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Beyond Simulation—
Computing Dynamical Systems

For John Guckenheimer, his term as SIAM president (1997–98) was a unique opportunity “to observe and participate in the process by which
we establish scientific policy in this country.” Inevitably, he says, he brought his personal
perspective to these activities. In this article, an adaptation of his Past President’s Address, given
in Atlanta at the 1999 SIAM Annual Meeting, he describes some of his experiences, expresses
some opinions, and speculates on research trends.

Perhaps my biggest struggle as SIAM president was to articulate the “reasonable
effectiveness of mathematics in computational sci-
ence.” I believe that many of our colleagues in other
disciplines take mathematics for granted as a founda-
tion for computation, even when their attitude is
unwarranted. I have been surprised repeatedly dur-
ing my career by situations in which the interplay
between mathematics and applications is subtle. New

mathematical discoveries and computational methods have been needed to resolve
discrepancies, leading to deeper insight into both the mathematics and the science.

In this article, I emphasize this interplay, using problems I have encountered during
my research on dynamical systems as examples. I take a broad view, illustrating how we
can exploit the power of mathematics to distill the essence of problems and find
solutions based on core principles and critical ideas.

Nonlinear dynamics is a thriving research area, one that I believe will continue to grow
in importance. In part, this stems from the use of dynamical systems analysis to interpret
simulations in three areas:

■ Computational science. Computational science, much of it devoted to simulation, has joined
theory and experiment as a mode of doing science.

■ Industrial design. Using computer simulation as a design tool, companies seek to reduce
time to market and improve reliability for new products.

■ Public policy and systems. We simulate the influence of human activity in producing climate
change as an input to government policy. U.S. national policy is to replace nuclear weapons testing
with simulation.

Simulation has become an important part of the fabric of science, engineering, and the technological infrastructure we depend
on every day. In all these efforts, fidelity of the simulations is important. The usefulness of our computer models and simulations
depends on the degree to which they reproduce the phenomena being simulated. Nonlinear dynamics contributes to these efforts
by discovering common patterns that appear in real, artificial, and simulated systems.

I am fascinated by the questions raised by simulation. Mathematics and science for me have always begun with the search for
deep truths about the world. The simulation process itself is an intriguing subject of investigation, posing a rich set of mathematical
questions that have stimulated my research. The exact reproducibility of numerical calculations sets computation apart from other
forms of experiment. I am also intrigued by the phenomena that we simulate and their relation to the simulations themselves. I find
myself dissatisfied by pronouncements of a “good fit” between simulation and data in cases in which little effort has been made
to objectively evaluate the fidelity of the simulations. Dynamical systems theory has been successful in revealing universal patterns
of “nonlinear” behavior that serve as signposts in efforts to match data with simulations. As we attempt to improve computational
methods for bringing theory to bear on simulations of complex systems, I want to recall some of the subtle issues that have arisen
in the interactions between mathematics, modeling, and experimental science through a series of examples.

Example 1: Genericity in Experiment and Computation

I started to do research on dynamical systems theory as a graduate student. A nice feature of the subject was that it was supposed
to say something about the “real” world, but that was incidental to my involvement with mathematics. My professional interest in
applications began when I read René Thom’s book Structural Stability and Morphogenesis. I was fascinated with his ideas about
the role of mathematics in biology, in particular with the thesis that genericity leads to ubiquitous patterns.

Genericity is a subtle concept, hard to explain in nontechnical terms and difficult to apply quantitatively. Indeed, there was
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substantial controversy about catastrophe theory during the 1970s. The starting point for the use of genericity as a modeling strategy
is a universe of possible models. We imagine this universe as being very large, although concrete representations of models have
a finite number of parameters. Thom and others developed singularity theory, elegant mathematics that describes how static
patterns of generic models change with varying parameters. In the setting of dynamical systems, bifurcation theory classifies
generic changes in the properties of vector fields and their flows.

My emerging interest in biology led me to a collaborative study of population models with George Oster, beginning in 1973. The
models we were studying twenty-five years ago were discrete mappings of two variables, noninvertible mappings that generalize
iterations of the quadratic function f(x) = rx(1 – x), known as the logistic map by population biologists. I thought I had proved in
my thesis that for a dense set of parameters in the interval 0 <  r <  4, this map has a stable periodic orbit that attracts almost all initial
conditions. (There were serious gaps in my proof, and it is only in the last five years that techniques from complex analysis and
the theory of quasicon-formal mappings have been used to prove the result.)

Numerical studies of the logistic map led to several remarkable observations, including Feigenbaum’s discovery of the “metric
universality” of period-doubling sequences of bifurcations. I was most puzzled that many values of r produced trajectories that did
not settle down to periodic cycles. This seemed to be at odds with the results on periodic orbits from my thesis, but it is not. In 1981,
Jakobson demonstrated that the set of parameter values for which there is no stable periodic orbit has positive Lebesgue measure.
This reveals a paradox that affects the way in which we use the mathematical theory to interpret the results of numerical
computations.

In dynamical systems theory as then developed by the “Smale school” and in Russia, “genericity” was defined in terms of Baire
category, not in terms of measure. This leads to a difficult question about computation: Given a set C of real numbers that has
positive measure but is nowhere dense, will computations tend to reflect properties of C or not? When we attempt to pick numbers
at random, e.g., with a pseudo-random number generator, experience has shown that numerical computations with dynamical
systems tend to reflect the mathematics of measure more than Baire category. This is not a matter of philosophy or mathematics—
it is an experimental fact about pseudo-random number generators and systems of computer arithmetic obtained in the face of our
ignorance about how round-off errors really affect long iterative calculations.

Example 2: Qualitative
Phenomena Can Be Small

In this example, theory pointed the way to dynamical features that were hard to find. The Ruelle–Takens–Newhouse theory of
the transition to turbulence predicted that weakly nonlinear systems of three coupled oscillators would exhibit chaotic behavior.
In a numerical study based on simulation of a system with randomly chosen parameters and initial conditions, Celso Grebogi at
al. found chaotic behavior only when the coupling between oscillators was very strong. In another study of mode locking in models
of weakly coupled oscillators, Swan Kim, Claude Baesens, Robert MacKay, and I sought to understand the bifurcations that occur
in these systems.

Bifurcation theory predicted where chaotic behavior would be found. Searching systematically, we found the predicted  regions.
They were tiny: a strip of width 10

–10
 in a parameter space that was the unit square. The transversal intersections of stable and

unstable manifolds characteristic of chaotic behavior were visible only in regions of about 10–6 in diameter within the phase space.
The theory, although indeed correct, was quantitatively insignificant for many purposes.

■ ■ ■

These first two examples involve chaotic dynamics. The central issues in many applications of dynamical systems theory,
however, do not focus on chaos. Sensitivity to initial conditions limits the ability of simulations of chaotic systems to make long-
term predictions, but the challenge of modeling complex systems for even short times tends to preclude direct comparisons between
long time series of data and simulations of chaotic systems. We are more concerned with predicting the type of attractors a system
will have than we are with describing details of chaotic motions over long times. We are especially interested in identifying
bifurcations where one type of attractor is replaced by another. In the simplest case, we want to determine do-mains in a parameter
space where an equilibrium point is stable. Our ability to compute bifurcations varies greatly from example to example. Even in
seemingly simple systems, these problems can be surprisingly hard. That has been an obsta-cle to even more widespread use of dynamical
systems theory in applied settings.

Example 3: Data Fitting
Qualitative Dynamics

For the past several years, I have been engaged with Ronald Harris-Warrick and his laboratory in a stimulating investigation of
models of a small neural network, the stomatogastric ganglion. Neuronal models with elements describing individual electrical
currents were first constructed by Hodgkin and Huxley about fifty years ago. In our work on the stomatogastric ganglion of lobsters,
the models of single neurons have at least twenty-five parameters. The dynamical properties of the system change as the parameters
are varied. Stable oscillations, stable equilibria, and chaotic attractors all occur in these models in overlapping parameter regimes.
The behaviors of individual neurons and the network are modulated, reflecting different rhythmic motions of the lobster foregut.

We endeavor to relate the models directly to biological issues through data. In particular, we want to obtain maps of the parameter
spaces that accurately match model behaviors with those observed in the network and parts of the network when manipulated in
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the laboratory. Some of the system parameters can be measured, but many cannot. Thus, we are left with the problem of matching
time series data with simulations of an imperfect model. We have had bits of success in this enterprise, obtained through luck and
extensive interactive investigation of the models. Still, there are enough unknown parameters (and unknown functions describing
components of the model) that we have little understanding of the optimal fit between these models and the data. Making the models
more detailed to produce better fidel- ity is problematic. It adds additional
parameters and further confusion about how to fit models to data with
large numbers of unknown param- eters. It also makes model building
and simulation slower, diverting at- tention from the weakness of our
tools for investigating simpler mod- els thoroughly.

My experiences with these neural models are typical of nonlinear sys-
tems simulation. For some systems— such as laminar fluid flows in simple
geometries of low aspect ratio and electrical circuits—we have very
precise models. This is hardly typical, however. We seldom have the ability to describe all the relevant functional relationships
between components of a complex system, whether natural or artificial, or the resources to measure them even when it is
theoretically possible to do so. We have to contend with incomplete information in describing the system.

How we deal with partial information in modeling complex systems is the flip side of our fascination with “emergent properties,”
our quest to understand how a system can be more than the sum of its parts. In many cases, system behavior is much more sensitive
to some parameters than to others, enticing us with the prospect of building reduced-order models that retain essential variables
and discard inessential ones. Nonetheless, we fail more often than we succeed in fitting the dynamics of models to data. Success
is a matter of hard work, sound intuition, and lots of luck.

Example 4: Computing Hopf Bifurcations

Mathematics can contribute to the enterprise of high-fidelity simulation by creating better computer methods for the analysis of
dynamical systems. This example illustrates the direct computation of bifurcations. Hopf bifurcation occurs in a family of vector
fields when the stability of an equilibrium is changed by a pair of eigenvalues crossing the imaginary axis. The set of matrices with
a pair of pure imaginary eigenvalues is  a “semi-algebraic” set defined by a single polynomial equation and a single inequality in
the coefficients of the matrix. This equation becomes complicated as the size of the matrix grows, and it is ill-conditioned for large
sets of matrices. Nonetheless, computing Hopf bifurcations means that this equation must be solved in some form. The problem
presents numerical challenges as the size of a system grows.

Varied approaches have been taken to the computation of Hopf bifurcations. Mark Myers, Bernd Sturmfels, and I formulated
the problem in terms of determining the singularity of a matrix, using classical algebraic constructions that had been largely
forgotten. The most elegant version of the method is expressed in terms of tensor products, producing a matrix, called the biproduct,
whose eigenvalues are the sums of distinct eigenvalues of the Jacobian. If the Jacobian has pure imaginary eigenvalues, then its
biproduct is singular. If the Jacobian is block diagonal, then so is the biproduct.

The smallest singular value of a matrix is a measure of the distance of the matrix from being singular. Computing the smallest
singular value of a matrix is a problem that has been intensively studied, and we used the methods created to solve it as part of our
strategy for computing Hopf bifurcations. We implemented algorithms for computing Hopf bifurcations based on the calculation
of biproducts and, in an alternative approach, resultants of the characteristic polynomial of Df. The implementation with biproducts
incorporated subspace iteration to identify low-dimensional invariant subspaces containing the eigen-spaces of Hopf bifurcations.
We tested our algorithms on neural models for which which it was also possible to symbolically compute the location of Hopf
bifurcations. We also made comparisons with several other methods. In one of our tests, we examined a parameter region close
to a point of double Hopf bifurcation, where two pairs of pure imaginary eigenvalues occur simultaneously. There are no clear-
cut measures of the effectiveness of the different algorithms, but our methods appeared to be more robust in converging to the
solutions closest to the starting values.

Example 5: Computing Periodic Orbits

The final problem I discuss comes from my current work on computing periodic orbits of dynamical systems. This story has many
interesting aspects and is far from complete. Periodic orbits are fundamental structures, trajectories of vector fields distinguished
by their topology.

In many biological examples, stable periodic behaviors are the desired states of the system: Animal locomotion (walking, flying,
and swimming), blood circulation, and circadian rhythms are all fundamental biological processes that are periodic. We design
machines to avoid periodic motions because limit-cycle oscillations can cause damaging vibrations, leading to fatigue and fracture
of materials. We need to determine the amplitude, stability, and other characteristics of periodic orbits in dynamical systems if we
are to operate in periodic regimes. The flexibility and dexterity of biological systems are due in part to their superior ability to exploit
periodic motion. For example, legged locomotion has evident advantages over wheeled locomotion in rugged terrain, but we are
not yet able to build legged vehicles that have the stability or agility of animals.

The analytic determination of periodic orbits of planar vector fields is one of the classic “grand challenges” of mathematics,
included in Hilbert’s famous list of problems a century ago. We don’t even have sound estimates for the upper bound on the number
of limit cycles in polynomial vector fields of degree larger than two. The quadratic vector fields have five independent parameters,
after allowances for linear coordinate changes and time rescaling. The cubic vector fields have 13, already a formidable number

Without theory to guide us, we are left
with a misleading picture of the
dynamics inherent in our models.
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for comprehensive numerical studies.
When I got my first computer (a Sun 1 workstation that computed at a few kiloflops), Gerhard Dangelmayr and I, motivated by

questions of the effects of imperfect symmetry on bifurcations, undertook the study of a cubic system with four parameters:

ẋ  =  y
             ̇y  = – (x3 + r x2 + n x + m) + y (b – x2).

With perturbation methods and symbolic computation, we showed that there are parameters for which this system has four limit
cycles surrounding a single equilibrium point. At that time, we were unsuccessful in displaying these cycles with a numerical
computation. Several years later, Salvador Malo was able to do so. He estimated that, with fixed r and m, the region of the (b,n)
plane with the desired four limit cycles was a strip of width about 3 ´ 10–9. As with the example of chaotic behavior in coupled
oscillators, the mathematics leads to phenomena that occur in exceedingly small regions of a parameter space. This example is
hardly special. The simplest model of oscillatory behavior in chemical reactors, the so-called CSTR, is a planar vector field whose
qualitative dynamics are just as challenging to determine.

Here is yet one more example of periodic orbits that are challenging to compute: The vector field

ẋ    =  (y – x2 – x3)e
 ẏ   =  a – x

gives rise to periodic orbits that have been termed “canards” because of their vaguely duck-like shapes. We study this equation when
e > 0 is small, say 10–3. As a decreases through 0, a Hopf bifurcation occurs. The periodic orbits created in this Hopf bifurcation
are stable, and they grow quickly into relaxation oscillations as a decreases.

The intermediate orbits have segments that lie close to the decreasing portion of the characteristic curve y = x2 + x3. Here, the
flow is violently unstable. The divergence of trajectories is so rapid that changes in initial conditions of unit precision are amplified
to unit magnitude long before the trajectory has climbed as far along the characteristic curve as the periodic orbit has. Numerically,
we observe a jump from small limit cycles to large ones, perhaps with a narrow zone in which the numerical trajectories are chaotic.
Qualitatively, this is all wrong because planar vector fields do not have chaotic trajectories. Notice that a numerical integration that
is exact apart from round-off errors will still be unable to track the canard solutions of this vector field.

This is thus an example of a vector field for which, without extreme numerical precision, much greater than standard IEEE
floating-point arithmetic, a whole set of attractors is inaccessible to numerical integration. Simulation gives a very different picture
from the mathematical analysis, producing results that the mathematics proves to be impossible in the system we are trying to
simulate. This small system, with only mild stiffness compared with the equations of many chemical reactions, takes us rapidly to
places where simulation is unable to reproduce the behavior of the system, quantitatively or qualitatively.

It is reasonable to ask how important these phenomena are for simulation of the real world. Let me give you my opinion. There
is a dichotomy, drawn beautifully by Peter Henrici, between mathematics done for the sake of achieving a deeper understanding
of the world and mathematics done to act on the world. Clearly, the issues I have raised in this example need to be resolved if we
are to achieve a deep understanding of dynamical systems and their bifurcations. I believe that they are also important as we bring
our theoretical insight to bear on specific problems through computation and simulation. Canards, for example, are common in
systems with multiple time scales as they undergo bifurcation.

Without theory to guide us, we are left with a misleading picture of the dynamics inherent in our models. Because there are many
sources of uncertainty in our models, the challenge of producing high levels of fidelity in our simulations is enormous. To meet
that challenge, we need conceptual frameworks that facilitate deep understanding of how the components of complex systems
interact. Part of the richness of dynamical systems theory is that it does precisely that. To develop powerful computational tools
that help analyze how system behavior depends on parameters and system “architecture,” we must confront subtle issues in the
mathematics. These issues are already apparent in low-dimensional settings and are most easily studied there. We can simulate
complex systems and learn interesting things as we do, but we must expect the same issues—and others—to impede our progress
in producing high-fidelity simulations. Let me reiterate that this is especially true when our models are inaccurate and when we
are unable to measure relevant parameters for models. In short, this is true of almost every complex system we seek to understand.
The severity of this problem is comparable to that of winning a lottery by guessing correctly, say, a 20-digit number. It’s possible,
but hardly likely, even with millions of attempts. Without a strategy to guide us in searching parameter spaces, that is the type of
challenge we face in fitting data to models with unkown parameters. Surely, we need to do better than blind or random search.

Let us return to what can be done to compute periodic orbits of vector fields. Two types of strategies are commonly used. First,
numerical integration of trajectories does converge to periodic orbits in many cases. Second, the computation of periodic orbits
can be formulated as a boundary value problem with periodic boundary conditions. There is one dominant code for finding periodic
orbits with “global” boundary value methods—AUTO, written and  maintained by Sebius Doedel. In principle, it is possible to use
two-point boundary value codes to solve problems with periodic boundary conditions, but my attempts to do so have been very
disappointing. (Explaining why they fail is a nice research problem.) For years, driven by my desire to deal with examples like those
we have just seen, I have wanted to establish methods that would be more robust and more accurate than AUTO. Two of the
difficulties with AUTO are that it requires very good approximations to a periodic orbit as initial data, and that it has many
algorithmic parameters that affect convergence in ways I find hard to understand. I set out a couple of years ago to do something
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better, and I want to describe progress I have made.
Boundary value methods for computing periodic orbits formulate discretized versions of the differential equations and boundary

conditions satisfied by the periodic orbits. These discretized equations are then solved with standard methods, typically Newton
iteration. There is a tension between the size of the system of discretized equations and the accuracy with which the periodic orbit
is represented. The minimal size of the system to be solved is given approximately by the product of the number of mesh points
and the dimension of the phase space. With collocation methods, each mesh interval contains collocation points that add yet more
equations. Finer meshes yield larger systems of equations that are time-consuming to solve and require good initial data for
convergence. My objective has been to create methods that will achieve good accuracy with coarse meshes. Working with Won
Gyu Choe and Brian Meloon, I have approached this goal by making use of a computer method called automatic differentiation.

We use automatic differentiation to compute the Taylor series of trajectories; specifically, we use the package ADOL-C,
developed at Argonne National Laboratory by Andreas Griewank et al. to compute Taylor series of trajectories and their derivatives
with respect to phase space variables. The Taylor series are used to construct highly accurate approximations to trajectories and
periodic orbits of vector fields. The limit of increasing degree on a fixed mesh corresponds to the use of coarse meshes to compute
periodic orbits in boundary value solvers. Approximate periodic orbits of increasing accuracy are parameterized by the same data,
namely the coefficients of mesh points. We have been experimenting with implementations of both shooting and global methods
based on Taylor series.

I find the results amazing. In test examples, we are able to compute periodic orbits on coarse meshes more accurate than those
produced by fourth-order Runge–Kutta integration at any step sizes. The precision of the results consistently exceeds that of AUTO
computations by orders of magnitude, and always with coarser meshes. Our test examples include the canard example described
earlier, showing that the methods work with systems that have multiple time scales.

Final Remarks

Dynamical systems theory gives us a framework for investigating the process of simulation. As we build algorithms and
computational tools on these mathematical foundations, we repeatedly encounter new challenges. In some cases, numerical
investigations lead us to discover new phenomena and deepen our theoretical understanding. In other situations, the theory guides
us to phenomena that we would overlook without its help. In still others, we encounter limits to straightforward simulation. In all
these cases, I take delight in the interplay between mathematics, computation, and science.

Let me come back for a few moments to the realm of scientific politics and policy. We ask ourselves how much we can rely on
the results we obtain from simulations. The term uncertainty has been adopted to describe technical aspects of this important
question. Quantifying uncertainty in the simulation of complex systems is an emerging re-search theme that cuts across all
disciplines. It behooves SIAM to articulate the common issues that arise when we study different systems and to propose strategies
for seeking common solutions. Many areas of mathematics have tools to contribute to this enterprise, but we have hardly begun
to develop comprehensive theories or needed tools. We need to remind ourselves and others that mathematics remains an effective
intellectual viewpoint for tackling interdisciplinary problems and will be an essential part of this effort. Moreover, the mathematics
found in these problems is both fascinating and deep.


