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Mathematics Makes Molecules Dance
By Mei Kobayashi

The desire to understand and control chemical reactions can be traced to the origins of civilization. Modern scientists have
succeeded in extending their investigations of the control of natural processes into the microscopic domain; ever greater precision
and selectivity are required to meet the resulting challenges. These challenges include the control of molecular motion and bonds
in the synthesis of new molecules and materials, the control of quantum states of atoms and molecules for the development of
quantum computers, the control of nonlinear optical processes, and the control of quantum electronic motion in semiconductors.

As laboratory experimentation becomes more and more difficult, theoretical chemists and physicists are using highly
sophisticated mathematical models and simulations of the microscopic world with the aim of guiding the refinement and design
of quantum control experiments. In this article we examine (a) the ways in which mathematical models and techniques have been
employed by these theoreticians and (b) the future of this relatively young area of research, known as quantum mechanical control.

The Flawed Origins of Molecular Control

The first steps toward controlling processes at the microscopic level can be traced to the 1960s—the early days of lasers—when
this magical new tool, with its tight frequency control and high intensity, showed promise as a molecular-scale “scissors” that could
cut specific, targeted bonds in a molecule while leaving others relatively intact:

“The logic involved was intuitive and appealing. Each chemical bond in a molecule has its own characteristic frequency, and radiation will
preferentially be absorbed . . . at that characteristic frequency. Thus, it was suggested that laser radiation tuned to the desired bond frequency
would be absorbed in a selected way, leading to at least local activation of the particular chemical bond, and possibly even breakage. . . . The logic
followed that other waiting reactive reagents would selectively attack the excited or broken bond.” [8]

Experiments conducted soon after the idea was proposed showed that unforeseen events were intervening and preventing the
predicted outcome; the scientific community, however, persisted in pursuing experiments that followed this (flawed) logic for
almost a quarter of a century.

The rapid dissipation of the energy associated with the initial local excitation is now recognized as the limiting problem of the
earlier experiments. The study of intramolecular energy transfer, although it has developed into an interesting field in its own right,
did not lead to any significant new insights into the control of molecules and their reactions in the microscopic domain. The break
with the earlier paradigm came in the late 1980s, when scientists realized that the key fundamental principle in the control of
microworld processes is the manipulation of quantum wave interferences [10].

Although the subject of molecular control originally evolved in the context of developing new tools for site-specific chemistry,
it has developed into a broader new area of research. The focus of the subject now extends from control of electronic degrees of
freedom and vibrational–rotational motion to dissociation. The prospect of achieving such control gave rise to the appealing notion
of “Making Molecules Dance” [9].

Quantum Mechanical Models

Molecular control is an inverse problem that can be analyzed with quantum mechanical models: Given molecular objectives (e.g.,
a specific quantum mechanical state), determine an optical field that, when applied, would lead to the objective. (Existence of the
field does not guarantee uniqueness. In fact, the number of possible fields is usually infinite; scientists proceed by determining a
field that can be produced easily in the laboratory at relatively low cost, which leads to the desired objective efficiently.) Herschel
Rabitz and his colleagues at Princeton University formulated the molecular control problem mathematically as follows: Determine
a field ε(t) that minimizes the optimizing functional

J(ε) = Jo + Jp + Jc,d + Jc,o,

by requiring that δJ(ε)/δε = 0. Here, Jo represents the physical objectives, Jp the penalties and ancillary costs, Jc,d the dynamic
constraints, and Jc,o the objective constraints. Each of the terms on the right-hand side depends either explicitly or implicitly on ε(t),
and they compete to be simultaneously minimized.

The terms Jo and Jp of the optimizing function depend on the physical objective(s) of, and the penalties associated with, the control
problem, and their formulation is chosen by the designer. For example, if the objective is for the operator Ô to have a specified
expectation value 
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on the field ε(t) for all times 0≤ t ≤ T. The choice of Jo is not unique; the example given here, which is reasonable and simple for
computations and analysis, was chosen to illustrate how designers introduce objectives. The penalty term Jp can be expressed as
the expectation value of an operator ˆ ′O  with a weight function Wp(t) such that
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Suppose, for example, that Ô i= H  is the ith localized piece of the Hamiltonian, corresponding, for example, to the desire to
maximize energy associated with the ith bond. A simple choice for ˆ ′O  is then
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Another penalty term commonly considered is the optical field fluence
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where Wε(t) is a weighting function. The fluence, which is a measure of the energy in the control field, can be modified to weight
against electric fields larger (–) or smaller (+) than ε*(t) by replacing the integrand with
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where H(·) is a Heaviside function. To bias against undesirable frequency components, Rabitz et al. suggest the use of a penalty
term associated with frequency filtering, such as
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where Ws(ω) is a spectral weight and I(ω) is the Fourier transform of ε(t). A simple term for guaranteeing consideration of robustness
to control field errors in a system is the sensitivity penalty function
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where O(T) is the quantum mechanical expectation value. This penalty term monitors a system and favors greater control by
reducing the impact of field fluctuations on the target O(T).

A dynamic constraint term Jc,d for a quantum mechanical model has the form
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where λ(t) is a Lagrange multiplier function, H t( )  is the time-dependent Hamiltonian, and c.c. denotes the complex conjugate (to
ensure that the control field is real).

If the physical objectives for the term Jo must be satisfied exactly, Rabitz et al. suggest the use of an objective constraint term

J O T Oc o,

~
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where η is a Lagrange parameter. In our earlier analysis, the terms Jo and Jp are used as a means to quantitatively balance the tradeoff
between the objective and penalties and do not guarantee the arrival at user-specified expectation values. In general, use of the
objective constraint term Jc,o places heavier demand on the system and may result in less favorable characteristics or conditions for
system control, e.g., relaxed satisfaction of the penalty terms Jp, such as those described above, or the need for a more intense
external field. Unless an objective constraint term is necessary, use of a penalty term may be a better compromise for designing
a control system.

In the next step in the design of the external field ε(t), the variation of the optimizing functional with respect to the unknown
functions is computed to produce Euler equations. A simple example from [9] is given here to describe the procedure. Consider
a quantum mechanical system with the Hamiltonian

H H= + ( )0 µε t ,

where H 0  is the free molecular Hamiltonian and µ is a molecular dipole function. If the objective is to steer the molecule to the
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Equation (1) is the Schrödinger equation for the wavefunction ψ(t) with an initial condition, equation (2) is the Schrödinger
equation for the Lagrange multiplier function λ(T) with a specified condition at time T, and equation (3) expresses the field ε(t)
in terms of these latter functions. The functions ε(t), ψ(t), and λ(t) are all unknown.

Determining a solution to the set of equations (1)–(3) is a nontrivial mathematical problem. The condition at target time t = T
in (2) depends explicitly on
the difference between the ob-
jective target state and the ac-
tual state of the system, which
was produced by the designer
field given by (3). In general,
the existence of solutions is
assumed. Since a closed-form
solution to (1)–(3) usually
cannot be found, iterative
techniques are used to deter-
mine a solution numerically.
Tools developed by numeri-
cal analysts (e.g., spatial
discretization schemes, basis
set expansions, variational
techniques) are vital to the
solution of the equations that
arise in the design of controls
for manipulating quantum
systems.

The Power of Optimal
Control Formalism

Chemists generally take a
pragmatic approach to the is-
sue of uniqueness. When a
solution exists, there are of-
ten multiple (or even an infi-
nite number of) optimal solu-
tions, i.e., fields ε(t), corre-
sponding to ψ(T) of equiva-
lent or at least physically ac-
ceptable quality. A control
system designer will choose
the field that is easiest and
least expensive to produce in
a laboratory, or that is least
likely to produce unwanted
side reactions or by-products.

To illustrate the power of
the optimal control formal-
ism, Shi, Woody, and Rabitz
examined a 20-atom, linear,

Figure 1. Linear chain bond-stretching objectives: (a) The 20-atom molecule with a dipole at one end and
the objective of substantially stretching the bond at the other end at time t = 0.3 ps while minimally
disturbing the remainder of the molecule. (b) The time-dependent electric field achieving the desired
objective. The phase-adjustment period is central to the preparation of the entire molecule for the
subsequent intense pumping, when most of the energy is deposited. Finally, the molecule signals that
the radiative field should be turned off to allow for the transmission of the molecular excitation pulse from
the energy-absorbing end of the molecule to the target bond at the other end. (c) The frequency spectrum
corresponding to the temporal pulse in (b). The discrete normal mode frequencies are shown at the top.
A highly broadband excitation is involved. (d) Localized bond energy as a function of time and molecular
bond number. The coherent traveling excitation energy pulse is quite evident and results in a high degree
of excitation at the end bond at the desired time.

(a)

(b)

(c) (d)
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harmonic molecular system (Figure 1a) in which radiation from the field ε(t) can enter only through bond 1—between the first and
second atoms. The objective is to stretch bond 19—between the 19th and 20th atoms—at the opposite end of the molecule while
minimizing the total fluence and disturbance in the remainder of the molecule [14].

The time-varying electric field ε(t) leading to the objective, which was computed numerically, consists of three distinct periods:
molecular phase adjustment, intense pumping, and free propagation of the pulse (Figure 1b). The graph of the frequency spectrum
corresponding to the temporal pulse in Figure 1b shows that all modes of the molecule are simultaneously pumped by the field
(Figure 1c). More specifically, higher-frequency normal modes are excited first, and lower-frequency modes last, to produce
destructive interference during propagation of the energy along the molecular chain from bond 1 to bond 19 (Figure 1d). At target
time t = T, all the waves arrive to form a coherent superposition at bond 19. Once the form of ε(t) is known, this intuitive explanation
seems reasonable (and perhaps almost obvious); without prior knowledge of the solution, however, the mechanism defies
guesswork.

Follow-up studies indicate that it is possible to make the peak amplitude of the field, i.e.,

ε εmax max ,= ( )
≤ ≤0 t T

t

arbitrarily small by increasing the target time T. This information is valuable to designers of laboratory experiments; although low-
amplitude fields over long durations are desirable from a field-intensity perspective, they have an undesirable characteristic: Their
coherence over long times requires maintenance. Ultimately, laboratory experiments must be performed to determine which
parameter settings are possible to implement and which will yield the best results.

In the late 1980s, Stuart Rice and David Tannor (then at the University of Chicago), Ronnie Kosloff (Hebrew University,
Jerusalem), as well as Moshe Shapiro and Paul Brumer (Weizmann Institute of Science) developed a method that uses lasers to
control the selectivity of product formation in chemical reactions [7, 11, 12, 15, 16]. Rice and Tannor were among the earliest to
consider a multiple-energy-level system. They use conjugate gradient methods to direct the convergence of a variational approach,
like that described earlier, in their simulation studies.

Around the same time, G. Huang, T. Tarn, and J. Clark presented an existence theorem for the complete controllability of a class
of quantum mechanical systems. The theorem demonstrates that it is possible, in principle, to devise a scheme to control systems
with a discrete spectrum so that 100% of a desired final state will be occupied in a finite number of steps. Because the existence
proof is not constructive and does not provide a general scheme that can be used to direct reactions, plenty of work is left for
experimental designers. The theorem also points the way to a broader area of research, i.e., existence proofs and algorithms for the
control of open quantum systems.

Several independent research teams have also used numerical simulations to study simple models of vibrational amplitude
control [1, 13], rigid molecular rotor control, transitions between molecular eigenstates [1, 4], and bond-selective dissociation [3].
These examples are drawn from the framework for the optimal control of quantum mechanical systems proposed for more general
contexts by Butkovskii and Samoilenko [2]. A direct implementation of the variational design procedure corresponds to open loop
control. A laboratory venture of this type could work for simple cases (as has been demonstrated), but it is fraught with difficulties
for most realistic laboratory systems, which are more complex. Judson and Rabitz [5] have suggested the use of learning control
techniques to circumvent problems associated with open loop control and to take advantage of the high-duty cycle of current pulsed
lasers. In practice, a control design would be performed and refined iteratively in the laboratory. For full implementation of the
process, stable learning algorithms, capable of operating quickly and reliably with quantum systems, must be identified.

Development of effective and inexpensive systems for molecular control is an exciting and potentially lucrative area of research.
Successful endeavors will undoubtedly involve teams of scientists from many different backgrounds who can work in unison and
who can appreciate the work of their teammates. The advent of more powerful computers and computational algorithms in recent
years is enabling theoreticians to conduct more realistic simulations, which are contributing to experimental and system design.
As witnessed already in industrial labs, simulations can help reduce labor and material costs in the development of timely new
technologies, and applied mathematicians are in a great position to continue to make an impact. Although it can’t be taken literally,
“Making Molecules Dance” is a colorful and inspirational slogan for recruiting some of the brightest young minds.
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