
1

from SIAM News, Volume 31, Number 2

Parallelization of a Relaxation Method
By C.Y. Lee, S.M. Lee, J.S. Oh, and B.H. Koo

In the solution of large linear systems, as with the large-scale Laplace equation that arises in the boundary-element
formulation described here, the available memory is often insufficient for use of a direct elimination method. Iterative
methods, which require less memory, can be applied in such cases, although the cost can be longer computation times. In
this article we describe a fast, parallelized under-relaxation iterative algorithm used in the modeling of an injection molding
process.

We used the Computer Aided Plastic Application (CAPA) code, which was written originally to run serially on an HP735
workstation. The limited memory (128 Mbytes) in this system makes the original, direct solver
algorithm in CAPA inefficient. With a slight modification that makes it possible to use more of
the available memory, however, CAPA can run significantly faster on computer systems with
sufficient memory. When this strategy is used with the parallelization of the relaxation
algorithm in CAPA, the result is an almost ideal speedup.

The parallelization, by taking advantage of greater amounts of the aggregate memory and
concurrent execution on multiple processors, makes it possible to run larger problems. Our
focus in this article is twofold: the parallelization of the relaxation algorithm in CAPA and the
strategy for memory usage.

Three problems (i.e., data sets or models), shown in Table 1, are considered in this article. The
table lists the numbers of boundary elements that determine the size of two large matrices, K and G, for each model, as
explained in later sections.

Cooling in Injection Molding

CAPA was developed to model three-dimensional heat transfer during the cooling stage of an injection molding process.
In the model, the heat transfer occurs as a cyclic–steady, three-dimensional conduction process; heat is exchanged with the
ambient air and the exterior surfaces of the mold.

For the numerical implementation, we use a hybrid scheme consisting of a modified three-dimensional boundary-element
method (BEM) for the mold region and a finite-difference method for the melt region. These two analyses are iteratively
coupled so that the temperature and heat flux match at the mold–melt interface.

During the cooling stage, the polymer in a mold cools and solidifies owing to conductive heat transfer. Since plastic parts
are usually thin, a local one-dimensional transient analysis is adequate for a three-dimensional plastic part.

The governing equation for conductive heat transfer is given as:

ρ
∂

∂

∂

∂

∂

∂
C

T

t z
k

T

t
p

r r

=





 (1)

where
r
T denotes the melt temperature; ρ, Cp, and k are the density, thermal conductivity, and specific heat, respectively;

and z is the local coordinate along the part thickness direction.
We use a cycle-averaged three-dimensional approach for the mold-filling analysis and a cycle-averaged temperature field

as it affects the plastic part and the cooling system for the melt analysis. To couple the mold analysis with the melt analysis,
we use compatibility conditions at the mold–melt interface; see [2] for details. For mold surfaces that are in contact with
the coolant, heat transfer coefficients are based on the Dittus–Boetler correlation [1].

With the above assumptions, the governing equation for the melt cycle-averaged temperature field is given by the Laplace
equation,

∆
r
T = 0

We use an implicit finite-difference method to solve equation (1). To solve for
the temperature field in the mold, we use the BEM, modifying the standard BEM
for any two closely spaced surfaces of the mold [3].

To numerically solve the equations resulting from the BEM, we discretize the
boundary surfaces of the mold into triangular and line elements. The appropriate
boundary formula is then applied to each element.

APPLICATIONS ON
A D VA N C E D
A R C H I T E C T U R E
C O M P U T E R S
Greg Astfalk, Editor

Table 1. Number of boundary elements in
the three models used in this study.

Model Plastic Cooling
part channel

BOX4 1563 100

JAR-BODY 3698 527

GRILL-GATE 8801 160

2

Once integrals have been calculated, the discretized boundary-element formula can be manipulated into the following
form:

K T G Tij i ij n i

r r
= (), (2)

where Kij and Gij are functions of the geometry of the boundary surfaces. Once the boundary and compatibility conditions
have been incorporated, equation (2) takes the form

KT R
r r

=

where
r
T contains all the unknowns. Depending on the boundary conditions,

r
T is either the temperature or the temperature

gradient;
r
Ri depends on the coefficient Gij and the boundary and compatibility conditions.

This system is solved by an under-relaxation iterative method. Because an iterative method requires less memory than
a direct solver, we can solve larger problems with a given amount of memory. In addition, we often have a very good initial
guess for the unknowns. With a good initial guess, an iterative method can converge rapidly.

Strategy for Memory Usage in CAPA

Storage of the K and G matrices in (2) accounts for most of the memory requirement in CAPA. The limited amounts of
memory on the workstations where we originally ran CAPA prevented storage of these matrices in memory. Our original
alternative was to store only parts of the matrices, utilizing all of the existing memory, and constantly recalculate the parts

not stored. Experiments have shown that recalculating K and G
can be faster than relying on the virtual memory (i.e., paging)
system to handle the storage of matrices that exceed the
physical memory of the system. Moreover, some systems, like
Cray computers, do not support paging.

Figure 1 shows the K and G matrices that arise in the BEM
phase of the CAPA algorithm. Each of these matrices can
occupy a significant amount of memory. The K matrix is used
more often than G. The K matrix is further divided into nine
submatrices, as shown in Figure 2.

From Table 1 and Figure 2, it is obvious that K11 is the largest
of the submatrices, accounting for 80–90% of the K matrix. The
original version of CAPA stored all of K22 and K33 and a part of
K11. Values for the remaining six parts are recalculated at every
iteration. The portion of K11 that is stored depends on the
amount of available memory. With enough memory, the full K11

is stored.
K and G, which are used in the solution of the equations

KT R
r r

= and G RT
n

∂
∂

r r
= , are known and do not change during

the execution. If K and G are in memory, they do not need to
be recomputed at every iteration and the computation time
will be reduced. When the model is large, the memory of one
processor is generally sufficient to store only a part of K. On
a parallel system, K is partitioned and distributed among the
memory in different processors. If all of K is memory-
resident, then as much of G as can be accommodated is also
stored in memory.

As in the original CAPA, we partition K into nine different
parts. The only part not guaranteed to be in memory is K11. Since the total amount of memory in a parallel system is
proportional to the number of processors, then given enough processors, extremely large K matrices can be stored. Parallel
programs can gain advantage from more aggregate memory as well as concurrent computation. CAPA either stores the
entire K, if there is sufficient memory among the multiple processors, or recalculates the unstored portion of K11, if the
number of processors (i.e., memory) is insufficient.

With the BOX4 model (see Table 1) run on one processor of an SGI Challenge, the entire K matrix can be stored in
memory. The total execution time is 30% less with the parallel code than with the original version of the algorithm. The
primary difference between the original and parallel versions is in the relative portions of the K and G matrices that are stored
and recalculated. The original approach, as discussed earlier, was to recalculate most parts of K, whereas with the parallel
code we are able to store those parts and no longer need to recalculate them. Therefore, the parallelized CAPA code runs
approximately 30% faster just on the basis of its ability to store the entire K matrix in memory. This performance gain is

Figure 2. Three of the nine submatrices of the K matrix.

Figure 1. The system of equations, KT R
r r

= , from the BEM
portion of the CAPA code.

3

independent of any gain from the parallelization of the under-
relaxation method.

Figure 3 illustrates the distribution of the K matrix over the
available memory in a parallel system. Let num_nodes be the
number of processors and K an N × N matrix. K is partitioned
and interleaved row-wise among the num_nodes processors;
num_nodes≤ N, and we assume here that num_nodes mod
N = 0. The first num_nodes rows of K are distributed, one to
each processor, in order. The second num_nodes rows of K
are then distributed in the same way, and the process contin-
ues until all rows of K have been distributed. Each processor
p has a subset of the rows of K.

Parallelization of the Relaxation Method

The under-relaxation method (URM) is applied to solve equation (3). The general form of the URM is expressed as
follows:

t w t

w

k
r k t k t

i
M

i
M

ii

i ij j
M

ij j
M

j

i

j i

N

= −()

+ − −












−()

−()

=

−

= +
∑∑

1
1

1

1

1

1

(3)

In this equation w is the relaxation parameter (w < 1), i and j are the row and column indices, M is the iteration number, and
N is the order of the system.

Equation (3) shows that ti
M depends on the ith row of K, the ith element of the right-hand side,

r
R, and

r
T . K does not change

during the execution, and although
r
R is updated occasionally after an iteration completes, it remains constant within an

iteration. In addition,
r
T consists of two parts: t j

M −()1 , where i ≤ j, and t j
M , where j < i.

The first set of t j
M −()1 is from the previous ((M – 1)th) iteration. The second set is from the current (Mth) iteration. In a

sequential program, elements of
r
T are updated from 1 to N, in order, so that all the data needed to update ti

M are available.
The parallel code does not guarantee the availability of all the requisite data, because each processor updates only a subset

of ti
M . Most of the t j

M values needed to update ti
M reside on other processors. Only by message passing among the processors

can all of t j
M be made available to solve this problem. For i from 1 to N, the updated ti

M values are communicated to the
other processors. Obviously, the communication overhead results in decreased efficiency, either because processors are idle
or because processors that would otherwise be doing meaningful computation are needed to perform the required
communication. Therefore, it is the characteristics of the communication, more than anything else, that determine the
efficiency of the parallel code. The remainder of this section shows how the communication is implemented for the URM.

With respect to the distribution of K, equation (3) is rewritten as:

t w t

w

k
r k t k t

w

k
r

k

w
w t k t

k t k t

i
M

i
M

ii
i ij j

M
ij j

M

j

i

j i

N

ii
i

ii
i

M
ij j

M

j i

N

ij j
M

ij j
M

j

= −()

+ − −










= + −() −






− +

−()

−()

=

−

= +

−() −()

= +

=

∑∑

∑

1

1

1

1

1

1

1

1 1

1

SS

i

j

S −

=
∑∑


















1

1

(4)

= − − −D A B C (5)

where S= max(1, i – 1 –num_nodes) with

Figure 3. The row layout of K.

4

A w t
w

k
k t

B
w

k
k t

C
w

k
k t

D
w

k
r

i
M

ii

ij j
M

j i

N

ii

ij j
M

j

S

ii

ij j
M

j S

i

ii

i

= − −() +

=

=

=

−() −()

= +

=

=

−

∑

∑

∑

1
1 1

1

1

1

We assume that processor p updates ti
M and that all processors have the same initial data for

r
T M . Since t j

M , for j < i,
changes as i progresses from 1 to N, processor p needs the changed t j

M values in order to update ti
M . Processor p receives

all the necessary t j
M values from processor p – 1, updates ti

M , and then sends those t j
M values and ti

M to processor p + 1.
Processor p + 1 can then update ti

M
+1. This process repeats until all the ti

M values have been updated. Since the last processor
does not have a next processor, it sends the data to the first processor. Similarly, the first processor receives the necessary
t j

M from the last processor. With each processor updating the ti
M assigned to it, the updating of ti

M proceeds in a round-
robin fashion.

If p is a processor ID from 1 to num_nodes, an arbitrary processor p would recalculate the ti
M values for i = p,

p + num_nodes, p + 2 ×num_nodes, . . . , and i ≤ N. A careful look at this algorithm reveals that processor p already has
updates for most t j

M values. The processor that updates ti
M (i = p + num_nodes) received t j

M for 1 < j < p when it was
updating ti

M (i = p). To calculate ti
M in equation (3), the processor needs only to get t j

M for 0 < i – num_nodes< j < i. This
corresponds to C in equation (5). Terms A, B, and D are already in the processor’s memory. As a result, C represents the
only portion of t j

M that needs to be obtained from the previous node.
Equation (5) shows that processors can start subtracting A and B before C arrives; a processor does most calculations, in

fact, while waiting for C. Overlapping the computation and communication reduces the detrimental effect of the
communication over- head. Having the processors subtract A and B while waiting for C almost entirely prevents the
processors from being idle due to the communication. Algorithm 1, which is very efficient and yields close to ideal speedups,
is shown in pseudocode in the box below. Figure 4 pictorially illustrates the algorithm when four processors are used. The
arrows indicate the direction of communication and the amounts of data involved.

Results

We implemented the parallel version of CAPA on a 256-node Intel Paragon XP/S at the Samsung Advanced Institute of
Technology (SAIT) in Suwon City, Korea. The performance measurements were obtained with the three models listed in
Table 1. The memory requirements for the K matrix alone for BOX4, JAR-BODY, and GRILL-GATE are 47, 320, and 1300
Mbytes, respectively. Each node of the Paragon at SAIT has only 32 Mbytes of memory; even with a paging space of 128
Mbytes, then, JAR-BODY and GRILL-GATE cannot run on one node. Even BOX4 requires virtual memory (paging) when
run on one node.

The run-times are shown in Table 2 for various numbers of nodes (i.e., processors). Because of the working set size, we
had to rely on paging in some of the runs. As more processors are used, more memory becomes available to store greater
portions of K and G. The elements of K and G that are stored in memory are calculated only once. Elements of K and G that
are not memory-resident must be recalculated once every iteration. Thus, as the number of processors grows, the amount
of calculation decreases, with the expected result.

Table 2 shows that the parallelized under-relaxation algorithm is efficient. In the case of BOX4, for example, the full K
and G matrices can be stored in memory if eight or more processors are used, and any reduction in time achieved with more

do i = p to N increment by num_nodes
Subtract A from D
Subtract B from D
Receive C in equation (5) from the previous processor
Subtract C from D
Assign D to ti

M

Send t j
M (0 < i – num_nodes < j ≤ i) to the next processor

enddo
The last processor distributes t j

M (0 < N– num_nodes < j ≤ N)
to all other processors.

5

than eight processors is a result of the concurrency of the computation. The relative efficiency is defined as T
T

S
S L

S

S L+
× + ,

where S is the base number of processors and L is the number of additional processors. The relative efficiency for BOX4
run on 16 processors, as compared with eight processors, is 82.9%.

References

[1] B. Gebhart, Heat Transfer, 2nd edition, McGraw-Hill, 1977, New York.
[2] K. Himasekhar, K.K. Wang and J. Lottey, Mold-cooling simulation in injection molding of three-dimensional thin plastic parts,

Heat Transfer Conference, HTD, 110 (1989), 129–136.
[3] M. Rezayat and T.E. Burton, A boundary-integral formulation for complex three-dimensional geometries, Int. J. Numerical

Methods in Eng., 29 (1990), 263–273.
[4] J. Stoer and R. Bulirsch, Introduction to Numerical Analysis, 2nd edition, Springer-Verlag, 1987, New York.

C.Y. Lee (cylee@radon.sait.samsung.co.kr), S.M. Lee (smlee@radon.sait.samsung.co.kr), and J.S. Oh (soo@radon.sait.samsung.co.kr)
are all researchers in the Samsung Advanced Institute of Technology’s Supercomputer Application Lab. B.H. Koo (bhkoo@rnd.sec.samsung.
co.kr) is with Samsung Electronics Co., Ltd., in Suwon City, Kyungki-Do, Korea.

Figure 4. Message passing of the elements of
r
T for num_nodes = 4.

Table 2. Run-times, in seconds, on the Intel Paragon. The
times shown in italics are for runs that used paging
because the working set size exceeded the physical
memory. The sequential times are for CAPA run on the SGI
Challenge.

sedon 4XOB YDOB-RAJ ETAG-LLIRG

)laitneuqes(1 2203 02881 73006

)dezilellarap(1 3181 � �

2 285 � �

4 151 � �

8 36 4651 �

61 83 484 7333

23 52 641 0061

46 42 98 955

821 13 67 081

