from SIAM News, Volume 31, Number 2

Parallelization of a Relaxation Method

By C.Y. Lee, S.M. Lee, J.S. Oh, and B.H. Koo

In the solution of large linear systems, as with the large-scale Laplace equation that arises in the boundary-element
formulation described here, the available memory is often insufficient for use of a direct elimination method. Iterative
methods, which require less memory, can be applied in such cases, although the cost can be longer computation times. Ir
this article we describe a fast, parallelized under-relaxation iterative algorithm used in the modeling of an injection molding
process.

We used the Computer Aided Plastic Application (CAPA) code, which was written originally to run serially on an HP735
workstation. The limited memory (128 Mbytes) in this system makes the original, direct solver
algorithm in CAPA inefficient. With a slight modification that makes it possible to use more of
APPLICATIONS ON the available memory, however, CAPA can run significantly faster on computer systems with
ADVANCED sufficient memory. When this strategy is used with the parallelization of the relaxation

algorithm in CAPA, the result is an almost ideal speedup.
ARCHITECTURE The parallelization, by taking advantage of greater amounts of the aggregate memory and
COMPUTERS concurrent execution on multiple processors, makes it possible to run larger problems. Our
G Astfalk. Edit focus in this article is twofold: the parallelization of the relaxation algorithm in CAPA and the
reg Astlalk, Eaitor strategy for memory usage.
Three problems (i.e., data sets or models), shown in Table 1, are considered in this article. The
table lists the numbers of boundary elements that determine the size of two large nkaaimdS, for each model, as
explained in later sections.

Cooling in Injection Molding

CAPA was developed to model three-dimensional heat transfer during the cooling stage of an injection molding process.
In the model, the heat transfer occurs as a cyclic—steady, three-dimensional conduction process; heat is exchanged with the
ambient air and the exterior surfaces of the mold.

For the numerical implementation, we use a hybrid scheme consisting of a modified three-dimensional boundary-element
method (BEM) for the mold region and a finite-difference method for the melt region. These two analyses are iteratively
coupled so that the temperature and heat flux match at the mold—melt interface.

During the cooling stage, the polymer in a mold cools and solidifies owing to conductive heat transfer. Since plastic parts
are usually thin, a local one-dimensional transient analysis is adequate for a three-dimensional plastic part.

The governing equation for conductive heat transfer is given as:

p —_— —_—
ot oz otO @

whereT denotes the melt temperatupeC,, andk are the density, thermal conductivity, and specific heat, respectively;
andzis the local coordinate along the part thickness direction.

We use a cycle-averaged three-dimensional approach for the mold-filling analysis and a cycle-averaged temperature field
as it affects the plastic part and the cooling system for the melt analysis. To couple the mold analysis with the melt analysis
we use compatibility conditions at the mold—melt interface; see [2] for details. For mold surfaces that are in contact with
the coolant, heat transfer coefficients are based on the Dittus—Boetler correlation [1].

With the above assumptions, the governing equation for the melt cycle-averaged temperature field is given by the Laplace
equation,

Model Plastic | Cooling
AT=0 part channel
BOX4 1563 100

We use an implicit finite-difference method to solve equation (1). To solve for
the temperature field in the mold, we use the BEM, modifying the standard BEfR-BODY 3698 527
for any two closely spaced surfaces of the mold [3].

To numerically solve the equations resulting from the BEM, we discretize GRILL-GATE 8801 160
boundary surfaces of the mold into triangular and line elements. The approR&gig 1. Number of boundary elements in
boundary formula is then applied to each element. the three models used in this study.

Once integrals have been calculated, the discretized boundary-element formula can be manipulated into the following
form:

Kij-ﬁ =G (-F,n)i)

whereK; andG; are functions of the geometry of the boundary surfaces. Once the boundary and compatibility conditions
have been incorporated, equation (2) takes the form

KT =R

whereT contains all the unknowns. Depending on the boundary condificesither the temperature or the temperature
gradient;R depends on the coefficie@f and the boundary and compatibility conditions.

This system is solved by an under-relaxation iterative method. Because an iterative method requires less memory than
a direct solver, we can solve larger problems with a given amount of memory. In addition, we often have a very good initial
guess for the unknowns. With a good initial guess, an iterative method can converge rapidly.

Strategy for Memory Usage in CAPA

Storage of th& andG matrices in (2) accounts for most of the memory requirement in CAPA. The limited amounts of
memory on the workstations where we originally ran CAPA prevented storage of these matrices in memory. Our original
alternative was to store only parts of the matrices, utilizing all of the existing memory, and constantly recalculate the parts
not stored. Experiments have shown that recalculitengdG
can be faster than relying on the virtual memory (i.e., paging)
system to handle the storage of matrices that exceed the
Tl = | & physical memory of the system. Moreover, some systems, like

. Cray computers, do not support paging.

Figure 1 shows thK andG matrices that arise in the BEM
phase of the CAPA algorithm. Each of these matrices can
occupy a significant amount of memory. TKenatrix is used
more often thar. TheK matrix is further divided into nine
submatrices, as shown in Figure 2.

From Table 1 and Figure 2, itis obvious tatis the largest
- of the submatrices, accounting for 80—90% o&Imeatrix. The

original version of CAPA stored all &f,, andK,; and a part of
K, Values for the remaining six parts are recalculated at every
. iteration. The portion oK,; that is stored depends on the
Figure 1. The system of equations, KT =R, from the BEM amount of availablenemory. With enougimemory, the fulk,,
portion of the CAPA code. .
is stored.

K andG, which are used in the solution of the equations
KT=R andG‘(’,—ﬁz R, are known and do not change during
the execution. IK andG are in memory, they do not need to

Alknown)

= | &l known)

ﬁ Part {A11) be recomputed at every iteration and the computation time
K= will be reduced. When the model is large, the memory of one
. Runner { £22) processor is generally sufficient to store only a paikt. @n

a parallel systenk is partitioned and distributed among the
& B Channel(K33) Memory in different processors. If all & is memory-
o resident, then as much @fas can be accommodated is also
stored in memory.

As in the original CAPA, we partitiok into nine different
parts. The only part not guaranteed to be in memoky,isSince the total amount of memory in a parallel system is
proportional to the number of processors, then given enough processors, extremglyriatdgees can be stored. Parallel
programs can gain advantage from more aggregate memory as well as concurrent computation. CAPA either stores the
entireK, if there is sufficient memory among the multiple processors, or recalculates the unstored péttioifi thfe
number of processors (i.e., memory) is insufficient.

With the BOX4 model (see Table 1) run on one processor of an SGI Challenge, th& emtitrex can be stored in
memory. The total execution time is 30% less with the parallel code than with the original version of the algorithm. The
primary difference between the original and parallel versions is in the relative portioni afifi@ matrices that are stored
and recalculated. The original approach, as discussed earlier, was to recalculate modf pahsrefis with the parallel
code we are able to store those parts and no longer need to recalculate them. Therefore, the parallelized CAPA code runs
approximately 30% faster just on the basis of its ability to store the Entia@rix in memory. This performance gain is

2

Figure 2. Three of the nine submatrices of the K matrix.

procasaos 1

independent of any gain from the parallelization of the und

relaxation method. processor £ 1

Figure 3illustrates the distribution of tkematrix over the g
available memory in a parallel system. hatm_nodebe the p— s
number of processors akdanN x N matrix.K is partitioned !Lu&v_um-sj

and interleaved row-wise among tin@m_nodeprocessors;
num_nodes N, and we assume here thmtm_nodesnod '-'r"“-'"‘*'”
N = 0. The firstum_nodesows ofK are distributed, one to * ™ i
each processor, in order. The secanth_nodesows ofK oo pishi
are then distributed in the same way, and the process col ;

ues until all rows oK have been distributed. Each processu,
p has a subset of the rowskf Figure 3. The row layout of K.

Parallelization of the Relaxation Method
The under-relaxation method (URM) is applied to solve equation (3). The general form of the URM is expressed as
follows:

_(M-1)

£ =(1-w)t

i-1

N
Z kthJ(M_l) - Z kit
=i+l

j=1

®3)

l

I

O
+£Elfi—
ki H

In this equationv is the relaxation parametev € 1),i andj are the row and column indicé4 s the iteration number, and
N is the order of the system. -
Equation (3) shows thq‘t" depends on thiéh row ofK, theith element of the right-hand sidR,andT . K does not change
during the execution, and althoughis updated occasionally after an iteration completes, it remains constant within an
iteration. In addition;T consists of two partS](M‘l), wherei <j, andtM, wherej <i.
The first set oMY is from the previous §{ — 1)th) iteration. The second set is from the currbthy iteration. In a
sequential program, elementsTofare updated from 1 19, in order, so that athe data needed to updaﬁé are available.
The parallel code does not guararttesavailability of all the requisite datadagise each processor updates only a subset
of tiM .Most of thetM values needed to updaifé reside on other processors. Only by message passing among the processors
can all oftM be made available to solve this problem. iFoom 1 toN, the updatecliiM values are communicated to the
other processors. Obviously, the communication overhead results in decreased efficiency, either because processors are idls
or because processors that would otherwise be doing meaningful computation are needed to perform the required
communication. Therefore, it is the characteristics of the communication, more than anything else, that determine the
efficiency of the parallel code. The remainder of this section shows how the communication is implemented for the URM.
With respect to the distribution &f, equation (3) is rewritten as:

W 0 N . (M—1) i—1k M|]
+F i _z Iy _Z iy %
u j=i+l j=1
O N
_w ki; M-1) (m-1)
—k—Dri+—(1—w)tl - Zk,-jtj
ig W el (4)
as i-1 [l
M M
B kit +Zkijtj
=1 J=8
=D-A-B-C (5)

whereS= max(1,i — 1 —num_nodé&swith

N
Az_(l_W)ti(M—l) v Z kijtJ(M-l)

il j=i+l

S
_Ww M
oLl
kii j:l

i-1
_Ww M
O 25

w

:_ri
Ki

We assume that processmupdatesti'\" and that all processors have the same initial datd 'YbrSincetj"", forj <i,
changes asprogresses from 1 9, processop needs the changé{f values in order to updaté". Processop receives
all the necessanyM values from processgr— 1, updatess,"", and then sends thot¥ values ancli’\’I to processop + 1.
Processop + 1 can then updatéﬁl. This process repeats until all tlti%values have been updated. Since the last processor
does not have a next processor, it sends the data to the first processor. Similarly, the first processor receives the necessary
tM from the last processor. With each processor updatind\’”(raessigned to it, the updatingt;N1 proceeds in a round-
robin fashion.

If pis a processor ID from 1 toum_nodesan arbitrary processqr would recalculate the},"’I values fori =p,
p+num_nodeg + 2 xnum_nodes. . . , and < N. A careful look at this algorithm reveals that procegsalready has
updates for mostM values. The processor that updaqu(i = p + num_nodesreceivedtM for 1 <j <p when it was
updatingti"’I (i=p).To calculateti'\" in equation (3), the processor needs only tdl'kjefbr 0 <i—num_nodes j <i. This
corresponds t€ in equation (5). Term4, B, andD are already in the processor's memory. As a reSultpresents the
only portion oftM that needs to be obtained from the previous node.

Equation (5) shows that processors can start subtractngB beforeC arrives; a processor does most calculations, in
fact, while waiting forC. Overlapping the computation and communication reduces the detrimental effect of the
communication over- head. Having the processors subAractd B while waiting forC almost entirely prevents the
processors from being idle due to the communication. Algorithm 1, which is very efficient and yields close to ideal speedups,
is shown in pseudocode in the box below. Figure 4 pictorially illustrates the algorithm when four processors are used. The
arrows indicate the direction of communication and the amounts of data involved.

do i =pto Nincrement by num_nodes
Subtract Afrom D
Subtract Bfrom D
Receive Cin equation (5) from the previous processor
Subtract Cfrom D
Assign Dto tiM

Send t J-M (0< i —num_nodes <j <1i) to the next processor
enddo
The last processor distributes tJ-M (0< N-num_nodes <j <N

to all other processors.

Results

We implemented the parallel version of CAPA on a 256-node Intel Paragon XP/S at the Samsung Advanced Institute of
Technology (SAIT) in Suwon City, Korea. The performance measurements were obtained with the three models listed in
Table 1. The memory requirements forkhmatrix alone for BOX4, JAR-BODY, and GRILL-GATE are 47, 320, and 1300
Mbytes, respectively. Each node of the Paragon at SAIT has only 32 Mbytes of memory; even with a paging space of 128
Mbytes, then, JAR-BODY and GRILL-GATE cannot run on one node. Even BOX4 requires virtual memory (paging) when
run on one node.

The run-times are shown in Table 2 for various numbers of nodes (i.e., processors). Because of the working set size, we
had to rely on paging in some of the runs. As more processors are used, more memory becomes available to store greater
portions ofK andG. The elements df andG that are stored in memory are calculated only once. ElemeftsnaiG that
are not memory-resident must be recalculated once every iteration. Thus, as the number of processors grows, the amount
of calculation decreases, with the expected result.

Table 2 shows that the parallelized under-relaxation algorithm is efficient. In the case of BOX4, for example the full
andG matrices can be stored in memory if eight or more processors are used, and any reduction in time achieved with more

4

processor 1 PrOCessor & procesiol 4 processor 4 nodes BOX4 JAR-BODY | GRILL-GATE
|4'1 j—l-— 1 (sequential) 3022 18820 60037
f! = - e 1 (parallelized) 1813 — —
o fa _
m f 2 582 — —
A
!E. 'S 4 151 — —
E-E . " 8 63 1564 —
i
16 38 484 3337
: ta
: 32 25 146 1600
64 24 89 559
128 31 76 180
Table 2. Run-times, in seconds, on the Intel Paragon. The

_ times shown in italics are for runs that used paging
Figure 4. Message passing of the elements of T for num_nodes = 4. because the working set size exceeded the physical
memory. The sequential times are for CAPA run on the SGI

Challenge.

than eight processors is a result of the concurrency of the computation. The relative efficiency is degﬁgedgéﬁ,
whereSis the base number of processors lamglthe number of additional processors. The relative efficiency for BOX4
run on 16 processors, as compared with eight processors, is 82.9%.

References

[1] B. GebhartHeat Transfer2nd edition, McGraw-Hill, 1977, New York.

[2] K. Himasekhar, K.K. Wang and J. Lottéyipld-cooling simulation in injection molding of three-dimensional thin plastic parts
Heat Transfer Conference, HTD, 110 (1989), 129-136.

[3] M. Rezayat and T.E. BurtoA boundary-integral formulation for complex three-dimensional geometriesJ. Numerical
Methods in Eng., 29 (1990), 263-273.

[4]J. Stoer and R. Bulirsclntroduction to Numerical Analysi@nd edition, Springer-Verlag, 1987, New York.

C.Y.Lee (cylee@radon.sait.samsung.co.kr), S.M. Lee (smlee@radon.sait.samsung.co.kr), and J.S. Oh (soo@radon.sait.9amsung.co.kr
are allresearchersinthe Samsung Advanced Institute of Technology’s Supercomputer Application Lab. B.H. Koo (bhkoo@suhgec.sa
co.kr) is with Samsung Electronics Co., Ltd., in Suwon City, Kyungki-Do, Korea.

