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Lost Beauties of the Acropolis: What Mathematics
Can Say
By Antonio Fasano and Roberto Natalini

The picture of the caryatids in the celebrated Erechtheion on the Acropolis (Figure 1) stands as heartbreaking evidence of an invaluable cul-
tural heritage that we have lost forever.

By this we mean that the current generation is responsible for the deterioration of the caryatids, as well as for the devastation of many other
stone masterpieces that, until recently, had remained intact for thousands of years. Paradoxically, even as we participate in their destruction, we
respect these masterpieces from the past and
take pride in scientific methods devised to pre-
serve them.

The list of great monuments and frescoes
destroyed or seriously damaged by negligence,
or even purposely, has been painfully long for
many years. The most lethal attacks, however,
have come in the last few decades, from a silent
enemy: air pollution. Temples like the Taj Mahal
in Agra have come to us with their finest details
still intact because they are situated in non-pol-
luted areas.

Chemistry, of course, has the most to reveal
about the causes of marble degradation. A sur-
vey of the chemical (and biological) processes
involved in both the degradation and the restora-
tion of marble can be found in [4]. But what can
mathematics say about the cruel struggle of mar-
ble monuments against air pollution?

Mathematical modeling can lead us to a bet-
ter understanding of the relative importance of
the simultaneous processes involved. Models can help to predict the evolution of the phenomenon, and its dependence on seasonal variations in
the basic physical quantities (air pressure, temperature, moisture content, rainfall, and—naturally—the concentrations of the pollutants). As a
consequence, a mathematical model can serve as a basis for determining an optimal strategy for restoration or even prevention. Continuing one
step further, a model can be used to predict the outcome of specific restoration techniques.

The Silent Killer: SO2

The substance most aggressive in attacking calcium carbonate (CaCO3), the basic ingredient of marble, is sulfur dioxide (SO2). The reaction
is not direct, but rather is mediated by water vapor present in air. The chain of reactions begins with the creation of H2SO4, which then reacts
with CaCO3, producing calcium sulfate (CaSO4) and CO2. A reduced scheme for the reactions (not showing the intermediate steps) is

CaCO3 + SO2 + O2 + 2H2O
→ CaSO4 · 2H2O + CO2.                                                                              (1)

The precious carbon atom, stolen from the stone, passes into the air—it is in this way that the classical beauty of the caryatids has been dis-
persed into the atmosphere. An-other similar reaction can take place, yielding calcium sulfite (CaSO3), but we disregard it here for simplicity. 

The layer of calcium sulfate left in place is called gypsum. The polished surface of the undamaged marble has given way to the opacity of
gypsum, but the decline in aesthetic appeal is less important than the mechanical damage incurred: Gypsum is much more porous than marble
and, unlike marble, is crumbly and easily eroded by the action of wind and rain. At critical points, moreover, the expansion resulting from the
increased porosity can produce stresses large enough to fracture the gypsum.

A Mathematical Approach to Sulfation

The question of space and time scales is a key consideration in setting up a mathematical model. Because SO2 is (fortunately) very diluted in
the atmosphere—about 0.005 ppm in urban areas, according to the U.S. Environmental Protection Agency—the destruction occurs very slow-
ly, even though the sulfation reaction can be considered instantaneous and proceeds along a sharp front in stone of very low porosity—like very-
high-quality marble, as observed experimentally in [2,4] (see Figure 2).

The typical penetration speed of the front is of the order of several microns per year (if the gypsum layer has not been removed). For surfaces

Figure 1. The Caryatid Porch of the Erechtheion. From Wikipedia, http://en.
wikipedia.org/wiki/Caryatid.



in which the curvature is not too great, a one-dimensional model is therefore appropriate.

Transport of SO2 and Front Advance. Analytical and numerical results established for a prelim-
inary mathematical model are presented in [1,3]. Here, we refine that analysis, using the frame
of reference sketched in Figure 3.

We denote by s the concentration of SO2 in the pores of the gypsum. It is quite reasonable to
assume that the SO2 flux relative to air in the gypsum pores is Fickian, i.e., that it is driven by
the gradient of s. Such a gradient is evidently created by the reaction at the sulfation front, where
the consumption rate of SO2 is proportional to the velocity of the front.

The flux intensity of SO2 can then be expressed by

js = ϕγ�(–ds∂xs + υas), (2)

where ϕγ is the porosity of gypsum (the volume fraction occupied by the pores), which for sim-
plicity we consider constant; ds is the diffusivity of SO2 in air, and υa is the average velocity of
air molecules. The equation governing SO2 transport is thus

ϕγ� ∂t s + ∂x js = 0.                                                                                                (3)

On the reaction front x = σ(t), SO2 reacts completely, because the reaction is instantaneous, provided that enough water is available. Indeed,
here we consider an infinite reaction rate, which, according to results in [3], is an excellent approximation. We can thus say that 

s(σ(t), t) = 0.                                                                                                (4)

Balancing mass on the reaction front yields

(5)

where Ms and Mm are the molar weights of SO2 and CaCO3, respectively, and ρm is the density of pristine marble. In writing (5), we simply
counted the molecules involved in the reaction: On the left we have the number of moles of SO2 reaching the unit surface of the front per unit
time; on the right is the corresponding number of moles of CaCO3 that disappear. (The molar ratio of the two species in the reaction is 1:1, as
shown by (1).) We return later to the question of how (4) and (5) must be modified when the process is slowed by moisture shortages.

The pore concentration of SO2 at the outer surface of the gypsum layer x = σ0(t) equals the concentration of SO2 in air:

s(σ0(t), t) = sa.                                                                                         (6)

Motion of Gypsum. Because the ratio ω�between the molar densities of marble (ρm /Mm) and gypsum (ργ�/Mγ) is greater than 1, the gypsum layer
possesses a velocity:

σ. 0 = – ωσ. .��������������������������������������������������������������������������������������������(7)

Figure 2. SEM–EDS map of the chemical
elements on a sample surface exposed for
144 hours (right: calcium; left: sulfate), as
obtained in a laboratory test in [2].
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Figure 3. Growth of the internal and external free boundaries.



Thus, if σ0(0) = σ(0) = 0, the outer surface obeys

σ0 (t)  = – ωσ(t), (8)

and the thickness of the gypsum layer is

σ(t) – σ0 (t) = (1 + ω)σ(t).                                                                                 (9)

Because ω – 1 is not small, this swelling effect cannot be neglected.

Motion of Air. In principle, the mechanism responsible for the motion of air within the gypsum is rather complicated, because the sudden expan-
sion of the medium following the reaction creates a pressure drop at the front (the amount of air present in the pristine marble being negligible).
A pressure gradient thus arises, forcing air through the gypsum to fill the volume made available. The flow of air relative to gypsum can be
described by Darcy’s law. Rescaling with the appropriate reference quantities, however, makes it clear that in most cases, at the space and time
scales of interest, we can assume the air density throughout the growing gypsum layer to be basically uniform and constant (we neglect changes
in external conditions, like the action of wind). In short, there is no relative motion between air and gypsum at any time, so that

υa σ. 0 .                                                                                                      (10)

Role and Motion of Water Vapor. In considering the role of water, we begin with a question: Why must the relative humidity of air exceed a
given threshold (usually fixed by practitioners at 75%) for the sulfation process to occur?

As shown in (1), conversion of a molecule of CaCO3 into a molecule of CaSO4 requires that one molecule of SO2 and two molecules of H2O
simultaneously reach the molecule of CaCO3. Because H2O is diluted, and SO2 extremely diluted, in air, the probability of such a triple
encounter at the reaction front is very small. The implication is that for sulfation to occur, water must be constantly present on the marble sur-
face as a liquid film, so that the arrival of any molecule of SO2 at the front will trigger the reaction.

Indeed, marble is hygroscopic, and the creation of a water film takes place through a sorption–desorption mechanism. Depen-ding on the bal-
ance between sorption and desorption (which is clearly influenced by temperature and relative humidity), the film may or may not have the con-
tinuity and thickness required to keep the reaction going as long as SO2 is available, even at small concentrations. The rate constants of sorp-
tion–desorption are much larger than the reciprocal time scale of the overall sulfation process; the process of building up the water film can thus
be considered independent of sulfation, as long as the air is not too dry. We consider this a reasonable explanation for the moisture threshold
needed for marble sulfation. When the air is dry enough to preclude any moisture coating, of course, no sulfation can occur and σ. = 0, imply-
ing that ∂s/∂x = 0 on x = σ, while s = 0 no longer applies. When the relative humidity is close to the threshold, an intermediate behavior is
observed: The water film breaks down into humid spots (which have their own dynamics), producing on average a slowing of the front. The cor-
responding free boundary conditions, replacing (4) and (5), can be written as follows:

(11)  

where α measures the efficiency of the reaction and depends on the concentration of  H2O in air. The first equation expresses the total molar
balance of SO2 (the total flux accounts for the mass loss rate in the reaction and for the advection of the residual SO2 by the moving front). The
second condition specifies the reaction speed. The coefficient α tends to +∞ when the relative humidity approaches the full-speed threshold,
and to 0 when the relative humidity decreases to the lower threshold of no reaction. In the first case the concentration s on the free boundary is
forced to go to 0 and we recover the pair (4), (5) characterizing the full-speed regime. With α = 0, by contrast, the front stops and at the same
time the SO2 flux vanishes, yielding ∂x s = 0.

For the transport of H2O, using w to denote pore concentration, we can write the total flux as

jw =   ϕγ�(–dw∂xw + wυa), (12) 

with dw denoting the diffusivity of H2O in air, and the balance equation as

ϕγ�∂tw + ∂x jw = 0.                                                                                     (13)

When sulfation proceeds at full speed and the water film is steady (i.e., the relative humidity is above the threshold and temperature is con-
stant), the counting of H2O molecules at the reaction front gives

(14)
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where Mw is the molar weight of water; the factor 2 indicates that two molecules of H2O enter the reaction.
Equation (14) has the same meaning as the first equation of (11), and it is valid for any regime. In (14), because of the very low porosity of

pristine marble, we neglect any water molecules that might be present in the marble. The value of w at the outer surface x = σ0(t) equals the con-
centration wa of H2O in air.

Clearly, the introduction of temperature variations, with the consequent  dynamics in the liquid water film coating the reaction front, would
make the H2O balance at the interface considerably more complicated.

Conclusions and Perspectives

As discussed in this article, the sulfation of marble involves not only the chemical reaction at the front, but also nontrivial transport phenom-
ena for SO2, H2O, and air (which we neglected completely). We also neglected the destiny of CO2 (one of the reaction products), which may
enter into other reactions, and, above all, the parallel actions of other impurities, like NO2, present with SO2 in polluted air. Again, we refer read-
ers interested in the complete chemical picture to [4].

The story also has a biochemical side, which is particularly interesting for mathematicians. Indeed (again, see [4]), one of the techniques used
in marble remediation is the implantation of a population of bacteria (Desulfovibrio desulfuricans) capable of metabolizing CaSO4; in effect,
the bacteria set in motion the inverse reaction by which CaSO4 reverts to CaCO3: a perfect subject for experts in population dynamics.

Despite the complexity of the model sketched here, there may be cases in which, after rescaling, the problem can be greatly simplified. If, for
instance, (10) is valid and H2O is present in large enough quantities, and the physical constants are such that we can neglect the inertia term in
(3), then js is a function only of time and its value can be deduced from (5):

(15)

Integrating (15) with respect to x with the condition (6) (e.g., with s0 constant), we arrive at the expression

(16)

Imposing s(σ(t), t) = 0 and recalling (9), we deduce a simple ordinary differential equation for σ:

(17)

to be integrated with the condition σ(0) = 0:

(18)

considering that s0 /∑�<< 1. The formula is slightly different if s0 depends on t:

(19)

The t 1/2 behavior is in sharp agreement with experimental results in [2,4] and with the numerical simulations in [1], and can be attributed to
the Stefan-like nature of the free boundary conditions (4),(5), which is also seen in other phenomena (e.g., the penetration of dry ground by
water, i.e., the Green–Ampt problem, well known to soil engineers).

Equation (18) gives a very expressive answer, emphasizing the aggressiveness of SO2 against a fresh marble surface, but also showing the
shielding effect of the gypsum layer. This might suggest the optimal strategy for restoration by gypsum removal: If repeated t 1/2-type kinks in
the sulfation front are to be avoided, the gypsum removal must not be done too frequently.

Another useful suggestion from (18) concerns the choice of space and time scales. If s0
* = 14.3 μg/m3 = 0.005 ppm is, say, the average SO2

concentration on a day in an urban area in the U.S. (averaged EPA data for 2001) and t* = 365 days, a suitable length scale is

using the data ds = 0.1119 ×10–4 m2/sec, ϕγ = 30%,
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With the rescaled variables s~0 = s0/s*
0, t~ = t/t*, σ~ = σ/σ*, (18) becomes

(20)

and the same quantities can be used to re-scale the general problem. According to (20), removing the gypsum crust after n years of exposure to
the SO2 concentration s*

0 causes the loss of  n1/2 × 23.6 μm, while the total loss with yearly restoration over the same period is n × 23.6 μm.
Thus, the damage increases by a factor of 5 in only 25 years! But the length scale σ* depends on (s0

*)1/2; to halve the length σ* of the crust after
one year, therefore, we need to decrease the SO2 concentration to a quarter of the initial averaged value.

We consider this a fascinating research area in which mathematicians can produce not only elegant theories, but also very concrete answers.
Of course, mathematics cannot console us for the loss of the delicate beauty of the caryatids, but it might help to preserve as yet undamaged
treasures for the joy of future generations.
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