from SIAM NewsVolume 31, Number 8

Speeding Up Genome Computations
With a Systolic Accelerator

By Dominique Lavenier

The comparison of DNA or protein sequences, a fundamental task in molecular biology, occurs in a variety of ways. The goal
is to find similarities—areas with shared subsequences—between two or more sequences. This task is performed in applicatior
ranging from the sequencing of DNA molecules to database scanning.

APPLICATIONS ON Similarities are detected by algorithms whose computational complexities are quadratic with respect

ADVANCED tothe length of the sequences. A comparison of sequences is thus time-consuming when a large amount
of data (a large set of sequences, which is also called a “bank”) must be processed. Several approaches

A R C H | T E C T U R E can be taken to speed up the computation.

COMPUTERS 'I_'he simplest_approach is to Wait_ for improyed tech_nology in the form of increase_d processor speeds.
This approach is not very fruitful since the sizes of biological databases are growing at a rapid rate, by

Greg Astfalk, Editor  a factor of 1.5-2 every year. This exceeds the growth rate of processor performance.

Another solution that has been widely adopted and that has proved very efficient consists of

introducing heuristics into the comparison algorithms. Speedups of 10 to 100 can be achieved in this way. The use of heuristic

has two major drawbacks: (1) They cannot be applied to all comparison algorithms, and (2) their application in some cases ca

seriously diminish the quality of the results. In practice, when a heuristic is efficient at reducing the execution tirabtytloé g

the results is lower.

A last alternative for those seeking high-quality results in a short time is parallel computation, for which there are three
possibilities: massively parallel machines, networks of workstations, and dedicated hardware. The first possibility wohkes well.
sequences to be compared are dispatched to the nodes of the parallel machines, which independently perform their computatiol
The partial results are then merged to get the final results. Nevertheless, due to the high cost of parallel computéisnthis so
suits only a small number of laboratories.

Networks of workstations, a less expensive alternative, use computational resources already available in the laboratories. Th
parallelization is performed as in parallel machines; each workstation works independently on its own data. The heterogeneou
collections of machines in most laboratories, however, make this approach quite difficult to implement. Machines from different
manufacturers have different operating systems and can vary so widely in performance that efficient load-balancing of the
computations becomes very difficult.

The solution we propose falls into the dedicated hardware category. The machine is based on a systolic array of fully custon
processors connected to a host workstation. Current technology allows us to build a 128-processor machine in a few chips. /
complete system can be housed on a single PCI board. The addition of low-cost, dedicated hardware to a PC or workstation f
parallelizing the comparison algorithms can decrease the execution time by two orders of magnitude.

Basic Algorithm and Parallelization

Surprising relationships have been discovered between biological sequences that have little overall similarity but inletich sim
subsequences can be found. In that sense, the identification of similar segments (subsequences) is probably the most useful
practical method for comparing two sequences. Fifteen years ago Smith and Waterman [12] proposed a dynamic programmin
algorithm for detecting, between two sequences, highly similar pairs of segments.

The algorithm compares two sequences by computing a distance that represents the minimal cost of transforming one segme
into another. Two elementary operations are considered: substitution and insertion/deletion (the latter being what'gmpalled a
operation”). Through a series of such elementary operations, any segment can be transformed into any other segment. The small
number of operations required to change one segment into another can be taken as the measure of the distance betwegn the segm

More formally, letX = (X, X, ... ,X) andY=(y, V., . .. ,V.) be two sequences that are to be comparedd(key) be the
substitution cost for changinginto y andg the cost of the insertion/deletion (gap) operatidfi, j) is defined as the maximum
similarity of two segments endingatandy,. The Smith and Waterman algorithm is then given by the following recursion:

11D ecln,y)

- i-1j-1)+d(x,y,

H(I,J):Max%_'(i_Lj)_g )
H(i-2-9

with H(i, 0) =H(0, ]) = 0.



>
9]
-
(9]
@
=
>
i
@
>
-
@

GivenH(i, j), a traceback procedure can be used to
determine the alignment between the two segments.

6 0000021002102 reemTatTaea Figure 1 illustrates the detection of the best alignment
Z g j ; ; i ; : z ; i ; z z l l l l T| . i between two small DNA sequences.

e 0 23 65 A4 S 43 21 This algorithm, with slight modifications to the basic
A 2 2 255 4 G 5 6 5 4 Alignment recursiqn, can be useq in many applicatiqns. For the
IT. 104 34446 5N0\8 7 8 7 . parallelization of equation (1), one processing element
B ap cost = —. . . . .. .

iC 03656555 88777 e e, IS associated with each valtii, j). Consider an array
AL 225555477 7N 8 sbstitwdoncost= | i Of N X Mprocessors, denot, connected as indicated
C 11 4 47 6 5 6 6 6 9 9 8

in Figure 2. Suppose that ed@his able to perform the
Figure 1. Sample computation of the best alignment between the two DNA computation expressed by equation (1) F_|gure 2 illus-
sequences ATcTceTATGATG and cTeTatcac. The matrix is first computed withagap  trates the way the data must be transmitted between

cost of -1, and a substitution cost of +2 if the characters are identical and -1 processors. The data requiredibyare represented by
otherwise. From the highest score (+10 in the example), a traceback procedure solid arrowsH(i _ 1,j _ 1) is produced b?i b H(i,

delivers the alignment, the two subsequences TcGTATGA and TCTATCA. . . . . .
g q j=1) byP,;_,, andH(i — 1,j) by P,_, ;. Having all this

information, processd?, ; calculatesd(i, j) and provides the process®s, ., P..1;, and P;., with the data they need. These
data are represented by dashed arrows in Figure 2.

Overall, this two-dimensional array operates on a diagonal basis. Assume that the computation starts at time 0. By time
t=i+]j+1, all the processoR ; are active. It can be verified that all the arguments needed for the computation of equation (1)
have already been computed and have been routed correctly. Since only one diagonal of this array is active at a time, th
implementation can be done on a linear array. Each processor will need to perform the computations for engobaassprs)
of the array.

On alinear systolic array, the process of comparing two sequences consists of loading one sequence into the arrayefone charac
per cell) and sending the other sequence horizontally, character by character, one on each systoli¢isyitle.l&ngth of the
first sequence arldthe length of the second, the comparison is performigd-ih — 1 systolic cycles, instead of thex |, steps
required on a sequential processor. Additionally, this architecture is very well suited for database scanning, where @me sequen
(the query sequence) must be compared, for exam@é16) sequences. The query sequence is loaded into the array first, and
the bank is then sent through the array in a pipelined manner. The speedup is given as:

— (qulb)xN = |
M ORI ?

wherdl, I, andN are the length of the query sequence, and the average length and the number of sequences in the bank, respective
This scheme supposes an array, @rocessors.

The SAMBA Accelerator

SAMBA (Systolic Accelerator for Molecular Biological Applications) is a
hardware accelerator based on a fully custom systolic array designed for accel-
erating a class of algorithms involving biological sequence comparison. The
complete SAMBA system comprises a workstation, a systolic array of 128 fully-i-1 -1
custom hardwired 12-bit processors, and a reconfigurable interface that acts asa
hardware-programmable driver for the systolic array (see Figure 3). H(i-1j-1) H(i-1)

SAMBA implements a parameterized version of the Smith and Waterman
algorithm. By varying a few parameters, it is possible to perform local or global
comparisons, with or without gap penalties. The accelerator can be used to speed HGj-D) Haj)
up a variety of comparison approaches, represented by such software packaggs | ———=| ij | > ij+
as BLAST [1], FASTA [10], and SSEARCH [11].

Performing sequence comparisons on a systolic array is not a new idea. Other
systems based on these structures have been described in the literature. Related
projects that have used dedicated systolic arrays are the BISP [4] and the
BioSCAN [13] machines. Other machines, such as KESTREL [7] and RAPID-

2 [2], are based on a programmable systolic array. FPGA (field-programmable
gate array) systems like SPLASH-2 [8] and PeRLe-1 [6] use custom systolic
arrays for sequence comparison. Thus, the general architecture of SAMBA
cannot be considered revolutionary. It does, however, include many features miglure 2. interprocessor connections: Equation
present in other systems. (1) is parallelized through the association of one

The systolic array and the workstation are connected through a reconfigurafJgcessing element Pid' with each value H(i, j).
. . . . rocessor P,.J. receives data from processors Pf—l,
interface, which constitutes a link between a fully programmable von Neumann » " 'a5ap  and sends datato processors

machine and the dedicated hardware. Itis an important element of the system’/éfnlq';’[,l P, andpP, .
2

i+1j i+1,j+1




Dec PeRlLe-1

Dec station 5000/240

memory

Sully custom VLSI processors

disk storage host workstation reconfigurable linear systolic array
interface

Figure 3. SAMBA comprises a workstation, with local disk, a systolic array of 128 VLSI fully custom processors, and a reconfigurable
interface that fills the gap between a complete hardwired array of processors and a programmable von Neumann machine.

greatly influences the performance of SAMBA. The interface has the responsibility for partitioning the computations agd filteri
results on the fly, as explained later.

Recall that the process of comparing one sequence (a query) against a large set of sequences (a bank) consists ai¢éogding the g
sequence into the array (one character per processor) and then pipelining the bank through the array. This scheme amgumes an a
equal in size to the length of the query sequence. In practice, this never happens. The query sequence is almost afyvays too lo
(i.e., larger than 128 characters), requiring that the sequence comparison be split into several passes.

The partitioning operates as follows: The first 128 characters of the query sequence are loaded into the array. The entire bar
then crosses the array; all the data output by the last processor are stored in memory. In the next step, the followatiekr28 cha
of the query sequence are loaded. The data stored previously are mixed with the bank and sent again to the array. $he proces:
iterated until the end of the query sequence is reached. For reasonable efficiency, the partitioning must be perfortoekl at the ¢
rate of the array. Unfortunately, this rate cannot be sustained by standard microprocessors: Every 100 ns the arraypliadst be sup
with new data, prescribing a hardwired solution.

Communication with the array can be handled only through the left-most and the right-most processors. The results (especiall
when local alignment is performed) must therefore be routed to those processors. SAMBA processors are provided with a hardwar
mechanism for propagating information in this way. More precisely, the processors yield partial results, which need §sbd proce
outside the array for recovery of the final result. Once again, to be efficient this treatment must be done on the Itiy aae resu
output from the array, and cannot be performed by a standard processor.

The point is that for both operations, the treatments change according to the comparison algorithm being executed: The arra
is supplied with data in different ways for global and local comparisons, for example; the results delivered also havte differen
meanings and must be handled differently. Hence, in neither case can a fixed hardware mechanism for supplying the array wit
data or for filtering results on the fly be definitively implemented. FPGA technology, with its combination of speed aitityflexib
is the best alternative for meeting the requirements.

Another important feature of the SAMBA architecture is the availability of local storage near the array. As mentioned earlier,
the partitioning process requires the data bank to cross the array several times. At first glance, storage of the enéifastank i
local memory could be envisioned. A closer understanding of the partitioning mechanism yields a better solution: When a query
sequence is compared against a bank, the SAMBA memory can hold only a subset of the bank; as the computation is performe
on this subset, another subset is loaded from the disk. The overlap between the computation and the data acquisition is efficie
owing to the partitioning operation, which takes time and permits the data from the bank to be accessed at a reasonable rate.

The main advantage of this solution is the small amount of memory required as compared with the size of the bank: The minimun
amount of memory is determined by the sum of the lengths of the query sequence and the longest sequence in the baxk. In practi
the problem is formulated differently: The memory size is a fixed resource that limits the length of the sequences tede proces

SAMBA can be considered as a co-processor that is accessed when intensive biological sequence comparison is neede
Typically, the main operations that have to be accomplished with SAMBA are the initialization of the board and the loading of a
guery sequence or a bank subset.

The accelerator is controlled by means of a few procedure or function calls programmed inside a normal C program; the use
needs no specific knowledge of the structure of the accelerator or how it works. A library of basic procedures that din be rapi
understood by programmers has been developed; these procedures stay close enough to the accelerator hardware to prov
efficient speedups. Examples of procedures include initialization of the substitution costs between amino acids, sdiection of t
comparison algorithm (local or global search, with or without gaps), comparison of two sequences, comparison of one sequenc
against a few sequences, and comparison of two subsets of sequences.

This approach has been chosen to cover a large range of applications requiring conventional sequence comparison treatmen

3



By carefully choosing the basic library procedures, programmers will not encounter too many limitations. This approach makes
possible the choice of predefined programs, including classical programs already developed for bank scanning and user-define
programs tuned to specific applications.

Performance

We discuss performance in terms of speedups attained relative to contemporary workstations, since there are no univers
benchmarks for such comparisons. No comparisons with massively parallel machines or with other dedicated systems are givel
for two main reasons: (1) SAMBA is intended to boost personal computer or workstation performance via a plugged-in board,
whose cost is trivial compared with that of programmable parallel computers. The Origin2000, with at least 30 processors, is ar
example of a machine that provides comparable performance for database scanning. (2) Comparisons with other hardware are ne
done in the same context: The technology, the algorithms, the applications, or the data are always different. Comparing the
execution times of a standard machine with and without extra hardware is probably the best way to demonstrate the efficiency ¢
such an approach. In our opinion, the peak performance results for systolic arrays reported in the literature are oftesuresak me
in that they do not reflect the behavior of the complete systems.

In any case, the reported times for the measurements we have made
h representotal elapsed timeas it directly affects the user; our times include
time for reading the databases from the disk, as well as time for postprocessing.
100 300 1000 3000  Traditionally, the mosttypical use of hardware accelerators is in scanning

Query Sequence Lengt

SAMBA 040 050 150 3:20 databases, and SAMBA was first evaluated on that application. Table 1
150-Mhz DEC Alpha 8:15 24:30 83:00 280:00/€POIts the average times for scanning the continually growing SWISS-
Speedup 13 30 45 83 PROT protein bank (version 34, which contains 59,021 sequences and

21,210,389 amino acids) for protein query sequences of various lengths
o o with the Smith and Waterman algorithm.
S‘ati:ﬁmlg' tﬁgesc‘;’};’gg_;%E'Tsp(r’gte’i’;,”ygsi’sea’”ds) for " The first two rows of the table give the execution times for SAMBA and

' for a 150-MHz Dec Alpha workstation running SSEARCH [11]. As the

times show, the longer the query sequence, the better the speedup. This is

due mainly to the restricted bandwidth of the SAMBA 1/O disk system, which prevents the array from being fed at its maximum
rate: A short query sequence does not require the computation to be split into several passes, and the array is codsatquently fe
the disk rate, which is generally much slower than the array throughput.

Better performance is attained in bank-to-bank comparisons. In that case, the interactions between the host workstation and tt
array are limited: The reconfigurable interface is “programmed” to manage local comparisons of blocks of sequences efficiently,
and the systolic array is supplied with data at its maximum rate. The following specific application, implemented on SAMBA by
biologists, illustrates that aspect of the performance of the accelerator.

The clustering of sequences in families, according to their homology, is an important technique used by biologists t@investiga
genomes. Some functional categories of proteins, for example, notably those involved in metabolite transport and transcriptior
regulation, tend to form large clusters. Using the Smith and Waterman algorithm, we examined the entire desameddiia
coli—4285 sequences and 1,355,128 amino acids)—for similar coding sequences. As our interest was limited to the clustering o
sequences, SAMBA was programmed to report only alignments with scores above a threshold value. The pairwise comparison toc
41 minutes on SAMBA; the same treatment performed on a currently available workstation would have taken 127.5 hours. The
speedup achieved with SAMBA for that particular application was 186.

Conclusions

The SAMBA prototype, which has been available since the end of 1995, is used daily by biologists for comparison-
intensive tasks or for scanning databases through the SAMBA Web server (http://www.irisa.frf[SAMBA/). The chip we designed
(in 1994, using 1 4m CMOS technology) houses four processors, each performing 100 million 12-bit operations per second. The
128-processor array is thus made up of 32 chips. The reconfigurable interface is the PeRLe-1 board developed by Vuillemin et a
[3].

The SAMBA prototype could be vastly improved with up-to-date technology. Given the increases in chip density, we imagine
that we would now be able to fit between 16 and 20 processors (running at higher frequencies) into a single chip. Indle same w
the design of the reconfigurable interface could now fit into a unique latest-generation FPGA component (the FPGA resources o
the PeRLe-1 board are largely under-exploited!). As to memory, only a few Mbytes are required (the prototype used 2 MBytes).
Hence, the current three printed circuit boards could easily be reduced to a standard PCI board, which could be plugged into ar
PC or workstation.

References

[1] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. LipmBasic local alignment search tqdl. Mol. Biol., 215 (1990), 403—410.

[2] D. Archambaud, I. Saraiva, and J. Per8ystolicimplementation of Smith and Waterman algorithm on a SIMD co-prodagdgorithms
and Parallel VLSI Architectures |IElsevier Science, New York, 1995.

[3] P. Bertin, D. Roncin, and J. VuillemiRrogrammable active memories: A performance assessmé&drallel Architectures and Their
Efficient Use F. Meyer, B. Monien, and A.L. Rosenberg, eds., Springer-Verlag, New York, October 1992.

[4] E. Chow, T. Hunkapiller, and J. Peters8iplogical information signal processcASAP, September 1991.

4



[5] O. Gotoh,An improved algorithm for matching biological sequende#ol. Biol., 162 (1982), 705-708.

[6] P. Guerdoux-Jamet and D. Lavenigystolic filter for fast DNA similarity searcASAP’95, Strasbourg, July 1995.

[7]J.D. Hirschberg, R. Hughey, and K. KarplKESTREL: A programmable array for sequence analys$\P’96, Chicago, August 1996.

[8] D.T. Hoang,Searching Genetic DataBases on SPLASH-EPGAS for Custom Computing Machin&sA. Buell and K.L. Pocek, eds.,
IEEE Computer Society Press, Los Alamitos, CA, April 1993.

[9] S.B. Needleman and C.D. Wunghgeneral method applicable to the search of similarities in the amino acid sequence of two,proteins
J. Mol. Biol, 48 (1970), 443-453.

[10] W.R. Pearson and D.J. Lipmdmproved tools for biological sequence comparigéroc. Natl. Acad. Sci., 85 (1988), 3244-3248.

[11] W.R. Pearsorearching protein sequence libraries: comparison of the sensitivity and selectivity of the Smith and Waterman and FASTA
algorithms Genomics, 11(1991), 635-650.

[12] T.F. Smith and M.S. Watermaluentification of common molecular subsequendeMol. Biol, 147 (1981), 195-197.

[13] C.T. White, R.K. Singh, P.B. Reintjes, J. Lampe, B.W. Erickson, W.D. Dettloff, V.L. Chi, and S.F. AIB&®CAN: A VLSI-based
system for biosequence analy$isEE International Conference on Computer Design: VLSI in Computer and Processors, October 1991.

Dominique Lavenier, a permanent CNRS researcher, is currently working at the Institut de Recherche en Informatique &I8gatee®s
Rennes. His research interests include VLS| and FPGA design, CAD tools, parallel architectures, and string processitay biodde).



