
1

from SIAM News, Volume 32, Number 9

Combining Message-passing and Directives in
Parallel Applications
By Steve Bova, Clay Breshears, Rudolf Eigenmann, Henry Gabb, Greg Gaertner, Bob Kuhn, Bill Magro, Stefano Salvini,
and Veer Vatsa

Developers of parallel applications can be faced with the problem of combining the two dominant models for parallel
processing—distributed-memory and shared-memory parallelism—within one source code. In this
article we discuss why it is useful to combine these two programming methodologies, both of which
are supported on most high-performance computers, and some of the lessons we learned in work on
five applications.

All our applications make use of two programming models: message-passing, as represented by the
PVM or MPI libraries, and the shared-memory style, as represented by the OpenMP directive standard.
In all but one of the applications, we use these two models to exploit computer architectures that include
both shared- and distributed-memory systems. Message-passing is used to coordinate coarse-grained
parallel tasks across distributed compute nodes, whereas OpenMP exploits parallelism within multi-
processor nodes. One of our applications, SPECseis96, implements message-passing and shared-
memory directives at equal levels, which allows us to compare the performance of the two models.

CGWAVE

MPI and OpenMP were used concurrently in the CGWAVE application to improve the performance of harbor analyses. The
project, “Dual-level parallel analysis of harbor wave response using MPI and OpenMP,” won the Most Effective Engineering
Methodology award in the SuperComputing–98 HPC Challenge competition. In this case CGWAVE was used to model the motion
of waves in Ponce Inlet on Florida’s Atlantic coast [1].

The sea state in a harbor is characterized by a number of incident wave components, which are defined by period, amplitude,
and direction. This set of wave components can be regarded as a parameter space; each triplet leads to a separate partial differential
equation to be solved on the finite element grid. Parallelism can be exploited at the parameter-space level, with MPI used to
distribute the work. Since the execution times for separate wave components can differ by as much as a factor of four, a simple
master–slave strategy dynamically balances the workload. For each component calculation, a large sparse linear system of
equations is formed. The solution of the system of equations is parallelized with OpenMP. This OpenMP-based parallelization is
performed in each parameter-space component problem.

Developing this hybrid parallelism was easier than expected, once a few problems had been resolved. Problems occur in a mixed
MPI/OpenMP program when MPI_Init or other MPI communication routines are called from an OpenMP parallel region. In the
parallelization of CGWAVE, we were able to avoid this problem by allowing only one thread to execute message-passing
operations.

At the OpenMP level, scalability on the SGI Origin2000 ccNUMA architecture necessitated distribution of the data required by
the conjugate gradient solver. CGWAVE takes advantage of the “first touch” rule to distribute the data transparently. Specifically,
an item of data resides, i.e., it is co-located, with the processor that first touches it. (This first-touch approach is a feature of the
computer system, and not of OpenMP.) The important arrays are initialized in parallel in such a way that the processor initializing
the data will be the processor to execute the compute-intensive work on that data.

Also in preparation for use of OpenMP, work arrays in COMMON blocks were declared locally in the conjugate gradient
subroutine, which eliminated array-access synchronization and coherency overhead. This was the only modification to the original
source. The KAP/Pro Toolset (Kuck & Associates, Inc. (http://www.kai.com) was used for parallel assurance testing (Assure) and
performance optimization (GuideView).

Figure 1 shows relative performance for computation of the harbor wave problem with different numbers of MPI and OpenMP
slaves. Timings were done on a 112-processor SGI Origin2000. Although it is tempting to draw conclusions about the relative
performance of MPI and OpenMP, each of the parallelism models was applied to a different level of parallelism in CGWAVE and
comparison of MPI versus OpenMP parallelism is therefore not appropriate.

GAMESS

The traditional Hartree–Fock, self-consistent field (SCF) approach to computing wavefunctions, using a finite basis set of
Gaussian-type functions, has been a mainstay of ab initio quantum chemistry since digital computers first became sufficiently
powerful to tackle polyatomic molecules. GAMESS-US is a well-studied example of a computation of this type [2].

A key reason for the targeting of both distributed-memory and shared-memory programming for GAMESS is illustrated by
current parallel processing technology. Consider the Compaq AlphaServer architecture. A typical clustered system would consist
of AlphaServer 8400 or AlphaServer 4100 servers, connected with Memory Channel. Memory Channel provides a high-bandwidth
connection between Compaq Alpha systems. In principle, use of the SMP bus, as compared with Memory Channel, can improve
performance by a factor of five.

APPLICATIONS ON
A D VA N C E D
A R C H I T E C T U R E
C O M P U T E R S
Greg Astfalk, Editor

2

Both models of parallelism have been ap-
plied to GAMESS. In GAMESS, four nested
parallel loops select electron orbitals for inte-
gration. At an outer-loop level, message-pass-
ing works well and allows the use of distrib-
uted-memory architectures. At an inner-loop
level, OpenMP’s finer-granularity dynamic
scheduling can provide better load balancing.

Table 1 shows the performance of parallel
GAMESS on a cluster of four Compaq Alpha
8400 systems, with eight EV5 Alpha proces-
sors in each system, connected by Memory
Channel. A speedup of greater than 5, relative
to the four-processor time, is shown for 32
processors (with the obvious limit being a
relative speedup of 8).

Linear Algebra Study

As part of an ongoing collaboration, NAG
Ltd. and the Albuquerque High Performance
Computer Center (AHPCC) analyzed the fea-
sibility of mixed-mode parallelism on a Model
F50-based IBM SP system [3]. Each Model F50 SMP node has four processors connected by an enhanced interconnect.

In linear algebra operations, dynamic load balancing is particularly difficult for message-passing paradigms: Any approach based
on migration of data across nodes would entail significant communication cost and code complexity. For a fixed problem size, as
the number of nodes increases, computation time decreases while communication costs and load imbalance both tend to increase.

Message-passing efficiency can be increased with hybrid parallelism. If Nt is the total number of processors and Nsmp the number
of processors per node, message-passing will occur between only Nt / Nsmp communicating entities. In other words, communication
costs and overhead will be comparable to those of a smaller message-passing system. Load imbalance will also be reduced.
Furthermore, if communication is introduced within the regime of dynamic load balancing, communication and computation can
be overlapped, referred to as “communication hiding,” within each SMP node, reducing communication costs by up to a factor Nsmp.
On the IBM SP used in this study, communication costs were reduced by up to 75%.

The performance results illustrate the importance of communication hiding, which was implemented and measured in the linear
algebra study quite simply: Communications were performed first outside and then inside the parallel region.

OpenMP directives requiring the dynamic scheduling of a DO loop were
easily used to hide communication costs—the matrix block broadcast was
treated as one special iteration of the DO loop. In the alternative, an adaptive
load-balancing scheme, the matrices were subdivided into column-blocks,
one for each processor in the SMP node. The column-block accessed by the
processor performing the communication was narrower than the others,
with its width determined by a set of ad hoc cost parameters.

The IBM SP system supports POSIX threads, and their MPI libraries are
thread-safe, which allows the coexistence of the two modes of parallelism.
Not all implementations of MPI provide the same level of thread-safety.
Thread-safety should be checked by users of mixed-mode parallelism.

Table 2 shows the performance of a QR factorization for various cluster
configurations, with and without communication hiding (the “Hide” and “No Hide” columns, respectively), and for dynamic versus
adaptive strategies. The performance data are shown in Mflops; all execution times were measured using the system’s wall-clock
timer. The configurations tested are Nn ´ Nsmp, where Nn is the number of nodes and Nsmp is the number of processors per node. No
attempt was made to optimize the routines manually. For comparison, performance of 1060 Mflops was reported for the 1́ 4
configuration (i.e., pure four-way SMP) with the NAG library routine F68AEF, n = 2000 [3]. Performance of 743 Mflops was
measured with the LAPACK routine DGEQRF.

TLNS3D

TLNS3D, developed at NASA Langley, is a thin-layer Navier–Stokes solver used in computational fluid dynamics analysis. The
program is capable of handling models composed of multiple blocks connected via various boundary conditions.

To simplify flow modeling of complex objects, a typical input data set contains multiple blocks, motivated by the geometry of
the physical model. These blocks can be computed concurrently; MPI is used to divide the blocks into groups and assign each group
to a process. The block assignment is static for the duration of the run because distinct data files must be created for each slave.

This approach is quite effective for models in which the number of blocks greatly exceeds the number of slaves, since TLNS3D
can generally group the blocks in such a way that each MPI slave does roughly the same amount of work. Unfortunately, as the

Table 1. Cluster performance of four eight-processor
systems on GAMESS.

No. of Processors Elapsed Time (sec) Speedup

4 327 1
8 178 1.84
16 101 3.24
24 76 4.30
32 64 5.11

Figure 1. Wall-clock time on a 112-processor Origin2000 for various combinations of
MPI and OpenMP “slaves.”

3

number of MPI slaves increases, the poten-
tial for static load balancing diminishes.

To address the limitations of paral-
lelization at the MPI level, OpenMP direc-
tives were added to exploit the inherent
parallelism within each block. Each block
is represented as a three-dimensional grid,
and most of the computations on that grid
are in the form of loops that can be per-
formed in parallel. Because there are many
such parallel loops in TLNS3D, the
OpenMP directives were carefully tuned to
maximize cache affinity between loops
and to eliminate unnecessary global syn-
chronization among threads.

This application may seem similar to the
linear algebra study and GAMESS. We
found, however, that a ccNUMA architec-
ture like the SGI Origin2000 allowed us to
configure “virtual” SMP nodes that did not
have a hardware limited number of proces-
sors for the OpenMP level. The mixed-
parallel version of TLNS3D achieves load
balancing by first partitioning the blocks
across MPI slaves to achieve the best pos-
sible static load balance. A group of threads,
equal in number to the number of processors to be used, is then partitioned among blocks such that the number of grid points per
thread is approximately equal. For example, a block containing 60,000 grid points would have roughly twice as many threads at
its disposal as a block containing 30,000 grid points. This nonuniform allocation of threads achieves a second form of load balancing
that is effective for runs on very large numbers of processors.

Parallel processing tools were found to be very effective in analyzing TLNS3D. For MPI, the VAMPIRTRACE and VAMPIR
programs from Pallas (http://www.pallas.com) analyze the message-passing performance to identify where delays occur. Block
load imbalance can be identified in this way. On the OpenMP side, GuideView from KAI identifies OpenMP performance
problems. The KAI Assure tool was also used to find shared variables needing synchronization, a potential problem in the
conversion of distributed-memory programs (i.e., MPI) to directives, given that shared variables can be touched by any processor.

SPECseis96

SPECseis96 is a seismic processing benchmark used by the Standard Performance Evaluation Corporation (SPEC) (http://
www.spec.org). It is representative of modern seismic processing programs used in the search for oil and gas [4].

The benchmark was originally in message-passing form. The motivation for the development of an OpenMP version was the
increasing availability of shared-memory parallel systems. In developing this version, we started from the message-passing variant.
Unlike the other applications discussed in this article, SPECseis96 does not combine the two models, but rather uses either PVM/
MPI libraries or OpenMP directives for a particular run. Because the two variants exploit the same level of parallelism, we can use
this code to compare the two programming paradigms.

The message-passing variant starts directly in SPMD mode; that is, all processes start by executing exactly the same program.
During the initialization phase, which must be executed by the master processor only, the other processes are explicitly waiting.
In contrast, the OpenMP variant must start in sequential mode before opening an SPMD parallel section, which in this case
encompasses the rest of the program.

In both versions, all data are kept local to the processes and are partitioned in the same
way. In PVM or MPI programs, all data are always local to the processes, whereas
OpenMP programs give explicit locality attributes (the default is globally shared data).
The only data elements that are declared shared in SPECseis are the regions for
exchanging data between the processes. These regions are used in a mode similar to that
of implementations of message-passing libraries on SMP systems. The “sending”
thread copies data to the shared buffer, and the “receiving” thread copies the data into its
local data space. This scheme can be improved by allocating in shared-memory all data
that will need communication, although we have not done so in this version of SPECseis.

Many might perceive message-passing to be more scalable than directive-based
parallelism. However, our message-passing and OpenMP variants use the same
parallelization scheme, the same data partitioning, and the same high-level parallelism,
and they achieve the same scalability. Table 3 shows the results obtained on an SGI

Dynamic Versions (Nn ´ Nsmp)

1 ´ 1 1 ´ 4 2 ´ 4 4 ´ 4

n Hide No Hide Hide No Hide Hide No Hide Hide No Hide

500 218 208 611 494 656 618 628
1000 225 229 732 678 1128 912 1231 1131
2000 746 773 1310 1185 1963 1579
4000 2467 2124

 Adaptive Versions (Nn ´ Nsmp)

 1 ´ 1 1 ´ 4 2 ´ 4 4 ´ 4

n Hide No Hide Hide No Hide Hide No Hide Hide No Hide

1000 229 700 1225 1796
2000 713 1409 2507
4000 2758

Table 2. QR factorization performance, in Mflops, on various cluster configurations.

Table 3. SPECseis speedups on the SGI
Power Challenge using both PVM and
OpenMP.

 Processors

1 2 4 8

 PVM 1 1.7 2.8 5.3
OpenMP 1 1.9 3.6 5.6

4

Power Challenge. Al-
though the OpenMP
variant runs slightly
faster than the PVM
version, we have seen
that this slight differ-
ence disappears if we
increase the data set
size. Hence, we attri-
bute it to the higher
message-passing costs
for the exchange of
small data sections.

Summary

All five of the ap-
plications described
in this article were
successfully devel-
oped into high-per-
formance programs
that use both mes-
sage-passing and di-
rective-based parallel
models. For the most
part, multiple levels
of parallelism were
used, with distrib-
uted-memory pro-
gramming (MPI) for
the coarser-grained
levels and shared-
memory program-
ming (OpenMP) for
the finer-grained.
This can be achieved
without loss of per-
formance.

Table 4 summa-
rizes what we learned
in each application.

The application
developers have
found it relatively
easy to use both par-
allelism models in the
same application, in
part because of the
existence of strong standards, such as MPI and OpenMP, and their efficient implementations on many systems. In addition, we have
found that strong standards stimulate the development of good parallel programming tools for each of the models. Therefore, we
believe that combining MPI and OpenMP is a very feasible programming paradigm that can be used in many applications.

References

[1] S.W. Bova, C.P. Breshears, C. Cuicchi, Z. Demirbilek, and H.A. Gabb, Dual-level parallel analysis of harbor wave response using MPI
and OpenMP, Int. J. High Performance Comput., in press, 1999.

[2] R. Kuhn, G. Gaertner, and D. Schneider, Towards standard supercomputer benchmarks for computational chemistry, 1996 American
Institute of Chemical Engineers Annual Meeting.

[3] S. Salvini, B.T. Smith, and J. Greenfield, Towards mixed mode parallelism on the new model F50-Based IBM SP system, Albuquerque
High Performance Computing Center, University of New Mexico, Technical Report AHPCC98–003, September 1998.

[4] R. Eigenmann and S. Hassanzadeh, Benchmarking with real industrial applications: The SPEC High-Perfomance Group, IEEE
Computational Science and Engineering, Spring 1996.

CGWAVE

Motivation Add performance needed to attack another dimension in the problem
Message-passing Master–slave applied to wave parameter space
Directives Sparse solver applied to PDE
Platforms Multiple SGI Origin2000s
Problems Calling message-passing routines in OpenMP parallel regions
Parallel software engineering Used Assure to explore OpenMP parallelism

GAMESS

Motivation Flexible use of SMP clusters on problem with high degree of parallelism
Message-passing Outer coarser-grained parallel loop
Directives Inner finer grain more variable in size
Platforms Memory Channel AlphaServer 8400
Problems Fine granularity in MPI and thread-private efficiency of OpenMP
Parallel software engineering OpenMP versions sometimes much simpler

Linear Algebra Study

Motivation Achieve message-passing scalability /use directives dynamic scheduling
Message-passing Block-solve matrix system with fixed distribution
Directives Dynamic or adaptive scheduling of block solution
Platforms SP2 with F50 nodes
Problems MPI could not be used within node; incomplete support for OpenMP
Parallel software engineering Porting and maintaining two levels difficult

SPECseis

Motivation Portable benchmark, distributed-memory and shared-memory systems
Message-passing SPMD: Compute, barrier, communicate, then repeat
Directives Same parallelism but built with different model
Platforms SGI, Sun
Problems Setting up message-passing configuration, thread-safety of libraries
Parallel software engineering Emulating message-passing in directives

TLNS3D

Motivation Assignment of grid blocks left poor load balance for MPI
Message-passing Group of grid blocks assigned to each slave by master
Directives More or fewer processors assigned to each slave
Platforms SGI Origin2000
Problems Need for flexible clustering of processors to SMP nodes
Parallel software engineering One expert for MPI, another for OpenMP

Table 4. Comparison of five applications in which both message-passing and directives were used.

5

Steve Bova (gabb@ibm.wes.hpc.mil) is the computational fluid dynamics lead at the Engineer Research & Development Center MSRC in
Vicksburg, Mississippi, where Clay Breshears (gabb@ibm.wes.hpc.mil) is the scalable parallel tools lead and Henry Gabb (gabb@ibm.wes.hpc.mil)
is the director of scientific computing. Rudolf Eigenmann (eigenman@ecn.purdue.edu) is an associate professor at Purdue University. Greg
Gaertner (ggg@zko.dec.com) is a principal software engineer at Compaq Computer, in Nashua, New Hampshire. Bob Kuhn (kuhn@kai.com)
is the director of products and Bill Magro (magro@kai.com) is a parallel applications engineer at Kuck & Associates, in Champaign, Illinois.
Stefano Salvini (stef@nag.co.uk) is the high performance computing group leader at NAG Ltd., in Oxford, United Kingdom. Veer Vatsa
(v.n.vatsa@larc.nasa.gov) is a senior research scientist at NASA Langley Research Center in Hampton, Virginia.

