
1

from SIAM News, Volume 31, Number 8

Speeding Up Genome Computations
With a Systolic Accelerator
By Dominique Lavenier

The comparison of DNA or protein sequences, a fundamental task in molecular biology, occurs in a variety of ways. The goal
is to find similarities—areas with shared subsequences—between two or more sequences. This task is performed in applications

ranging from the sequencing of DNA molecules to database scanning.
Similarities are detected by algorithms whose computational complexities are quadratic with respect

to the length of the sequences. A comparison of sequences is thus time-consuming when a large amount
of data (a large set of sequences, which is also called a “bank”) must be processed. Several approaches
can be taken to speed up the computation.

The simplest approach is to wait for improved technology in the form of increased processor speeds.
This approach is not very fruitful since the sizes of biological databases are growing at a rapid rate, by
a factor of 1.5–2 every year. This exceeds the growth rate of processor performance.

Another solution that has been widely adopted and that has proved very efficient consists of
introducing heuristics into the comparison algorithms. Speedups of 10 to 100 can be achieved in this way. The use of heuristics
has two major drawbacks: (1) They cannot be applied to all comparison algorithms, and (2) their application in some cases can
seriously diminish the quality of the results. In practice, when a heuristic is efficient at reducing the execution time, the quality of
the results is lower.

A last alternative for those seeking high-quality results in a short time is parallel computation, for which there are three
possibilities: massively parallel machines, networks of workstations, and dedicated hardware. The first possibility works well. The
sequences to be compared are dispatched to the nodes of the parallel machines, which independently perform their computations.
The partial results are then merged to get the final results. Nevertheless, due to the high cost of parallel computers, this solution
suits only a small number of laboratories.

Networks of workstations, a less expensive alternative, use computational resources already available in the laboratories. The
parallelization is performed as in parallel machines; each workstation works independently on its own data. The heterogeneous
collections of machines in most laboratories, however, make this approach quite difficult to implement. Machines from different
manufacturers have different operating systems and can vary so widely in performance that efficient load-balancing of the
computations becomes very difficult.

The solution we propose falls into the dedicated hardware category. The machine is based on a systolic array of fully custom
processors connected to a host workstation. Current technology allows us to build a 128-processor machine in a few chips. A
complete system can be housed on a single PCI board. The addition of low-cost, dedicated hardware to a PC or workstation for
parallelizing the comparison algorithms can decrease the execution time by two orders of magnitude.

Basic Algorithm and Parallelization

Surprising relationships have been discovered between biological sequences that have little overall similarity but in which similar
subsequences can be found. In that sense, the identification of similar segments (subsequences) is probably the most useful and
practical method for comparing two sequences. Fifteen years ago Smith and Waterman [12] proposed a dynamic programming
algorithm for detecting, between two sequences, highly similar pairs of segments.

The algorithm compares two sequences by computing a distance that represents the minimal cost of transforming one segment
into another. Two elementary operations are considered: substitution and insertion/deletion (the latter being what is called a “gap
operation”). Through a series of such elementary operations, any segment can be transformed into any other segment. The smallest
number of operations required to change one segment into another can be taken as the measure of the distance between the segments.

More formally, let X = (x1, x2, . . . , xn) and Y = (y1, y2, . . . , ym) be two sequences that are to be compared. Let d(x, y) be the
substitution cost for changing x into y and g the cost of the insertion/deletion (gap) operation. H(i, j) is defined as the maximum
similarity of two segments ending at xi and yj. The Smith and Waterman algorithm is then given by the following recursion:

H i j Max
H i j d x y

H i j g
H i j g

i j
,

, ,

,
,

()=
− −()+ ()
−()−

−()−

0
1 1

1
1

(1)

with H(i, 0) =H(0, j) = 0.

APPLICATIONS ON
A D VA N C E D
A R C H I T E C T U R E
C O M P U T E R S
Greg Astfalk, Editor

2

Given H(i, j), a traceback procedure can be used to
determine the alignment between the two segments.
Figure 1 illustrates the detection of the best alignment
between two small DNA sequences.

This algorithm, with slight modifications to the basic
recursion, can be used in many applications. For the
parallelization of equation (1), one processing element
is associated with each value H(i, j). Consider an array
of n × m processors, denoted Pi, j, connected as indicated
in Figure 2. Suppose that each Pi, j is able to perform the
computation expressed by equation (1). Figure 2 illus-
trates the way the data must be transmitted between
processors. The data required by Pi, j are represented by
solid arrows. H(i – 1, j – 1) is produced by Pi – 1, j – 1, H(i,
j – 1) by Pi, j – 1, and H(i – 1, j) by Pi – 1, j. Having all this

information, processor Pi, j calculates H(i, j) and provides the processors Pi + 1, j + 1, Pi + 1, j, and Pi, j + 1 with the data they need. These
data are represented by dashed arrows in Figure 2.

Overall, this two-dimensional array operates on a diagonal basis. Assume that the computation starts at time 0. By time
t = i + j + 1, all the processors Pi, j are active. It can be verified that all the arguments needed for the computation of equation (1)
have already been computed and have been routed correctly. Since only one diagonal of this array is active at a time, the
implementation can be done on a linear array. Each processor will need to perform the computations for a column (m processors)
of the array.

On a linear systolic array, the process of comparing two sequences consists of loading one sequence into the array (one character
per cell) and sending the other sequence horizontally, character by character, one on each systolic cycle. If l1 is the length of the
first sequence and l2 the length of the second, the comparison is performed in l1 + l2 – 1 systolic cycles, instead of the l1 × l2 steps
required on a sequential processor. Additionally, this architecture is very well suited for database scanning, where one sequence
(the query sequence) must be compared, for example, to O(105) sequences. The query sequence is loaded into the array first, and
the bank is then sent through the array in a pipelined manner. The speedup is given as:

Sp
l l N

l l N
l

q b

q b

q=
×()×

+ ×()−
−

1
~ (2)

where lq, lb, and N are the length of the query sequence, and the average length and the number of sequences in the bank, respectively.
This scheme supposes an array of lq processors.

The SAMBA Accelerator

SAMBA (Systolic Accelerator for Molecular Biological Applications) is a
hardware accelerator based on a fully custom systolic array designed for accel-
erating a class of algorithms involving biological sequence comparison. The
complete SAMBA system comprises a workstation, a systolic array of 128 fully
custom hardwired 12-bit processors, and a reconfigurable interface that acts as a
hardware-programmable driver for the systolic array (see Figure 3).

SAMBA implements a parameterized version of the Smith and Waterman
algorithm. By varying a few parameters, it is possible to perform local or global
comparisons, with or without gap penalties. The accelerator can be used to speed
up a variety of comparison approaches, represented by such software packages
as BLAST [1], FASTA [10], and SSEARCH [11].

Performing sequence comparisons on a systolic array is not a new idea. Other
systems based on these structures have been described in the literature. Related
projects that have used dedicated systolic arrays are the BISP [4] and the
BioSCAN [13] machines. Other machines, such as KESTREL [7] and RAPID-
2 [2], are based on a programmable systolic array. FPGA (field-programmable
gate array) systems like SPLASH-2 [8] and PeRLe-1 [6] use custom systolic
arrays for sequence comparison. Thus, the general architecture of SAMBA
cannot be considered revolutionary. It does, however, include many features not
present in other systems.

The systolic array and the workstation are connected through a reconfigurable
interface, which constitutes a link between a fully programmable von Neumann
machine and the dedicated hardware. It is an important element of the system and

Figure 1. Sample computation of the best alignment between the two DNA
sequences ATCTCGTATGATG and GTCTATCAC. The matrix is first computed with a gap
cost of –1, and a substitution cost of +2 if the characters are identical and –1
otherwise. From the highest score (+10 in the example), a traceback procedure
delivers the alignment, the two subsequences TCGTATGA and TCTATCA.

i,j

i-1,j-1 i-1,j

i,j-1

i+1,j i+1,j+1

i,j+1

H(i-1,j-1) H(i-1,j)

H(i,j-1) H(i,j)

H(i,j)

H(i,j)

Figure 2. Interprocessor connections: Equation
(1) is parallelized through the association of one
processing element Pi, j with each value H(i, j).
Processor Pi, j receives data from processors Pi – 1,

j – 1 , Pi, j – 1 , and Pi – 1, j and sends data to processors
Pi + 1, j + 1 , Pi + 1, j, and Pi, j + 1.

3

greatly influences the performance of SAMBA. The interface has the responsibility for partitioning the computations and filtering
results on the fly, as explained later.

Recall that the process of comparing one sequence (a query) against a large set of sequences (a bank) consists of loading the query
sequence into the array (one character per processor) and then pipelining the bank through the array. This scheme assumes an array
equal in size to the length of the query sequence. In practice, this never happens. The query sequence is almost always too long
(i.e., larger than 128 characters), requiring that the sequence comparison be split into several passes.

The partitioning operates as follows: The first 128 characters of the query sequence are loaded into the array. The entire bank
then crosses the array; all the data output by the last processor are stored in memory. In the next step, the following 128 characters
of the query sequence are loaded. The data stored previously are mixed with the bank and sent again to the array. The process is
iterated until the end of the query sequence is reached. For reasonable efficiency, the partitioning must be performed at the clock
rate of the array. Unfortunately, this rate cannot be sustained by standard microprocessors: Every 100 ns the array must be supplied
with new data, prescribing a hardwired solution.

Communication with the array can be handled only through the left-most and the right-most processors. The results (especially
when local alignment is performed) must therefore be routed to those processors. SAMBA processors are provided with a hardware
mechanism for propagating information in this way. More precisely, the processors yield partial results, which need to be processed
outside the array for recovery of the final result. Once again, to be efficient this treatment must be done on the fly, as results are
output from the array, and cannot be performed by a standard processor.

The point is that for both operations, the treatments change according to the comparison algorithm being executed: The array
is supplied with data in different ways for global and local comparisons, for example; the results delivered also have different
meanings and must be handled differently. Hence, in neither case can a fixed hardware mechanism for supplying the array with
data or for filtering results on the fly be definitively implemented. FPGA technology, with its combination of speed and flexibility,
is the best alternative for meeting the requirements.

Another important feature of the SAMBA architecture is the availability of local storage near the array. As mentioned earlier,
the partitioning process requires the data bank to cross the array several times. At first glance, storage of the entire bank in a fast
local memory could be envisioned. A closer understanding of the partitioning mechanism yields a better solution: When a query
sequence is compared against a bank, the SAMBA memory can hold only a subset of the bank; as the computation is performed
on this subset, another subset is loaded from the disk. The overlap between the computation and the data acquisition is efficient
owing to the partitioning operation, which takes time and permits the data from the bank to be accessed at a reasonable rate.

The main advantage of this solution is the small amount of memory required as compared with the size of the bank: The minimum
amount of memory is determined by the sum of the lengths of the query sequence and the longest sequence in the bank. In practice,
the problem is formulated differently: The memory size is a fixed resource that limits the length of the sequences to be processed.

SAMBA can be considered as a co-processor that is accessed when intensive biological sequence comparison is needed.
Typically, the main operations that have to be accomplished with SAMBA are the initialization of the board and the loading of a
query sequence or a bank subset.

The accelerator is controlled by means of a few procedure or function calls programmed inside a normal C program; the user
needs no specific knowledge of the structure of the accelerator or how it works. A library of basic procedures that can be rapidly
understood by programmers has been developed; these procedures stay close enough to the accelerator hardware to provide
efficient speedups. Examples of procedures include initialization of the substitution costs between amino acids, selection of the
comparison algorithm (local or global search, with or without gaps), comparison of two sequences, comparison of one sequence
against a few sequences, and comparison of two subsets of sequences.

This approach has been chosen to cover a large range of applications requiring conventional sequence comparison treatments.

Figure 3. SAMBA comprises a workstation, with local disk, a systolic array of 128 VLSI fully custom processors, and a reconfigurable
interface that fills the gap between a complete hardwired array of processors and a programmable von Neumann machine.

4

By carefully choosing the basic library procedures, programmers will not encounter too many limitations. This approach makes
possible the choice of predefined programs, including classical programs already developed for bank scanning and user-defined
programs tuned to specific applications.

Performance

We discuss performance in terms of speedups attained relative to contemporary workstations, since there are no universal
benchmarks for such comparisons. No comparisons with massively parallel machines or with other dedicated systems are given,
for two main reasons: (1) SAMBA is intended to boost personal computer or workstation performance via a plugged-in board,
whose cost is trivial compared with that of programmable parallel computers. The Origin2000, with at least 30 processors, is an
example of a machine that provides comparable performance for database scanning. (2) Comparisons with other hardware are never
done in the same context: The technology, the algorithms, the applications, or the data are always different. Comparing the
execution times of a standard machine with and without extra hardware is probably the best way to demonstrate the efficiency of
such an approach. In our opinion, the peak performance results for systolic arrays reported in the literature are often weak measures
in that they do not reflect the behavior of the complete systems.

In any case, the reported times for the measurements we have made
represent total elapsed time, as it directly affects the user; our times include
time for reading the databases from the disk, as well as time for postprocessing.

Traditionally, the most typical use of hardware accelerators is in scanning
databases, and SAMBA was first evaluated on that application. Table 1
reports the average times for scanning the continually growing SWISS-
PROT protein bank (version 34, which contains 59,021 sequences and
21,210,389 amino acids) for protein query sequences of various lengths
with the Smith and Waterman algorithm.

The first two rows of the table give the execution times for SAMBA and
for a 150-MHz Dec Alpha workstation running SSEARCH [11]. As the
times show, the longer the query sequence, the better the speedup. This is

due mainly to the restricted bandwidth of the SAMBA I/O disk system, which prevents the array from being fed at its maximum
rate: A short query sequence does not require the computation to be split into several passes, and the array is consequently fed at
the disk rate, which is generally much slower than the array throughput.

Better performance is attained in bank-to-bank comparisons. In that case, the interactions between the host workstation and the
array are limited: The reconfigurable interface is “programmed” to manage local comparisons of blocks of sequences efficiently,
and the systolic array is supplied with data at its maximum rate. The following specific application, implemented on SAMBA by
biologists, illustrates that aspect of the performance of the accelerator.

The clustering of sequences in families, according to their homology, is an important technique used by biologists to investigate
genomes. Some functional categories of proteins, for example, notably those involved in metabolite transport and transcription
regulation, tend to form large clusters. Using the Smith and Waterman algorithm, we examined the entire genome of Escherichia
coli—4285 sequences and 1,355,128 amino acids)—for similar coding sequences. As our interest was limited to the clustering of
sequences, SAMBA was programmed to report only alignments with scores above a threshold value. The pairwise comparison took
41 minutes on SAMBA; the same treatment performed on a currently available workstation would have taken 127.5 hours. The
speedup achieved with SAMBA for that particular application was 186.

Conclusions

The SAMBA prototype, which has been available since the end of 1995, is used daily by biologists for comparison-
intensive tasks or for scanning databases through the SAMBA Web server (http://www.irisa.fr/SAMBA/). The chip we designed
(in 1994, using 1 –µm CMOS technology) houses four processors, each performing 100 million 12-bit operations per second. The
128-processor array is thus made up of 32 chips. The reconfigurable interface is the PeRLe-1 board developed by Vuillemin et al.
[3].

The SAMBA prototype could be vastly improved with up-to-date technology. Given the increases in chip density, we imagine
that we would now be able to fit between 16 and 20 processors (running at higher frequencies) into a single chip. In the same way,
the design of the reconfigurable interface could now fit into a unique latest-generation FPGA component (the FPGA resources of
the PeRLe-1 board are largely under-exploited!). As to memory, only a few Mbytes are required (the prototype used 2 MBytes).
Hence, the current three printed circuit boards could easily be reduced to a standard PCI board, which could be plugged into any
PC or workstation.

References

[1] S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman, Basic local alignment search tool, J. Mol. Biol., 215 (1990), 403–410.
[2] D. Archambaud, I. Saraiva, and J. Penne, Systolic implementation of Smith and Waterman algorithm on a SIMD co-processor, in Algorithms

and Parallel VLSI Architectures III, Elsevier Science, New York, 1995.
[3] P. Bertin, D. Roncin, and J. Vuillemin, Programmable active memories: A performance assessment, in Parallel Architectures and Their

Efficient Use, F. Meyer, B. Monien, and A.L. Rosenberg, eds., Springer-Verlag, New York, October 1992.
[4] E. Chow, T. Hunkapiller, and J. Peterson, Biological information signal processor, ASAP, September 1991.

Table 1. Execution times (in minutes:seconds) for
scanning the SWISS-PROT protein bank.

Query Sequence Length

100 300 1000 3000

SAMBA 0:40 0:50 1:50 3:20
150-Mhz DEC Alpha 8:15 24:30 83:00 280:00

Speedup 13 30 45 83

5

[5] O. Gotoh, An improved algorithm for matching biological sequences, J. Mol. Biol., 162 (1982), 705–708.
[6] P. Guerdoux-Jamet and D. Lavenier, Systolic filter for fast DNA similarity search, ASAP’95, Strasbourg, July 1995.
[7] J.D. Hirschberg, R. Hughey, and K. Karplus, KESTREL: A programmable array for sequence analysis, ASAP’96, Chicago, August 1996.
[8] D.T. Hoang, Searching Genetic DataBases on SPLASH-2, in FPGAs for Custom Computing Machines, D.A. Buell and K.L. Pocek, eds.,

IEEE Computer Society Press, Los Alamitos, CA, April 1993.
[9] S.B. Needleman and C.D. Wunsh, A general method applicable to the search of similarities in the amino acid sequence of two proteins,

J. Mol. Biol, 48 (1970), 443–453.
[10] W.R. Pearson and D.J. Lipman, Improved tools for biological sequence comparison, Proc. Natl. Acad. Sci., 85 (1988), 3244–3248.
[11] W.R. Pearson, Searching protein sequence libraries: comparison of the sensitivity and selectivity of the Smith and Waterman and FASTA

algorithms, Genomics, 11(1991), 635–650.
[12] T.F. Smith and M.S. Waterman, Identification of common molecular subsequences, J. Mol. Biol, 147 (1981), 195–197.
[13] C.T. White, R.K. Singh, P.B. Reintjes, J. Lampe, B.W. Erickson, W.D. Dettloff, V.L. Chi, and S.F. Altschul, BioSCAN: A VLSI-based

system for biosequence analysis, IEEE International Conference on Computer Design: VLSI in Computer and Processors, October 1991.

Dominique Lavenier, a permanent CNRS researcher, is currently working at the Institut de Recherche en Informatique et Systèmes Aléatoires,
Rennes. His research interests include VLSI and FPGA design, CAD tools, parallel architectures, and string processing (molecular biology).

