used in the numerical solution of the NLSE, often proves too slow in serial versions, even on the fastest

workstations. In this article, we present a paral-lelization of the SSF algorithm that is appropriate for
multiprocessors.
APPLICATIONS ON Most commercial multiprocessors support both shared-memory and distributed-memory program-
ADVANCED ming paradigms. As described here, we have implemented the SSF method under both of these parallel
programming paradigms on a four-processor Silicon Graphics/Cray Research Origin 200 multiproces-
ARCHITECTURE ¢ computer.

COMPUTERS The NLSE,
Greg Astfalk, Editor

iA +0d%A<X+A*A2=G (1)

is a nonlinear partial differential equation that describes wave packet propagation in a medium with cubic nonAiietrity.
amplitude of the electric field corresponding to the wave packet. The paransiecifies the fiber-anomalous group velocity
dispersion (foo = 1) or the normal group velocity dispersion (for —1). The parametetrdefines the normalized absolute value

of the fiber’s dispersion. The perturbatiGris specified by details of the physical fiber being studied. Technologically, the most
important application of the NLSE is in the field of nonlinear fiber optics [1, 6].

In the special case @ = 0, the NLSE is integrable [12] and can be solved analytically. More generally Guh@nthe NLSE
must be solved numerically. The SSF method is one of the most popular numerical methods for solving the perturbed NLSE [1].

Inwavelength division multiplexed (WDM) transmission systems, many optical channels operating at their own frequencies share
the same optical fiber. WDM technology is important in that it is one of the most effective ways to increase the tranapdsgion ¢
of optical lines [1, 6, 7]. For accurate WDM modeling, a large number of Fourier harmonics must be included in the numerical
simulation to cover the entire transmission frequency band.

In WDM systems, moreover, different channel pulses propagate at different velocities and, as a result, collide with égch other.
the pulse collision, Stokes and anti-Stokes sidebands are generated. These high-frequency perturbations lead to sigiael deterior
[3, 8]. Another fundamental nonlinear effect, called four-wave mixing (FWM) [4], must be accurately simulated: The FWM
components broaden the frequency domain, and even larger numbers of Fourier modes are required for accurate numeric
simulation.

Dispersion management (concatenation of fiber links with variable dispersion characteristics) can be used to suppress FWM an
make possible the practical realization of WDM transmission. In this case the dispersion coeffitherNLSE is no longer constant
but represents a rapidly varying piecewise constant function of the distance alongth&diaresult, small step sizes alonditber
are required to resolve dispersion variations and the corresponding pulse dynamics. A final reason to include largeffoumiers of
modes in numerical simulations is to model the propagation of pseudorandom data streams over large distances. All these facto
combine to make numerical simulation of the NLSE quite computa-tionally intensive.

Split-step Fourier Method

The SSF method is used to integrate many types of nonlinear partial differential equations. Because it is often mateaefficient
finite differences for the simulation of nonlinear Schrédinger (NLS) systems [11], the SSF method is the more commonly used.
An NLS system can be written in the form:

0A _
E_(H N)A

whereL andN are the linear and nonlinear parts of the equation. The solution over a short timeirdanvé written in the form

At+T1,x)=exp(tL) exp(tN)A(t, x)
where the linear operator in the NLS system acting on a spatiaBftetlis written in Fourier space as

exp(tL)B(t,x)=F* exp(—i kZT)F B(t, x)

whereF denotes the Fourier transform (FF); denotes the inverse Fourier transform, liglthe spatial frequency.
We split the computation & over time intervat into four steps:

Steplfonlinearstejr ComputeA = exp(tN)A(t, X) (by finite differences).
Step 2 forward FT): Perform the forward FT oA: A,=F A.

Step3 linearstep):ComputeA, = exp(tL)A,.

Step 4 backward F7J: Perform the backward FT af: A(t+t) =F A,

For numerical approximation of this algorithm, the potertial discretized ithe formA = A(lh) for| =0, ... N—1, wherenh is
the space-step amdlis the total number of spatial mesh points.

This algorithm for the SSF method is the same for sequential and parallel code. Parallel implementation of the algorghm involv
parallelizing each of the four steps.

Parallel Algorithm for the
SSF Method

A prerequisite for parallel numerical algorithms is that sufficient independent computation be identified fopees$or and
that only small amounts afata be communicated between periods of independent computation. This can occasionally be done
trivially through loop-level parallelism (for shared-memory implementations), or nontrivial-ly by storing independent alétta in e
processor’s local memory. For example, the nonlinear step in the SSF algorithm involves independent computation over portion:
of the spatial elements &f. Each ofp processors will work on subarrays of the figlce.g., the first processor updatesté\A,

»_1 the second processor updatgs to Ay, 5, and so forth.

Inthe 1D FFT, elements df (A), cannot be computed in a straightforward parallel manner because all the eleants afed
in the construction of any element &f4),. The problem of parallelizing the 1D FFT has been of great interest for vector [2, 10]
and distributed-memory computers [5]. These algorithms are architecture-dependent and involve efficient methods for the data
rearrangement and transposition phases of the 1D FFT.

Communication issues are paramount in parallelizing the 1D FFT. In the past the classic butterfly communication patterns were
exploited to lessen communication costs [5]. Rapid changes in parallel architectures, however, have resulted in multiprocessc
systems with highly complex memory hierarchies and communication characteristics; previous algorithms are not directly applicab
to many of the current multiprocessor systems. Shared-memory multiprocessors often have efficient interprocessor communicatior
and we therefore implement the parallel 1D FFT by wriings a 2D array, in which we can identify independent serial 1D FFTs
of rows and columns of this matrix. The rows and columns of the nAateir be distributed to divide the computation among several
processors. As aresult of the efficient communication, the independent computation stages, and the absence of tha stagspositio
of the 1D FFT in SSF computations, this method exploits enough independent computation to result in significant speedups with
small number of processors.

The difficulty of parallelizing the SSF algorithm arises in Steps 2 and 4othbetwo steps can be trivially evolveddmise of
the natural independence of the dataamdA,. In Steps 2 and 4, there are nontrivial data dependences over the entirerhade 0
of A,() andA(l), which involve forward and backward Fader transforms (FFT and BFT, respectively). The discrete FFT is of the
form

F)= 5 Al)exp -2

which requires all elements Afl). Parallel 1D FFT algorithms must deal with the memory hierarchy and communication issues in
order to achieve good speedups. We achieve significant parallel speedup due to the elimination of the transpositioa $fage in th
FFT for the SSF method by exploiting the independent computations achieved by performing many sequential 1D FFTs on smal
subarrays oA(l).

Our method for parallelizing the SSF algorithm requires dividing the 1DAfiento subarrays, which are processed via vendor-
optimized sequential 1D FFT routines. We assume that the dimenshierldf arrayA is the product of two itegersN = M, x M,.

A can then be witién as a 2IM, x M, matrix. As a result, wean reduce the expression for the Fourier transform of the/atcethe
form
whereF is the Fourier transform & andf is the result of aiMl;-size Fourier transform @&(Mgn, + ny) with fixed n,;

The reduced expression, equation (2), demonstrates thdtth x M, Fourier transfornfr is obtained by performinigl,-size
Fourier transforms of (ko, no)exp %T“'noko) for fixedk,. Therefore, the 1D arrdyis written as a 2bnatrixa,, of sizeM, x M, with
elementsA(0), . . . ,A(M,— 1)) in the first caimn, A(M,), . . . , A(M,— 1)) in the seond column, and so forth. We use this matrix
ay in our parallel FFT algorithm:

Step a: Perform independévi{-size FFTs on the rows ef.
Step b: Multiply elementa(j, k) by a factorEjk = exp(—(2p/N) - j - K).
Step c: Perform independeii-size FFTs on the columns af.

The result of Steps a through c isbhe M, x M, 1D Fourier transform ok stored in rows:K(0), . . . ,F(M, — 1)) in the first row,
(F(M), ... ,F(2M; — 1)) in the second row, and so on. Restoration of the proper ordeAr{thefelements as originally stored in
the matrixa,) requires a transposition of the matrix, which is the last step in a parallel FFT algorithm.

The transposition isot necessary in the SSF method. We avoid the transposition by defining a transposed linear operator array
and multiplyinga, by this operator. Steps a through c are then performed in reverse order, with the conjugate of the exponential terrr
used in Step b.

The complete SSF parallel algorithm consists of the following steps:

Step A: nonlinear step

Step B: row-FFT

Step C: multiplication by

Step D: column-FFT

Step E: linear step (transposed linear operator)

Step F: column-BFT

Step G: multiplication b¥" (the complex conjugate &)
Step H: row-BFT

The parallelism is due to the independent operations in steps A, C, E, and G and to the row and column subarray FFTs in stej
B, D, F, and H. The row and column subarray FFTs ofMizandM, are performed independently with optimized serial 1D FFT
routines. Working with subarray data, many processors can be used to divide the computational work; significant speedups ar
achieved if communication between processors is efficient. The smaller subarrays allow for better data locality in ttendrimary
secondary processor caches.

Shared-memory Approach

Most of the parallel SSF algorithm can be implementedauaitleross directives to distribute independent loop iterations over
many processors. We im-plement the FFTs of BizandM, by distributing the 1D subarray FFTs of rows and columns over the
p processors. The performance can be significantly improved by keeping the same rows and columns local in a processgr’'s seconde
cache to alleviate true sharing of data from dynamic assignments of subarray FFTdohyrtiss directive. Vendor-optimized
sequential 1D FFT routines designed specifically for the architecture are used to perform the subarray FFTs.

It is “cache efficient” to perform all coimn operations, Steps C ¢lugh G,in one pass. We copy a column into a local sub8rray
contained in the processor’s cache and then, in order, perform the following steps: multiply by the exponents in Step tbegperfor
M,-size FFT ofS multiply by the transposed linear operator exp(invert theM,-size FFT, multiply by the conjugate exponents,
and, finally, storesin the same column &.

Distributed-memory Approach

The Message Passing Interface (MPI) [9] is a tool for distributed parallelcomputing that has become an ad hoc stasédrd. It is u
on systems ranging from tightly coupled high-end parallel computers to weakly coupled distributed networks of workstations
(NOW) [9]. In distributed parallel programming, different processors work on completely independent data and explicittly use sen
and receive library calls to communicate data between processors.

To implement the distributed parallel SSF algorithm for the NLS, we need to distribute the rows Afsanm@ygp processors.

(The algorithm is shown below.) Steps 1 through 3 can then be executed without interprocessor communication.

It is necessary to redistribute the element& among the processors, which incurs communication costs. Each processor must
send a fraction p/of its data to each of the other processors. Each processor will then have the correct data for Steps 4 through 7
and column operations can be performed independently pprdtessors. Finally, there is a second redistribution prior to Step 8.

To takeT steps of the SSF algorithm, we use the following scheme (in which the step numbers are not related to those in the earlie
algorithm):

distribute rows among processors
Step 1: nonlinear step

Step 2: row-FFT

Step 3: multiplication by a facté

fori=1toT—1do
data redistribution
Step 4: column-FFT
Step 5: linear step
Step 6: column-BFT
Step 7: multiplication by a factd
data redistribution
Step 8: row-{BFT}
Step 1: nonlinear step

Step 2: row-FFT

Step 3: multiplication by a factd
end do N =212 N=24 N=216 N=2¢
data redistribution T=8000 T=2000 T=500 T=125
Step 4: column-FFT
Step 5: linear step to (sec) 49.5 515 65.5 97.5
Step 6: column-BFT t, (sec) 295 30.5 335 61.0
Step 7: multiplication by a factd® t, (sec) 19.5 18.5 19.5 345
Step 8: row-BFT
SU=t,/t, 1.7 1.7 2.0 1.6
The large performance cost in this algorithm is the redistribution O?U /e 23 28 34 28

data between row and column operations:

If the row and column computational stages resultin significantspeeﬁﬁg‘;‘ 1. Results fOTf 3] Shafeclf;meTOtry Im.:)lel{geglfatlon- N
. : : H H H H otles array size, e number or steps, e lime on x

compargd with the communication expense incurred in redistribu essors, and SU the speedup. (&

the matrix data, then the algorithm will be successful. The success of the

algorithm is crucially dependent on fast communication between pro-

cessors. Thisis the case for shared-memory multiprocessors, and less so N = 212 N=214 Nz N=o2
for NOW-like systems. T=8000 T=2000 T=500 T=125
Results t,, (sec) 37.9 445 504 92.4
We performed timings of the parallel SSF algorithm on the Silicon, (sec) 24.7 25.4 34.9 65.9
Graphics/Cray Research Origin 200 multiprocessor. The Origin 206}, (sec) 18.8 16.3 20.1 26.8
allows both shared- and distributed-memory parallel programming—tt
can be considered a generic multiprocessor, and it is efficient for fin&J=t./t, 1.5 18 1.7 14
grained parallelism. The Origin 200 used in this study consisted of fodtY = tufte 20 2.1 3.0 34

MIPS R10000 64-bit processors with (peak) performance of 3e8
.MﬂOpS. each. A.” .t'.m'.”gs. are for the tOta.ll wall-clock time for the COdgFéble 2. Results for distributed-memory and MPI implemen-
including both initialization and exec}?tlon' tations. N indicates array size, T the number of steps, t,, the

For the following timingsM, = M, = 27, so that the entire 1D array iStime on x processors, and SU the speedup.
of sizeN = 2. The one-processor implementation of our parallel SSF
code was 10% to 20% faster than that of the serial SSF code using vendor-optimized 1D FFTs on the entire aNay2f.size
The improvement is due to better cache utilization with the smaller subarrays; an entire subarray could be containeddhéhe L1
Additionally, the single-processor parallel SSF code does not do the transposition stage of the 1D FFT. All timings atk compare
with those for the one-processor parallel code at the same optimization level.

For shared-memory parallel implementations, we find that, for the rangé<oN 2'°, two-node SSF implementations have
good speedup, with a maximumat 2'° (See Table 1). With four processors and small array sizes the work per processor decreases
by 25%, but contention is greater because of the sharing of pieces of data contained in the secondary caches of four differel
processors. The maximum speedup again occhts &, indicating that the ratio of computational speed gain to communication
contention is optimal at this problem size.

Under the shared-memory programming model, subarrays are continually distributed among processors to divide the compute
tional work. Data in a single subarray can be contained on one or more processors. The data contained in each prooglssor’'s L2 ca
is of sizeO(N/p), wherep is the number of processors. In the parallel code, the communication time for sending data between
processors is proportional @(N/p)t,, wheret, is the time required to transfer an L2 cache block between processors. Finally, the
time required to perform a sequential 1D FFT on a subarray dfisizapproximatel log(M)t,,, wherex,, is the time for a floating-
point operation.

For fixedp and with no contention, we can predict that the speedup will increase as the problHrhesinenes larger. With
contention, however, the speedup eventually decreases with Mes-amresult of the sharing of subar-ray data between processors.
These observations are in agreement with the qualitative trend seen in our empirical data on speedup for the shared-memory S.
method, where the maximum speedup was attained with a problem kize25t

The preceding discussion of speedup must be reinterpreted for the distributed-memory SSF method owing to the implicit
independent computational stages during which no data are communicated between processors. With the distributed-memory S¢
method, because it uses communication stages to send data between processors, contention due to sharing of data bet&een proce:
does not occur during the computation stages.

Distributed MPI timings are compared with those for a one-pro-cessor MPI code at the same optimization level. Because it did
not have synchronization steps, the MPI one-processor code was faster than one-processor shared-mem-ory code. The parallel c
was usually faster than the shared-memory parallel code, except ko=tRé array size, for which the shared-mem-ory code did
slightly better. We find that for distributed-memory parallel implementations of the SSF method over the rérgl ef2*°, two-
node implementations have good speedups, with a maximhim at*, beyond which the communication cost increases and the
computation/communication ratio decreases (see Table 2). The communication cost for the MPI code is a result of “communicatior
stages”; the less than perfect speedups are thus due to the volume of data communicated between processors in rejssibution st
and not to the constant sharing of small subarray data.

4

With four processors, the speedup increased with the working sat dihés is due both to the faster computation stages and to
the reduced volume of data communicated between single processors in the redistribution stage. For small problem sizes, there
not enough work to make dividing the problem among four processors beneficial. The speedup in the distributed-memory SSF
algorithm can be attributed to the independence of the data contained in a processor’s local cache between data-redagegement s

Conclusions

These results are encouraging in that the speedups achieved in multiprocessor SSF implementations are considerable. T
speedups over sequential code with vendor-optimized full-array 1D FFTs are even greater. Because of the 10% to 20% speedup o\
optimized 1D sequential SSF algorithms, we recommend implementation of the parallel SSF algorithm even on sequential machine:
The speedup reflects better exploitation of the L1 cache and data locality through the use of small subarrays and removal of th
transposition stage of the 1D FFT in SSF.

For shared-memory implementations of the parallel SSF method, the maximum speedup is achieved through a balance ¢
contention in communicating data contained in more than one processor and the computational performance gains achieved by mee
of small subarrays. For the distributed parallel SSF method, data locality is greater as data are distributed stattoatheprior
computational stages. This division of computation and communication stages is different from that for the shared-memory SSF
method, which dynamically distributes subarray FFTs and shares data on more than one processor. Distributed SSF speedup i
function of the number of processgsvhich reduces both the computation time and the communication volume between single
processors. The speedup of the parallel SSF method is strongly dependent on reductions in both communication time and contenti
in the multiprocessor.

References

[1] G.P. Agrawal Nonlinear Fiber Optics2nd edition, Academic Press, San Diego, 1995.

[2] A. Averbuch, E. Gabber, B. Gordissky, and Y. MedarfRarallel FFT on an MIMD machindarallel Comput., 15 (1990), 61—-74.

[3] N.S. Bergano and C.R. DavidsdiWavelength division multiplexing in long-haul transmission systénisghtwave Tech., 14:6 (1996),
1299-1308.

[4] P.N. Butcher and D. CotteThe Elements of Nonlinear OpticSambridge University Press, New York, 1990.

[5] A. Dubey, M. Zubair, and C.E. Grosohgeneral purpose subroutine for fast Fourier transform on a distributed memory parallel machine
Parallel Comput., 20 (1994), 1697-1710.

[6] A. Hasegawa and Y. Kodam@glitons in Optical Communicatip®xford University Press, New York, 1995.

[711.P. Kaminow and T.L. KochQptical Fiber Telecommunications JlAcademic Press, San Diego, 1997.

[8] P.V. Mamyshev and L.F. Mollenauétseudo-phase-matched four-wave mixing in soliton wavelength-division multiplexing transmission
Optics Lett., 21:6 (1996), 396—398.

[9] M. Snir, S. Otto, S.H. Lederman, D. Walker, and J. DongMRi; The Complete ReferenddIT Press, London, 1996.

[10] P.N. SwartztraubeMultiprocessor FFTsParallel Comput., 5 (1987), 197-210.

[11] T.R. Taha and M.J. AblowitzAnalytical and numerical aspects of certain nonlinear evolution equations, Il, Numerical, nonlinear
Schrédinger equatign). Comput. Phys., 55 (1984), 203-230.

[12] V.E. Zakharov and A.B. Shab&xact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear
mediag Soviet Phys. JETP, 34 (1972), 62-69.

Scott Zoldi (zoldi@cnls.lanl.gov) is a post-doctoral research associate at the Los Alamos National Laboratory. V. Rubaritgruban@
ac.ru) and A. Zenchuk (zenchuk@itp.ac.ru) are graduate students at the L.D. Landau Institute for Theoretical Physics irRM&siaos,
Burtsev (burtsev@cnls.lanl.gov) is a research scientist at Corning Inc.

