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Parallelization of an Unstructured-grid,
Laser Fusion Design Code

By Aleksei Shestakov, Jose Milovich, and David Kershaw

The essential physics of laser fusion is described by the hyperbolic Euler equations for mass, momentum, and energy; diffusio

equations that model elat conduction and radiation transport; and a model for laser energy
deposition. In this ar- ticle we describe the parallelization of ICF3D [4], a 3D, unstructured-grid,
finite element C++code initially written to simulate laser fusion experiments.

The ICF3D mesh APPLICATIONS ON consists of an arbitrary collection of hexahedra, prisms, pyramids, and/or
tetrahedra. The only re-ADVAI\| CED striction is that cells can share faces only of like kind. We parallelize by
decomposingthephysi-tARCHITECTURE cal domain into a collection of disjoint subdomains, one per processing
element (PE). The in- COMPUTERS putfiles tag each cell with the number of the PE that owns it. The cells owned
by a PE constitute the PE’s subdomain. A cell that shares at least one vertex with a cell owned by
a PE, but that is owned Greg Astfalk, Editor by another PE, is called a ghost cell of the first PE. Each PE receives a terse
description of only its subdomain, along with a layer of ghost cells.

The decompositionis especially suited to distributed-memory architectures but can also be used on

shared-memory systems. A single-program, multiple-data model is adopted. In the parallelization of ICF3D, difficultiéswarise at
levels:

s Embarrassingly parallel functions that do not require message-passing, e.g., the cell-by-cell calls to the equation-of-state.
m Straightforward parallelization of the temporally explicit hydrodynamic scheme.

= Functions requiring global communication, e.g., solution of the linear systems used to discretize the diffusion equations.
= Unpredictable point-to-point (PtP) communication arising in the laser ray-tracing scheme.

The mesh consists of cell, face, and vertex objects. Since the input files assign PE ownership only to the cells, sothe faces ar
vertices lie on inter-PE boundaries. Some functions, such as the one that computes the hydrodynamic fluxes, are faG¢hegntered.
functions are cell-centered. The diffusion equations, for example, are advanced by standard finite element techniquesireshich re
integrating over cells; this integration is done by each PE over only the cells it owns. However, once the linear systéem has be
assembled and properly distributed among the PEs, the calculation is vertex-centered. In this article we describe tlandssembly
solution of such systems, in which each PE sees only its subdomain and the surrounding ghost cells.

The PEs communicate using one of two types of message-passing function libraries, MPI or the native Cray SHMEM. Two types
of communication arise, global and PtP. An example of the former is the calculation of the tifteEEteh PE first computes its
acceptable value, and a global reduction function then computes the minimum. In PtP communication, PE[i] exchanges message
only with PEs that own its ghost cells. For such exchanges, ICF3D relies on message-passing objects (MPOs) constructed durir
initialization. The MPO constructor relies on mesh-connectivity information that ICF3D computes as it builds the meshiabjects.
actual calls to MPI (or SHMEM) functions are made by the MPO member functions.

Hydrodynamics

Message exchanges of two types, face- and vertex-centered, are needed for the hydrodynamic scheme [3], a second-order extens
of the Godunov method in which all variables are cell-based. Since it is compact and temporally explicit, the scheme is
straightforward to parallelize. Second-order temporal accuracy is attained by a two-step Runge—Kutta integration. drae the sch

is applied t@,f + 0 [F =0, the equation is first multiplied by a basis functppand then integrated over a cell, yielding a predicted

value for
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The integral ofg,[1[F is integrated by parts, which gives two other integrals, one of which reduces to a sum of area integrals over
the cell's faces. These face fluxes are solutions to Riemann problems whose initial conditions are the cell-baset valedbef
side of the face. Hence, if an inter-PE boundaparates the¢h and(j + 1) st cells, if PE[kpwns thgth cell, and if the latest value
f., has been passed and loaded into the proper ghost cell, then PE[K] easily computes the new cell average.

The hydrodynamic scheme’s second-order spatial accuracy adds another complication. The dependent variables, which al
allowed to vary over a cell, are uniquely determined by their vertex values (which may be different in a neighboringacell) and
therefore doubly indexed, first over the cell and then over the cell’s vertices. Hence, the initial data for the Riemamangrtitge
values for the vertices adjoining the face; for data collection, the pointer is followed to the face, to the cell, atultfiegbyoper
vertex.



The responsibility for the message-passing lies with an MPO, which in this case is face-cell-centered. That is, botbceind and r
MPOs run through the same faces, but the sending MPO reads and packs data into a buffer from owned cells, while the receivir
MPO unpacks a buffer and loads data into ghost cells.

Vertex-centered message exchange, the second type of communication, is used by two procedures. One removes local extre
from the cell's vertex values. The other, which arises in Lagrangian calculations, determines the displacement of thattvertex. B
are categorized as local reduction procedures, explicit with compact support. If the vertex lies on an inter-PE bounbgry, then,
definition, atleast one ghost cell is attached. Special MPOs collect and distribute the required values to all PEslthatached
to the vertex.

Diffusion
In ICF3D, diffusion equations arise in the simulation of both heat conduction and radiation transport. In all cases théseaxfuatio
the form

0,1G= OODOf) +S-Lf (1)
whereG, D, S, L= 0.The unknown function is approximated as
f(x,t”) =30 ()f"
where theg are the basis functions. To advance (1), we uscla implicit temporal differencing and obtain
G+l -0 D)f"=Gf"+S @)

by absorbingAt intoD”, L", and S”. Equation (2) is then multiplied by a basis funegiand integrated over the PE’s subdomain.
The index of the basis functions ranges over the vertices of only the owned cells. Each multiplicgtiwortgsponds to one row
of the linear sys-temA f = b for the nodal unknowng'. At this point, the system is incomplete, as equations corresponding to
unknowns on the inter-PE boundary do not include integrals over ghost cells.

Parallelization is incorporated into the linear system solver, which begins by assembling the distributed linear system.

The distributed system Since the linear systems are vertex-based, we extend the concept of PE ownership to vertices. If all cells
adjoining a vertex are owned by PE[i], we let PE[i] own that vertex. This procedure leaves ambiguous the ownership ofivertices
inter-PE boundaries and on the exterior of the ghost cells.We can determine ownership of the former without message-passing t
having each PE survey the ownership of all cells attached to a vertex and assigning the vertex to the PE with the lowest numbe
Message-passing is required for the exterior vertices, however. Since PE[i] cannot access all cells attached to thakeingrtices,
the initialization phase it receives messages containing the ownership information from all PEs that own its ghosts@lNesThis
the problem—if a PE owns a cell, it unequivocally knows the ownership of the cell’s vertices.

Preconditioned conjugate gradients (PCGs) are used to solve the resulting large, sparse, and symmetric linear systems. O
essential operation within the CG iterations is the multiplication of a matrix by a vector (MatVec). For the distributedtsystem
matrices are rectangular. The number of rows equals the number of owned vertices, and the columns correspond to the number
vertices linked to the owned vertices. The matrices are stored in compressed row form to avoid the storage of zeroes.

To facilitate the assembly of the distributed system, the vertices are sorted into siX typaés, We letV, W, and X define
the sets of vertices that are attached only to owned cells, that lie on the inter-PE boundary, and that are found anm tfe exteri
ghost cells, respectively. @ is the set of owned vertices ad(X) is the set of vertices connectedktby the diffusion stencil
then

={x| xOv& Dy 0s(x), y 00}
{x| xOve& Dy 0s(x), y 00}
{x|xow & x 00}
{x|xDOw & x 00}

{

Tl
T2
T3
T4
T, ={x| x OX & Oy 0S(x), y 0O}
T ={x|x OX & Oy 0S(x), y 0O}

The six types stem from the requirements for assembling the distributed system and for performing a MatMaw FEoertices,
the PE can compute the entire row of matrix coefficients without input from other PHS Médtiices, however, the PE needs the
latest values for somE, vertices before it can complete a MatVec. Fovertices, the PE needs input from other PEs to complete
the equation, and the latest values for sdpandT; vertices to perform a MatVec. Linear equations computed by the PETgn its
vertices are sent to the PE that owns the verticesT\ertices are not needed by the diffusion module. A PE&dT, vertices
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are of typed; andT,, respectively, on neighboring PEs.
Before the solver is called, the diffusion equation leads, on each PE, to an (incomplete) lineaksy$temith A in block form:

Ar Az As AuO
_ de P2 As Aug
Az A Az Ayld
Ho Ay Ay Aub

A

where the rectangular 4;; contain the interactions between vertices of types 7, and 7,. The vectors x and b are in similar block form.
After computing the incomplete linear system, the solver calls certain MPOs, which assemble the distributed system. Once the system
has been assembled, if the subscripts a and b divide the vertices into types T,,; and 7,5, a MatVec is of
the form

a = AL Xt A 3)
wherex.” = (%", %", X 1), %' = (X, , %), and

A Ar Ag O
A= QIZZ Ay Ay -
3 Ag Apt %%

O 0

0 U
A=2 Ay, 0 F
As4+Aé4A55E

(4)

In (4) the primes denote matrix coefficients sent to a PE after being computed by other PEs, i.e.T pvettiees.

The parallel solver. Preconditioned conjugate gradients are used to solve the resulting linear equations. Each CG iterative step
requires three SAXPYs, two dot products, one MatVec, and solution of the preconditioned system

=1Pz (®)

The SAXPYs do not require message-passing. We use a global reduction function to calculate the dot products.

The MatVec is computed according to the splitting defined in (3), except that we interleave message-passing and computatiol
as follows: After calling nonblocking receive functions, the PEs call the ready-to-send functions and, without waiting for the
messages to arrive, calculate the first part of (3), A&, Afterward, the PEs halt at a barrier before ad@ipg to the result.

The crux of an efficient PCG is a preconditioning ma®kat closely resemblésand at the same time renders (5) easy to solve.

In ICF3D, preconditioners of two types are availablstep Jacobi and a parallel version of incomplete Cholesky (IC). However,
in our applicationsp-step Jacobi witm > 1 is inefficient sincé may not be aiM matrix [4].

Our favored preconditioner is a parallel IC variant for which LDL 7, whereL is lower triangular with unit diagond is
diagonal, and the sparsity patterr_Lahatches that ok except that we do not allow links T@ andT; vertices. In other words, we
form an incomplete factorization of the matixn (4). Sincel, links only the owned nodes, the preconditioning step does not inhibit
parallelization, nor does it require any message-passing.

On each PE our parallel IC precon-ditioner is equivalent to an incomplete decomposition of the underlying diffusion equation on
theT, , ;nodes, with homogeneous Dirichlet data specified on the nondiypeettices.

4 PEs 16 PEs In that light, a possible improvement would be to replace the homogeneous data with
P 512 cells/PE 128 cells/PE “stale” values of the vector on thd, ; vertices.
Table 1 shows the effects of increasing the number of PEs while keeping the mesh size
IC 163 82 fixed, comparing the two preconditioners used, IC and 1-step Jacobi. As expected, our
Jacobi 404 129 parallel IC CG method degrades as the subdomains get smaller, while Jacobi scales

reasonably well with the number of PEs. Although the problem size is small, the parallel
Table 1. Execution time in seconds fora  |C preconditioner is superior to 1-step Jacobi. However, for problems in which each PE

thermal wave problem with 32 x 8 x 8  agmany cells, we expect IC to outperform Jacobi and have therefore made it the default
cells and 2337 vertices, for different pre-

conditioners P and PE configurations. Ic  Preconditioner.
indicates incomplete Cholesky.



Laser Ray Tracer

For the simulation of laser energy deposition, each laser beam is discretized intd a 1(sec) &
number of rays, which are followed until they are absorbed or leave the physical domain
[1]. The trajectories of the rays depend on the free electron number dendRgys 1 845.61 -
cannot enter regions in which> n, (n,, the critical density, is a function of the laser’'s 2 364.28 1161
frequency). Each ray is initialized with a certain energy, which it transfers to the meh 199.16 1.061
by inversebremsstrahlungradiation absorption by free electrons) and which is anB 99.61 1.061
explicit energy source for the heat conduction equation. 16 58.14 .909

The ray-tracing algorithm first determines where the rays enter the problem boundé’ﬂ@/ 41.8 632

and then tracks them through the cells. Rays enter and exit cells through the faces—At

each face crossing, the ray’s new direction is determined by Snell's lawnsiaci T2Ple 2. Laser test problem for a total of
. . . . . . 128 cells. N is the number of PEs, T the

general, discontinuous across the face. If in the nexngelisufficiently high, the ray oxecution time, and e =1,/(N1,) is the ef-

reflects. Rays are processed one at a time. ficiency.

Parallelizing the algorithm is a challenge because we maintain the existing decompo-
sition of the domain. (The obvious scheme, in which the mesh is replicated on each PE and the rays are parcelled o#Esnong the
does not scale.) We parallelize by combining the rays into batches. A PE processes a batch until each ray in the batch has be
absorbed, has exited the problem, or has crossed an inter-PE boundary. Messages are then exchanged.

Since rays cross only on faces, we reuse the face-centered MPOs written for the hydrodynamic fluxes. Unfortunately, since th
communication pattern is unpredictable—evolving conditions change the ray trajectories—we must employ a two-step scheme
After each batch has been processed, each PE exchanges messages with its face-sharing neighbors regarding the number of ra
pass. This establishes which PEs need to allocate buffers of the proper size to receive the ray information. As in B@spther M
we use asynchronous nonblocking functions. Receives are posted first, followed by sends.

Although, for maximum efficiency, the algorithm requires that each PE have regions with accessible to the laser, it is
remarkably efficient if this holds. Table 2 displays results from a test problem in which a row of 128 cells, with cotiesteatisity
n,<n, is irradiated on one end by 10,000 rays. We use a batch size of 100, i.e., the right-most PE tracks the first 108ss8% and p
them to its neighbor. Two PEs then process their own batches, and so forth. For these redultsicomiymber of PEs, is varied.

When the number of PEs is increased from one to two, we see that the executiodropgeby more than half. For larjethe
efficiency degrades because there are so few cells per PE.

Implosion Problem

To test the code, we devised a problem that simulates the implosion of an initially quiescent, spherical gas bubblelmused by t
sudden deposition of laser energy on its surface. We use CGS units in the following description, except for temperatsire, which
measured in keV, and time, which is occasionally measured in nsésd&) A word of caution: We chose the parameters so as
to create different regions of dominance in the three physics packages (laser, hydrodynamics, and nonlinear heat conduction), a
they represent experimental values only. Briefly, the absorbed laser energy is a source of heat that is quickly difhessdréaes t
and drives a supersonic thermal wave inward. When the heat wave slows down, hydrodynamics takes over and an imploding shot
wave arises.

We use an ideal gas equation-of-state in wiicli.4 and the specific hegt= 10° erg (gm keV}. The heat flux is of the fornk
= x0T, whereX =X, T*?andy, = 10*. Our chosen laser frequency HE 2.866x 10" sec' yields a critical mass density pf
= 1.668 x 102 gm[kn7> In order to have the laser deposit its energy only at the surface, we initialize the gas to be largely
overdense, using the following point-centered distribution:

A0xp. if r<ry—2A

p|t:0:%2><pC if r=ry—-A
B).01><pc if r=r,

whereA = r, /16 andr, = 0.2 is the initial radius of the bubble.

The laser package simulates 12 identical beams of circular cross-section with a radiuggditag teeams are centered on the
vertices of a regular icosahedron (centers of the pentagonal patches of a soccer ball). Each beam’s intensity (5 V8.

We initialize withT},.,= 10 keV, which leads to an initial energy&f = 4.20 x 10° erg. The laser has a “flat top” temporal
power deposition profile; it is turned ontat 0 and turned off dt= 2 nsec. The maximum energy that can be delivered by the laser
isthus 8.67x 10" erg. Because the capsuleis largely overdense, however, most of the laser rays reflectinitially and very little energy
is deposited. After 2 nsec, oy = 8.39x 10°%erg—which is approximately 10% of the laser, but still nearly 200 tiEgeshas
been absorbed by the gas.

We use the following boundary conditions: For the heat conduction, no flux is allowed to escape. For the hydrogynéréits,
x 10’ erg Ocnt®, This value, which is 10 times less than the average initial pressure in the outer shell, allows the bubble to expand,
thereby letting more rays enter the problem and deposit energy.

The simulation is run on the domain depicted in Figure 1, in which the shading depicts the domain decomposition of a run with
16 PEs.
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The mesh is created with the LaGriT code [5], obtained from Los Alamos National
Laboratory, and partitioned with METIS [2]. The grid consists of 16 “spherical shells,”
initially of uniform widthA, = 0.0125. Unstructured grids allow us to customize the
resolution; the innermost “sphere” is a regular icosahedron.

Figure 2 displays the densjiyacross th&X = Oplane at = 12 nsec, shortly after the
shock has reflected off the origin; mpx({s nearly 50 times its initial value. The figure
displays only the central part of the domain. (The exterior part has ablated out to a very
large radius.)

After t = 12 nsec, the reflected shock continues to move outward. We end the

' simulation at = 16 nsec; the final density is shown in Figure 3. As in Figure 2, only the
L3 central part of the domain is displayed.

L]

Figurel. Computational mesh for the laser COﬂClL{SIOﬂI . L )
implosion problem. The grid consists of In this article we have described the parallelization of a 3D, unstructured-grid, mul-

11,580 tetrahedra (16 radial cells), 2053 tiphysics code. Although we were concerned only with three physics packages, the
points, and 23,320 faces. techniques are immediately ap-
plicable to other modules, such as multigroup radiation transport and
Monte Carlo transport.

We found that our paral-lelization scheme scales well. Given enol
work (an adequate number of cells) for each PE, doubling the numbe &%
PEs approximately halves the executiontime. Equivalently, ifmore PEs  _, .,
available, larger problems can be run. Lo.e1

The coarse-grained parallelization is tailored for distributed-memc ;s
computers. The strategy can also be used on other architectures, st
clusters of compute nodes, each with several CPUs, or it can be exte
to the context of fine-grained parallelism through the use of thread:
compiler directives. Currently, however, portable directives like Openl
are not available for C++ codes.
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