
Factorization-based Sparse Solvers and Preconditioners

Xiaoye Sherry Li
Lawrence Berkeley National Laboratory, USA

xsli@lbl.gov

crd-legacy.lbl.gov/~xiaoye/G2S3/

4th Gene Golub SIAM Summer School, 7/22 – 8/7, 2013, Shanghai

Acknowledgement

•  Jim Demmel, UC Berkeley, course on “Applications of Parallel
Computers”: http://www.cs.berkeley.edu/~demmel/cs267_Spr13/

•  John Gilbert, UC Santa Barbara, course on “Sparse Matrix
Algorithms”: http://cs.ucsb.edu/~gilbert/cs219/cs219Spr2013/

•  Patrick Amestoy, Alfredo Buttari, ENSEEIHT, course on “Sparse
Linear Algebra”

•  Jean-Yves L’Excellent, Bora Uçar, ENS-Lyon, course on “High-
Performance Matrix Computations”

•  Artem Napov, Univ. of Brussels
•  Francois-Henry Rouet, LBNL
•  Meiyue Shao, EPFL
•  Sam Williams, LBNL
•  Jianlin Xia, Shen Wang, Purdue Univ.

2

Course outline

1.  Fundamentals of high performance computing
2.  Basics of sparse matrix computation: data structure, graphs,

matrix-vector multiplication
3.  Combinatorial algorithms in sparse factorization: ordering,

pivoting, symbolic factorization
4.  Numerical factorization & triangular solution: data-flow

organization
5.  Parallel factorization & triangular solution
6.  Preconditioning: incomplete factorization
7.  Preconditioning: low-rank data-sparse factorization
8.  Hybrid methods: domain decomposition, substructuring method

Course materials online: crd-legacy.lbl.gov/~xiaoye/G2S3/

3

Lecture 1

Fundamentals: Parallel computing, Sparse matrices

Xiaoye Sherry Li
Lawrence Berkeley National Laboratory, USA

xsli@lbl.gov

4th Gene Golub SIAM Summer School, 7/22 – 8/7, 2013, Shanghai

5

Lecture outline

•  Parallel machines and programming models
•  Principles of parallel computing performance
•  Design of parallel algorithms

"   Matrix computations: dense & sparse
"   Partial Differential Equations (PDEs)
"   Mesh methods
"   Particle methods
"   Quantum Monte-Carlo methods
"   Load balancing, synchronization techniques

Parallel machines & programming model
(hardware & software)

6

7"

Idealized Uniprocessor Model
"   Processor names bytes, words, etc. in its address space

"   These represent integers, floats, pointers, arrays, etc.
"   Operations include

"   Read and write into very fast memory called registers
"   Arithmetic and other logical operations on registers

"   Order specified by program
"   Read returns the most recently written data
"   Compiler and architecture translate high level expressions into

“obvious” lower level instructions (assembly)

"   Hardware executes instructions in order specified by compiler
"   Idealized Cost

"   Each operation has roughly the same cost
 (read, write, add, multiply, etc.)

A = B + C ⇒
Read address(B) to R1
Read address(C) to R2
R3 = R1 + R2
Write R3 to Address(A)

8"

Uniprocessors in the Real World

"   Real processors have
"   registers and caches

•  small amounts of fast memory
•  store values of recently used or nearby data
•  different memory ops can have very different costs

"   parallelism
•  multiple “functional units” that can run in parallel
•  different orders, instruction mixes have different costs

"   pipelining
•  a form of parallelism, like an assembly line in a factory

"   Why need to know this?
"   In theory, compilers and hardware “understand” all this and

can optimize your program; in practice they don’t.
"   They won’t know about a different algorithm that might be a

much better “match” to the processor

Parallelism within single processor – pipelining
"   Like assembly line in manufacturing
"   Instruction pipeline allows overlapping execution of multiple

instructions with the same circuitry

"   Sequential execution: 5 (cycles) * 5 (inst.) = 25 cycles
"   Pipelined execution: 5 (cycles to fill the pipe, latency) + 5 (cycles, 1

cycle/inst. throughput) = 10 cycles
"   Arithmetic unit pipeline: A FP multiply may have latency 10 cycles,

but throughput of 1/cycle
"   Pipeline helps throughput/bandwidth, but not latency

9

IF = Instruction Fetch
ID = Instruction Decode
EX = Execute
MEM = Memory access
WB = Register write back

Parallelism within single processor – SIMD

"   SIMD: Single Instruction, Multiple Data

10

+

X

Y

X + Y

+
x3 x2 x1 x0

y3 y2 y1 y0

x3+y3 x2+y2 x1+y1 x0+y0

X

Y

X + Y

Slide Source: Alex Klimovitski & Dean Macri, Intel
Corporation

•  Scalar processing
•  traditional mode
•  one operation produces

one result

•  SIMD processing
•  with SSE / SSE2
•  SSE = streaming SIMD extensions

•  one operation produces multiple results

11"

SSE / SSE2 SIMD on Intel

• SSE2 data types: anything that fits into 16 bytes, e.g.,

•  Instructions perform add, multiply etc. on all the data in
this 16-byte register in parallel

• Challenges:
•  Need to be contiguous in memory and aligned
•  Some instructions to move data around from one part of

register to another
•  Similar on GPUs, vector processors (but many more simultaneous

operations)

16x bytes

4x floats

2x doubles

Variety of node architectures

12

Cray XE6: dual-socket x 2-die x 6-core, 24 cores Cray XC30: dual-socket x 8-core, 16 cores

Cray XK7: 16-core AMD + K20X GPU Intel MIC: 16-core host + 60+ cores co-processor

13

TOP500 (www.top500.org)
"   Listing of 500 fastest computers
"   Metric: LINPACK benchmark

"   “How fast is your computer?” =
 “How fast can you solve dense linear system Ax=b?”

"   Current records (June, 2013)

Rank Machine Cores Linpack
(Petaflop/s)

Peak
(Petaflop/s)

1 Tianhe-2 – Intel MIC
(China National Univ. of
Defense Technology)

3,120,000 33.8

(61%)

54.9

2 Titan – Cray XK7
(US Oak Ridge National Lab)

560, 640 17.6
(65%)

27.1

3 Sequoia – BlueGene/Q
(US Lawrence Livermore
National Lab)

1,572,864 17.1
(85%)

20.1

14

Units of measure in HPC

"   High Performance Computing (HPC) units are:
"   Flop: floating point operation
"   Flops/s: floating point operations per second
"   Bytes: size of data (a double precision floating point number is 8)

"   Typical sizes are millions, billions, trillions…
Mega Mflop/s = 106 flop/sec Mbyte = 220 = 1048576 ~ 106 bytes
Giga Gflop/s = 109 flop/sec Gbyte = 230 ~ 109 bytes
Tera Tflop/s = 1012 flop/sec Tbyte = 240 ~ 1012 bytes
Peta Pflop/s = 1015 flop/sec Pbyte = 250 ~ 1015 bytes
Exa Eflop/s = 1018 flop/sec Ebyte = 260 ~ 1018 bytes
Zetta Zflop/s = 1021 flop/sec Zbyte = 270 ~ 1021 bytes
Yotta Yflop/s = 1024 flop/sec Ybyte = 280 ~ 1024 bytes

15"

Memory Hierarchy … Flops is not everything
"   Most programs have a high degree of locality in their accesses

"   spatial locality: accessing things nearby previous accesses
"   temporal locality: reusing an item that was previously accessed

"   Memory hierarchy tries to exploit locality to improve average

on-chip
cache registers

datapath

control

processor

Second
level

cache
(SRAM)

Main
memory

(DRAM)

Secondary
storage
(Disk)

Tertiary
storage

(Disk/Tape)

Speed 1ns 10ns 100ns 10ms 10sec

Size KB MB GB TB PB

Hopper Node Topology
Understanding NUMA Effects [J. Shalf]

Arithmetic Intensity

"   Arithmetic Intensity (AI) ~ Total Flops / Total DRAM Bytes
"   E.g.: dense matrix-matrix multiplication: n3 flops / n2 memory

"   Higher AI à better locality à amenable to many optimizations à
achieve higher % machine peak

17

A r i t h m e t i c I n t e n s i t y

O(N)
O(log(N))

O(1)

SpMV, BLAS1,2

Stencils (PDEs)

Lattice Methods

FFTs
Dense Linear Algebra

(BLAS3)
Naïve Particle Methods PIC codes

[S. Williams]

Roofline model (S. Williams)
basic concept
"   Synthesize communication, computation, and locality into a single

visually-intuitive performance figure using bound and bottleneck
analysis.
"   Assume FP kernel maintained in DRAM, and perfectly overlap

computation and communication w/ DRAM
"   Arithmetic Intensity (AI) is computed based on DRAM traffic after

being filtered by cache
"   Question : is the code computation-bound or memory-bound?

"   Time is the maximum of the time required to transfer the data and
the time required to perform the floating point operations.

18

Byte’s / STREAM Bandwidth

Flop’s / Flop/s

time

Roofline model
simple bound

"   Roofline
"   Given the code AI, can inspect the

figure to bound performance
"   Provides insights as to which

optimizations will potentially be
beneficial

"   Machine-dependent, code-
dependent

19

Attainable
Performanceij

= min
FLOP/s (with Optimizations1-i)

AI * Bandwidth (with Optimizations1-j)

actual FLOP:Byte ratio

Opteron 2356 (Barcelona)

0.5
1.0

1/8

2.0
4.0
8.0

16.0
32.0
64.0

128.0
256.0

1/4 1/2 1 2 4 8 16

peak DP

at
ta

in
ab

le
 G

FL
O

P
/s

Example

20

667MHz DDR2 DIMMs

10.66GB/s

2x64b controllers

H
y
p
e

rT
ra

n
s
p

o
rt

O
p
te

ro
n

O
p
te

ro
n

O
p
te

ro
n

O
p
te

ro
n

5
1

2
K

5
1

2
K

5
1

2
K

5
1

2
K

2MB victim

SRI / xbar

667MHz DDR2 DIMMs

10.66GB/s

2x64b controllers

H
y
p
e

rT
ra

n
s
p

o
rt

O
p

te
ro

n

O
p

te
ro

n

O
p

te
ro

n

O
p

te
ro

n

5
1

2
K

5
1

2
K

5
1

2
K

5
1

2
K

2MB victim

SRI / xbar

4
G

B
/s

(e

a
c
h

 d
ir
e

c
ti
o

n
)

"   Consider the Opteron 2356:
"   Dual Socket (NUMA)
"   limited HW stream prefetchers
"   quad-core (8 total)
"   2.3GHz
"   2-way SIMD (DP)
"   separate FPMUL and FPADD

 datapaths
"   4-cycle FP latency

"   Assuming expression of parallelism is the challenge on this
architecture, what would the roofline model look like ?

Roofline Model
Basic Concept

21

v  Naively, one might assume
peak performance is
always attainable.

at
ta

in
ab

le
 G

FL
O

P
/s

Opteron 2356
(Barcelona)

0.5

1.0

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

peak DP

Roofline Model
Basic Concept

22

v  However, with a lack of
locality, DRAM bandwidth
can be a bottleneck

v  Plot on log-log scale
v  Given AI, we can easily

bound performance
v  But architectures are much

more complicated

v  We will bound performance
as we eliminate specific
forms of in-core parallelism

actual FLOP:Byte ratio

at
ta

in
ab

le
 G

FL
O

P
/s

Opteron 2356
(Barcelona)

0.5

1.0

1/8

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

1/4 1/2 1 2 4 8 16

peak DP

Roofline Model
computational ceilings

23

v  Opterons have dedicated
multipliers and adders.

v  If the code is dominated by
adds, then attainable
performance is half of peak.

v  We call these Ceilings
v  They act like constraints on

performance

actual FLOP:Byte ratio

at
ta

in
ab

le
 G

FL
O

P
/s

Opteron 2356
(Barcelona)

0.5

1.0

1/8

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

1/4 1/2 1 2 4 8 16

peak DP

mul / add imbalance

Roofline Model
computational ceilings

24

v  Opterons have 128-bit
datapaths.

v  If instructions aren’t
SIMDized, attainable
performance will be halved

actual FLOP:Byte ratio

at
ta

in
ab

le
 G

FL
O

P
/s

Opteron 2356
(Barcelona)

0.5

1.0

1/8

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

1/4 1/2 1 2 4 8 16

peak DP

mul / add imbalance

w/out SIMD

Roofline Model
computational ceilings

25

v  On Opterons, floating-point
instructions have a 4 cycle
latency.

v  If we don’t express 4-way
ILP, performance will drop
by as much as 4x

actual FLOP:Byte ratio

at
ta

in
ab

le
 G

FL
O

P
/s

Opteron 2356
(Barcelona)

0.5

1.0

1/8

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

1/4 1/2 1 2 4 8 16

w/out SIMD

w/out ILP

peak DP

mul / add imbalance

Roofline Model
communication ceilings

26

v  We can perform a similar
exercise taking away
parallelism from the
memory subsystem

actual FLOP:Byte ratio

at
ta

in
ab

le
 G

FL
O

P
/s

Opteron 2356
(Barcelona)

0.5

1.0

1/8

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

1/4 1/2 1 2 4 8 16

peak DP

Roofline Model
communication ceilings

27

v  Explicit software prefetch
instructions are required to
achieve peak bandwidth

actual FLOP:Byte ratio

at
ta

in
ab

le
 G

FL
O

P
/s

Opteron 2356
(Barcelona)

0.5

1.0

1/8

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

1/4 1/2 1 2 4 8 16

peak DP

Roofline Model
communication ceilings

28

v  Opterons are NUMA
v  As such memory traffic

must be correctly balanced
among the two sockets to
achieve good Stream
bandwidth.

v  We could continue this by
examining strided or
random memory access
patterns

actual FLOP:Byte ratio

at
ta

in
ab

le
 G

FL
O

P
/s

Opteron 2356
(Barcelona)

0.5

1.0

1/8

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

1/4 1/2 1 2 4 8 16

peak DP

Roofline Model
computation + communication ceilings

29

v  We may bound
performance based on the
combination of expressed
in-core parallelism and
attained bandwidth.

actual FLOP:Byte ratio

at
ta

in
ab

le
 G

FL
O

P
/s

Opteron 2356
(Barcelona)

0.5

1.0

1/8

2.0

4.0

8.0

16.0

32.0

64.0

128.0

256.0

1/4 1/2 1 2 4 8 16

w/out SIMD

peak DP

mul / add imbalance

w/out ILP

30

"   Parallel machines
"   Shared memory
"   Shared address space
"   Message passing
"   Data parallel: vector processors
"   Clusters of SMPs
"   Grid

"   Programming model reflects hardware
"   Historically, tight coupling
"   Today, portability is important

31

A generic parallel architecture

•  Where is the memory physically located?

P P P P

Interconnection Network

M M M M

Memory

32

Parallel programming models

"   Control
"   How is parallelism created?
"   What orderings exist between operations?
"   How do different threads of control synchronize?

"   Data
"   What data is private vs. shared?
"   How is logically shared data accessed or communicated?

"   Operations
"   What are the atomic (indivisible) operations?

"   Cost
"   How do we account for the cost of each of the above?

33

Machine model 1a: shared memory

"   Processors all connected to a common shared memory.
"   Processors à sockets à dies à cores
"   Intel, AMD : multicore, multithread chips

"   Difficulty scaling to large numbers of processors
"   <= 32 processors typical

"   Memory access:
"   uniform memory access (UMA)
" Nonuniform memory access (NUMA, more common now)

"   Cost: much cheaper to access data in cache than main memory.

bus

memory

P1
$

P2
$

Pn
$ $ = cache

34

Machine model 1b: distributed shared memory

"   Memory is logically shared, but physically distributed (e.g.,
SGI Altix)
"   Any processor can access any address in memory
"   Cache lines (or pages) are passed around machine
"   Limitation is cache coherency protocols – how to keep cached

copies of the same address consistent

network

memory

P1
$

P2

$
Pn

$

memory memory

35

Simple programming example

Consider dot product:
•  Parallel Decomposition:

§  Each evaluation and each partial sum is a task.
•  Assign n/p numbers to each of p procs

§  Each computes independent “private” results and partial sum.
§  One (or all) collects the p partial sums and computes the global

sum.
Two Classes of Data:
•  Logically Shared

§  The original n numbers, the global sum.
•  Logically Private

§  The individual partial sums.

∑
−

=

1

0
)(*)(

n

i
iyix

OpenMP shared-memory programming

"   Share the node address space.

"   Most data shared within node.
"   Threads communicate via

 memory read & write.
"   Concurrent write to shared

 data needs locking or
 atomic operation.

36

F o r k

J o i n

Master thread

Thread 1 Thread 5

Shared data

Private data

Master thread

Private data

37

Incorrect program

•  There is a race condition on variable s in the program
•  A race condition or data race occurs when:

-  two threads access the same variable, and at least one does a
write.

-  the accesses are concurrent (not synchronized) so they could
happen simultaneously

Thread 1

 for i = 0, n/2-1
 s = s + x(i)*y(i)

Thread 2

 for i = n/2, n-1
 s = s + x(i)*y(i)

int s = 0;

38

Correct program

"   Since addition is associative, it’s OK to rearrange order
"   Most computation is on private variables

"   Sharing frequency is also reduced, which might improve speed
"   Race condition is fixed by adding locks to critical region (only one

thread can hold a lock at a time; others wait for it)
"   Shared-memory programming standards: OpenMP, PTHREADS

Thread 1

 local_s1= 0
 for i = 0, n/2-1
 local_s1 = local_s1 + x(i)*y(i)

 s = s + local_s1

Thread 2

 local_s2 = 0
 for i = n/2, n-1
 local_s2= local_s2 + x(i)*y(i)

 s = s +local_s2

int s = 0;
Lock lk;

lock(lk);

unlock(lk);

lock(lk);

unlock(lk);

Dot-product using OpenMP in C

int n = 100;
double x[100], y[100];
double s = 0, local_s;

#pragma omp parallel shared (s) private (local_s)
{
 local_s = 0.0;
 #pragma omp for
 for (i = 0; i < n; ++i) {
 local_s = local_s + x[i] * y[i];
 }
 #pragma omp critical
 {
 s = s + local_s;
 }
}

Exercise: complete this program, and run it with at least 4 threads.

39

OpenMP tutorial:
https://computing.llnl.gov/tutorials/openMP/

OpenMP sample programs:
https://computing.llnl.gov/tutorials/openMP/exercise.html

40

41

Machine model 2: distributed memory

"   Cray XE6, IBM SP, PC Clusters ..., can be large
"   Each processor has its own memory and cache, but cannot

directly access another processor’s memory.
"   Each “node” has a Network Interface (NI) for all communication

and synchronization.

interconnect

P0

memory

NI

. . .

P1

memory

NI Pn

memory

NI

42

Programming Model 2: Message Passing

•  Program consists of a collection of named processes
"   Usually fixed at program startup time
"   Thread of control plus local address space -- NO shared data

•  Processes communicate by explicit send/receive pairs
"   Coordination is implicit in every communication event.
"   Message Passing Interface (MPI) is the most commonly used SW

Pn P1 P0

y = ..s ...

s: 12

i: 2

s: 14

i: 3

s: 11

i: 1

send P1,s

Network

receive Pn,s

Private
memory

43

Distributed dot product

Processor 1

 s = 0
 for i = 0, n/2-1
 s = s + x(i)*y(i)
 MPI_Recv(s_remote, p2,...)
 MPI_Send(s, p2, ...)
 s = s + s_remote

Processor 2

 s = 0
 for i = 0, n/2-1
 s = s + x(i)*y(i)
 MPI_Send(s, p1, ...)
 MPI_Recv(s_remote, p1,...)
 s = s + s_remote

44

MPI – the de facto standard

"   MPI has become the de facto standard for parallel computing using
message passing

"   Pros and Cons
"   MPI created finally a standard for applications development in the

HPC community à portability
"   The MPI standard is a least common denominator building on mid-80s

technology, so may discourage innovation

"   MPI tutorial:
 https://computing.llnl.gov/tutorials/mpi/
 https://computing.llnl.gov/tutorials/mpi/exercise.html

Other machines & programming models

"   Data parallel
"   SIMD
"   Vector machines (often has compiler support)

•  SSE, SSE2 (Intel: Pentium/IA64)
•  Altivec (IBM/Motorola/Apple: PowerPC)
•  VIS (Sun: Sparc)

"   GPU, at a larger scale
"   Hybrid: cluster of SMP/multicore/GPU node
"   MPI + X

"   X = OpenMP, CUDA/OpenCL, …
"   Global Address Space programming (GAS languages)

"   UPC, Co-Array Fortran
"   Local and shared data, as in shared memory model
"   But, shared data is partitioned over local processes

45

46

Outline

•  Parallel machines and programming models

•  Principles of parallel computing performance
•  Models of performance bound

•  Design of parallel algorithms

Principles of Parallel Computing

"   Finding enough parallelism (Amdahl’s Law)
"   Granularity – how big should each parallel task be
"   Locality – moving data costs more than arithmetic
"   Load balance – don’t want 1K processors to wait for one slow one
"   Coordination and synchronization – sharing data safely
"   Performance modeling/debugging/tuning

47

48

Finding enough parallelism

"   Suppose only part of an application is parallel
"   Amdahl’s law

"   Let s be the fraction of work done sequentially, so
(1-s) is fraction parallelizable

"   P = number of cores

 (e.g., s = 1% à speedup <= 100)
"   Even if the parallel part speeds up perfectly, performance is limited

by the sequential part

Speedup(P) = Time(1)/Time(P)

 <= 1/(s + (1-s)/P)

 <= 1/s

49

Overhead of parallelism

"   Given enough parallel work, this is the biggest barrier to getting
desired speedup

"   Parallelism overheads include:

"   cost of starting a thread or process
"   cost of communicating shared data
"   cost of synchronizing
"   extra (redundant) computation

"   Each of these can be in the range of milliseconds
 (= millions of flops) on some systems

"   Tradeoff: Algorithm needs sufficiently large units of work to run fast

in parallel (I.e. large granularity), but not so large that there is not
enough parallel work

50

Performance properties of a network

"   Latency: delay between send and receive times
"   Latency tends to vary widely across machines
"   Vendors often report hardware latencies (wire time)
"   Application programmers care about software latencies (user program

to user program)
Ø  Latency is important for programs with many small messages (e.g.,

sparse matrices)
"   The bandwidth of a link measures how much volume can be

transferred in unit-time (e.g., MBytes/sec)
Ø  Bandwidth is important for applications with mostly large messages

(e.g., dense matrices)

51

Latency and bandwidth model

"   Time to send a message of length n is roughly

 Called “α-β model” and written:

"   Usually α >> β >> time per flop
à One long message is cheaper than many short ones.

"   Can do hundreds or thousands of flops for cost of one message

Time = latency + n * time_per_word
 = latency + n / bandwidth

α + n*β << n*(α + 1*β)

Time = α + β×n

52

Communication versus F.P. speed

Cray XE6 at NERSC, LBNL: dual-socket x 2-die x 6-core, 24 cores

"   Inter-node

"   FP Peak/core: 8.5 Gflops à time_per_flop = 0.11 nanosec
"  Communication using MPI

"   Intra-node (on-node memory): 24 cores

"   1.3 - 2.6 GB/core

à Extremely difficult for accurate performance prediction.

α =1.5microsec (≈13, 636 FPs)
1 / β = 5.8 GB/s, β = 0.17 nanosec (≈12 FPs/double-word)

53

BLAS – Basic Linear Algebra Subroutines
http://www.netlib.org/blas/blast-forum/

"   Building blocks for all linear algebra
"   Parallel versions call serial versions on each processor

"   So they must be fast!
"   Reuse ratio: q = # flops / # mem references (i.e. Arithmetic Intensity)

"   The larger is q, the faster the algorithm can go in the presence of memory
hierarchy

BLAS level Ex. # mem refs # flops q

1 “Axpy”,
Dot prod

3n 2n1 2/3

2 Matrix-
vector mult

n2 2n2 2

3 Matrix-
matrix mult

4n2 2n3 n/2

54

BLAS performance

0

5

10

15

20

25

1 4 16 64 256 1024 4096 16384 65536

G
l
o

p
s
/
S

e
c

Intel MKL BLAS performance on an Intel Core i7-3517U

daxpy

dgemv

dgemm

Problem Size

55

Parallel data layouts for matrices

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

1) 1D Column Blocked Layout 2) 1D Column Cyclic Layout

3) 1D Column Block Cyclic Layout

4) Row versions of the previous layouts

Generalizes others

0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3
0 1 0 1 0 1 0 1
2 3 2 3 2 3 2 3 6) 2D Row and Column

Block Cyclic Layout

0 1 2 3

0 1

2 3

5) 2D Row and Column Blocked Layout

b

Summary

"   Performance bounds and models
"   Roofline model: captures on-node memory speed
"   Amdahl’s Law: upper bound of speedup
"   “α-β model” (latency-bandwidth): captures network speed
"   Strong/weaking scaling: algorithm scalability (Lectures 3-4)

"   Hybrid programming becomes necessary
"   MPI + X

"   Sparse matrix algorithms have much lower arithmetic density
"   Critical to reduce memory access and communication

56

57

References

•  OpenMP tutorial: https://computing.llnl.gov/tutorials/openMP/
•  MPI tutorial: https://computing.llnl.gov/tutorials/mpi/
•  “The Landscape of Parallel Processing Research: The View from

Berkeley”
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/ECS-2006-183.pdf
•  Contains many references

•  Jim Demmel, Kathy Yelick, et al., UCB/CS267 lecture notes for parallel
computing class
http://www.cs.berkeley.edu/~demmel/cs267_Spr13/

•  S. Williams, A. Waterman, D. Patterson, "Roofline: An Insightful Visual
Performance Model for Floating-Point Programs and Multicore
Architectures", Communications of the ACM (CACM), April 2009.

•  MAGMA, Matrix Algebra on GPU and Multicore Architectures,
http://icl.cs.utk.edu/magma/index.html

•  PLASMA, The Parallel Linear Algebra for Scalable Multi-core
Architectures
http://icl.cs.utk.edu/plasma/

Exercises

1.  Complete and run the OpenMP code to perform dot-product.
•  Other examples: https://computing.llnl.gov/tutorials/openMP/

exercise.html
2.  Write an OpenMP code to perform GEMM

•  Validate correctness
•  How fast does your program run on one node of the cluster?

3.  Run the following MPI codes in Hands-On-Exercises/
•  Hello-MPI
•  DOT-MPI (Is it simpler than OpenMP DOT ?)

4.  Write an MPI program to find the Maximum and Minimum entries
of an array.

5.  Run the MPI ping-pong benchmark code in Hands-On-Exercises/
LatencyBandwidth/ directory, to find {alpha, beta} on your
machine.

58

Exercises

6.  Run the MPI code to perform GEMM
•  How to distribute the matrix?
•  The parallel algorithm is called SUMMA

7.  Write a hybrid MPI + OpenMP code to perform GEMM
•  Use 2 nodes of the cluster (2 x 12 cores)
•  Can have various MPI and OpenMP configurations:

2 MPI tasks X 12 threads, 4 MPI tasks X 6 threads, …
•  Other tuning parameters:

59

Cannon’s matrix-multiplication algorithm

"   Views the processes as being arranged in a virtual two-
dimensional square array. It uses this array to distribute the
matrices A, B, and the result matrix C in a block fashion.

"   If n x n is the size of each matrix and p is the total number of
processes, then each matrix is divided into square blocks of size

 n/√p x n/√p
"   Process Pi,j in the grid is assigned the Ai,j, Bi,j, and Ci,j blocks of

each matrix.
"   The algorithm proceeds in √p steps. In each step, every process

multiplies the local blocks of matrices A and B, and then sends the
block of A to the leftward process, and the block of B to the upward
process.

60

Lecture 2

Sparse matrix data structures, graphs, manipulation

Xiaoye Sherry Li
Lawrence Berkeley National Laboratory, USA

xsli@lbl.gov

crd-legacy.lbl.gov/~xiaoye/G2S3/

4th Gene Golub SIAM Summer School, 7/22 – 8/7, 2013, Shanghai

Lecture outline

2

!   PDE à discretization à sparse matrices
!   Sparse matrix storage formats

!   Sparse matrix-vector multiplication with various formats
!   Graphs associated with the sparse matrices
!   Distributed sparse matrix-vector multiplication

Solving partial differential equations

!   Hyperbolic problems (waves):
!   Sound wave (position, time)
!   Use explicit time-stepping: Combine nearest neighbors on grid
!   Solution at each point depends on neighbors at previous time

!   Elliptic (steady state) problems:
!   Electrostatic potential (position)
!   Everything depends on everything else, use implicit method
!   This means locality is harder to find than in hyperbolic problems
!   Canonical example is the Poisson equation

!   Parabolic (time-dependent) problems:

!   Temperature (position, time)
!   Involves an elliptic solve at each time-step

∂2u/∂x2 + ∂2u/∂y2 + ∂2u/∂z2 = f(x,y,z)

3

PDE discretization leads to sparse matrices
!   Poisson equation in 2D:

!   Finite difference discretization à stencil computation

4

∂2u
∂x2 (x, y)+ ∂

2u
∂y2 (x, y) = f (x, y), (x, y)∈ R

u(x, y) = g(x, y), (x,y) on the boundary

5-point stencil

Matrix view

5

4 -1 -1

-1 4 -1 -1

 -1 4 -1

 -1 4 -1 -1

 -1 -1 4 -1 -1

 -1 -1 4 -1

 -1 4 -1

 -1 -1 4 -1

 -1 -1 4

A =
 4

-1

-1

-1

-1

Graph and “stencil”

4 ⋅u(i, j)−u(i−1, j)−u(i+1, j)−u(i, j −1)−u(i, j +1) = f (i, j)

Application 1: Burning plasma for fusion energy
!   ITER – a new fusion reactor being constructed in Cadarache, France

•  International collaboration: China, the European Union, India, Japan,
Korea, Russia, and the United States

•  Study how to harness fusion, creating clean energy using nearly
inexhaustible hydrogen as the fuel. ITER promises to produce 10 times as
much energy than it uses — but that success hinges on accurately
designing the device.

!   One major simulation goal is to predict microscopic MHD instabilities
of burning plasma in ITER. This involves solving extended and
nonlinear Magnetohydrodynamics equations.

6

Application 1: ITER modeling
!   US DOE SciDAC project (Scientific Discovery through Advanced

Computing)
•  Center for Extended Magnetohydrodynamic Modeling (CEMM), PI: S.

Jardin, PPPL
!   Develop simulation codes to predict microscopic MHD instabilities

of burning magnetized plasma in a confinement device (e.g.,
tokamak used in ITER experiments).
•  Efficiency of the fusion configuration increases with the ratio of thermal

and magnetic pressures, but the MHD instabilities are more likely with
higher ratio.

!   Code suite includes M3D-C1, NIMROD

7

ϕ R

Z

•  At each ϕ = constant plane, scalar 2D data
 is represented using 18 degree of freedom
 quintic triangular finite elements Q18

•  Coupling along toroidal direction

(S. Jardin)

ITER modeling: 2-Fluid 3D MHD Equations

∂n
∂t
+∇•(nV) = 0 continuity

∂B
∂t

= −∇×E, ∇•B = 0, µ0J = ∂×B Maxwell

nMt
∂V
∂t

+V •∇V
%

&
'

(

)
*+∇p = J ×B−∇•ΠGV −∇•Πµ Momentum

E +V ×B =ηJ + 1
ne

(J ×B−∇pe −∇•Πe) Ohm's law

3
2
∂pe
∂t

+∇•
3
2
peV

%

&
'

(

)
*= −pe∇•∇+ηJ

2 −∇•qe +QΔ electron energy

3
2
∂pi
∂t

+∇•
3
2
piV

%

&
'

(

)
*= −pi∇•∇−Πµ •∇V −∇•qi −QΔ ion energy

8

The objective of the M3D-C1 project is to solve these equations as
accurately as possible in 3D toroidal geometry with realistic B.C.
and optimized for a low-β torus with a strong toroidal field.

Application 2: particle accelerator cavity design

9

•  US DOE SciDAC project
•  Community Petascale Project for Accelerator Science and
Simulation (ComPASS), PI: P. Spentzouris, Fermilab

•  Development of a comprehensive computational infrastructure
 for accelerator modeling and optimization
•  RF cavity: Maxwell equations in electromagnetic field
•  FEM in frequency domain leads to large sparse eigenvalue
 problem; needs to solve shifted linear systems

bMx MK 00
2

0)(
problem eigenvaluelinear
=−σ

ΓE Closed
Cavity

ΓM

Open
Cavity

Waveguide BC

Waveguide BC

Waveguide BC

(L.-Q. Lee)

bx M W - i K =+)(
problem eigenvaluecomplex nonlinear

0
2

0 σσ

RF unit in ILC

10

RF Cavity Eigenvalue Problem

Find frequency and field vector of normal modes:!
“Maxwell’s Equations”

Nedelec-type finite-element discretization

ΓE Closed
Cavity

ΓM

11

Cavity with Waveguide coupling for multiple
waveguide modes

!   Vector wave equation with waveguide boundary conditions can be
modeled by a non-linear complex eigenvalue problem

Open
Cavity

Waveguide BC
Waveguide BC

Waveguide BC

where

Sparse: lots of zeros in matrix
!   fluid dynamics, structural mechanics, chemical process simulation,

circuit simulation, electromagnetic fields, magneto-hydrodynamics,
seismic-imaging, economic modeling, optimization, data analysis,
statistics, . . .

!   Example: A of dimension 106, 10~100 nonzeros per row
! Matlab: > spy(A)

12

Mallya/lhr01 (chemical eng.) Boeing/msc00726 (structural eng.)

13

Sparse Storage Schemes

!   Assume arbitrary sparsity pattern …
!   Notation

!   N – dimension
!   NNZ – number of nonzeros

!   Obvious:
!   “triplets” format ({i, j, val}) is not sufficient . . .

•  Storage: 2*NNZ integers, NNZ reals
•  Not easy to randomly access one row or column

!   Linked list format provides flexibility, but not friendly on
modern architectures . . .

•  Cannot call BLAS directly

14

Compressed Row Storage (CRS)

!   Store nonzeros row by row contiguously
!   Example: N = 7, NNZ = 19
!   3 arrays:

–  Storage: NNZ reals, NNZ+N+1 integers

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

7
6

5
4

3
2

1

lk
jih
g

fe
dc

b
a

Nzval 1 a 2 b c d 3 e 4 f 5 g h i 6 j k l 7 (NNZ)

 colind 1 4 2 5 1 2 3 2 4 5 5 7 4 5 6 7 3 5 7 (NNZ)

rowptr 1 3 5 8 11 13 17 20 (N+1)

1 3 5 8 11 13 17 20

15

SpMV (y = Ax) with CRS

!   “dot product”
!   No locality for x
!   Vector length usually short
!   Memory-bound: 3 reads, 2 flops

do i = 1, N . . . row i of A
 sum = 0.0
 do j = rowptr(i), rowptr(i+1) – 1
 sum = sum + nzval(j) * x(colind(j))
 enddo
 y(i) = sum
enddo

Nzval 1 a 2 b c d 3 e 4 f 5 g h i 6 j k l 7 (NNZ)

 colind 1 4 2 5 1 2 3 2 4 5 5 7 4 5 6 7 3 5 7 (NNZ)

rowptr 1 3 5 8 11 13 17 20 (N+1)

1 3 5 8 11 13 17 20

16

Compressed Column Storage (CCS)

!   Also known as Harwell-Boeing format
!   Store nonzeros columnwise contiguously
!   3 arrays:

–  Storage: NNZ reals, NNZ+N+1 integers

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

7
6

5
4

3
2

1

lk
jih
g

fe
dc

b
a

nzval 1 c 2 d e 3 k a 4 h b f 5 i l 6 g j 7 (NNZ)

 rowind 1 3 2 3 4 3 7 1 4 6 2 4 5 6 7 6 5 6 7 (NNZ)

colptr 1 3 6 8 11 16 17 20 (N+1)

17

SpMV (y = Ax) with CCS

!   “SAXPY”
!   No locality for y
!   Vector length usually short
!   Memory-bound: 3 reads, 1 write, 2 flops

y(i) = 0.0, i = 1…N
do j = 1, N . . . column j of A
 t = x(j)
 do i = colptr(j), colptr(j+1) – 1
 y(rowind(i)) = y(rowind(i)) + nzval(i) * t
 enddo
enddo

nzval 1 c 2 d e 3 k a 4 h b f 5 i l 6 g j 7 (NNZ)

 rowind 1 3 2 3 4 3 7 1 4 6 2 4 5 6 7 6 5 6 7 (NNZ)

colptr 1 3 6 8 11 16 17 20 (N+1)

18

Other Representations

!   “Templates for the Solution of Linear Systems: Building Blocks for
Iterative Methods”, R. Barrett et al. (online)
!   ELLPACK, segmented-sum, etc.

!   “Block entry” formats (e.g., multiple degrees of freedom
are associated with a single physical location)
!   Constant block size (BCRS)
!   Variable block sizes (VBCRS)

!   Skyline (or profile) storage (SKS)
!   Lower triangle stored row by row

 Upper triangle stored column by column
!   In each row (column), first nonzero

 defines a profile
!   All entries within the profile

 (some may be zero) are stored

SpMV optimization – mitigate memory access bottleneck

BeBOP (Berkeley Benchmark and Optimization group):
http://bebop.cs.berkeley.edu

Software: OSKI / pOSKI – Optimized Sparse Kernel Interface
•  Matrix reordering: up to 4x over CSR
•  Register blocking: find dense blocks, pad zeros if needed, 2.1x

over CSR
•  Cache blocking: 2.8x over CSR
•  Multiple vectors (SpMM): 7x over CSR
•  Variable block splitting
•  Symmetry: 2.8x over CSR
•  …

19

Graphs

A graph G = (V, E) consists of a finite set V , called the vertex set and
a finite, binary relation E on V , called the edge set.

Three standard graph models
!   Undirected graph: The edges are unordered pair of vertices, i.e.

!   Directed graph: The edges are ordered pair of vertices, that is,
 (u, v) and (v, u) are two different edges
!   Bipartite graph: G = (U U V;E) consists of two disjoint vertex sets U

and V such that for each edge

An ordering or labelling of G = (V, E) having n vertices, i.e., |V| = n, is
a mapping of V onto 1,2, …, n.

20

{u,v}∈ E, for some u,v ∈V

{u,v}∈ E, u∈U and v ∈V

Graph for rectangular matrix

!   Bipartite graph
 Rows = vertex set U, columns = vertex set V
 each nonzero A(i,j) = an edge (ri,cj), ri in U and cj in V

21

A =
1
2
3

• •
• •

• •

!

"

#
#
#

$

%

&
&
&

1 2 3 4

Graphs for square, pattern nonsymmetric matrix

!   Bipartite graph as before

!   Directed graph:
 Rows / columns = vertex set V
 each nonzero A(i,j) = an ordered edge (vi, vj) directed vi à vj

22

A =
1
2
3

• •
• •

•

!

"

#
#
#

$

%

&
&
&

1 2 3

Graphs for square, pattern symmetric matrix

!   Bipartite graph as before

!   Undirected graph:
 Rows / columns = vertex set V
 each nonzero A(i,j) = an edge {vi, vj}

23

A =
1
2
3

•
• • •

• •

!

"

#
#
#

$

%

&
&
&

1 2 3

24

Parallel sparse matrix-vector multiply

!   y = A*x, where A is a sparse n x n matrix

!   Questions
!   which processors store

•  y[i], x[i], and A[i,j]
!   which processors compute

•  y[i] = (row i of A) * x … a sparse dot product
!   Partitioning

!   Partition index set {1,…,n} = N1 ∪ N2 ∪ … ∪ Np.
!   For all i in Nk, Processor k stores y[i], x[i], and row i of A
!   For all i in Nk, Processor k computes y[i] = (row i of A) * x
!   “owner computes” rule: Processor k compute y[i]s it owns

y
i: [j1,v1], [j2,v2],
…

X

P1

P2

P3

P4

P1 P2 P3 P4

x x

May need
communication

25

Graph partitioning and sparse matrices

!   A “good” partition of the graph has
!   equal (weighted) number of nodes in each part (load and storage

balance).
!   minimum number of edges crossing between (minimize

communication).
!   Reorder the rows/columns by putting all nodes in one partition

together.

3

6

2

1

5

4

1 1 1 1

2 1 1 1 1

3 1 1 1

4 1 1 1 1

5 1 1 1 1

6 1 1 1 1

 1 2 3 4 5 6

26

Matrix reordering via graph partitioning
•  “Ideal” matrix structure for parallelism: block diagonal

!   p (number of processors) blocks, can all be computed
locally.

!   If no non-zeros outside these blocks, no communication
needed

•  Can we reorder the rows/columns to get close to this?
!   Most nonzeros in diagonal blocks, very few outside

P0!

P1!

P2!

P3!

P4!

= *

P0 P1 P2 P3 P4 !

27

Distributed Compressed Row Storage

!   Each process has a structure to store local part of A 	

	

 	

	

 typedef struct {	

	

 int nnz_loc; // number of nonzeros in the local submatrix	

	

 int m_loc; // number of rows local to this processor	

	

 int fst_row; // global index of the first row	

 void *nzval; // pointer to array of nonzero values, packed by row	

	

 int *colind; // pointer to array of column indices of the nonzeros	

	

 int *rowptr; // pointer to array of beginning of rows in nzval[]and colind[]	

	

} CRS_dist;	

	

28

Distributed Compressed Row Storage

!   Processor P0 data structure:	

–  nnz_loc = 5	

–  m_loc = 2	

–  fst_row = 0 // 0-based indexing 	

–  nzval = { s, u, u, l, u }	

–  colind = { 0, 2, 4, 0, 1 }	

–  rowptr = { 0, 3, 5 }	

!   Processor P1 data structure:	

–  nnz_loc = 7	

–  m_loc = 3	

–  fst_row = 2 // 0-based indexing	

–  nzval = { l, p, e, u, l, l, r }	

–  colind = { 1, 2, 3, 4, 0, 1, 4 }	

–  rowptr = { 0, 2, 4, 7 }	

u	

s	

 u	

 u	

l	

p	

e	

l	

 l	

 r	

P0	

P1	

l	

A is distributed on 2 cores:	

u	

Sparse matrices in MATLAB

!   In matlab, “A = sparse()”, create a sparse matrix A
!   Type “help sparse”, or “doc sparse”

!   Storage: compressed column (CCS)
!   Operation on sparse (full) matrices returns sparse (full) matrix
 operation on mixed sparse & full matrices returns full matrix
!   Ordering: amd, symamd, symrcm, colamd
!   Factorization: lu, chol, qr, …
!   Utilities: spy

29

Summary

!   Many representations of sparse matrices
!   Depending on application/algorithm needs

!   Strong connection of sparse matrices and graphs
!   Many graph algorithms are applicable

30

31

References

•  Barrett, et al., “Templates for the solution of linear systems:
Building Blocks for Iterative Methods, 2nd Edition”, SIAM, 1994
(book online)

•  Sparse BLAS standard: http://www.netlib.org/blas/blast-forum
•  BeBOP: http://bebop.cs.berkeley.edu/
•  J.R. Gilbert, C. Moler, R. Schreiber, “Sparse Matrices In MATLAB:

Design And Implementation”, SIAM J. Matrix Anal. Appl, 13,
333-356, 1992.

Exercises

1.  Write a program that converts a matrix in CCS format to CRS
format, see code in sparse_CCS/ directory

2.  Write a program to compute y = A^T*x without forming A^T
•  A can be stored in your favorite compressed format

3.  Write a SpMV code with ELLPACK representation
4.  SpMV roofline model on your machine
5.  Write an OpenMP program for SpMV
6.  Run the MPI SpMV code in the Hands-On-Exercises/ directory

32

EXTRA SLIDES

34

ELLPACK

!   ELLPACK: software for solving elliptic problems [Purdue]
!   Force all rows to have the same length as the longest row, then

columns are stored contiguously

!   2 arrays: nzval(N,L) and colind(N,L), where L = max row length
–  N*L reals, N*L integers

!   Usually L << N

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

→

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

07
6
005
04
03
002
001

7
6

5
4

3
2

1

lk
jih

g
fe

dc
b
a

lk
jih
g

fe
dc

b
a

35

SpMV with ELLPACK

!   Neither “dot” nor “SAXPY”
!   Good for vector processor: long vector length (N)
!   Extra memory, flops for padded zeros, especially bad if

row lengths vary a lot

y(i) = 0.0, i = 1…N
do j = 1, L
 do i = 1, N
 y(i) = y(i) + nzval(i, j) * x(colind(i, j))
 enddo
enddo

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

07
6
005
04
03
002
001

lk
jih

g
fe

dc
b
a

36

Segmented-Sum [Blelloch et al.]

!   Data structure is an augmented form of CRS,
 computational structure is similar to ELLPACK

!   Each row is treated as a segment in a long vector
!   Underlined elements denote the beginning of each segment

 (i.e., a row in A)
!   Dimension: S * L ~ NNZ, where L is chosen to approximate

the hardware vector length

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

→

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

6
74

2
3

51

7
6

5
4

3
2

1

fc
ib
lhe
kga
jd

lk
jih
g

fe
dc

b
a

37

SpMV with Segmented-Sum

!   2 arrays: nzval(S, L) and colind(S, L), where S*L ~ NNZ
–  NNZ reals, NNZ integers

!   SpMV is performed bottom-up, with each “row-sum” (dot) of
Ax stored in the beginning of each segment
–  Similar to ELLPACK, but with more control logic in inner-

loop
!   Good for vector processors

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

→

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

6
74

2
3

51

7
6

5
4

3
2

1

fc
ib
lhe
kga
jd

lk
jih
g

fe
dc

b
a

do i = S, 1
 do j = 1, L
 . . .
 enddo
enddo

Lecture 3

Sparse Direct Method: Combinatorics

Xiaoye Sherry Li
Lawrence Berkeley National Laboratory, USA

xsli@lbl.gov

crd-legacy.lbl.gov/~xiaoye/G2S3/

4th Gene Golub SIAM Summer School, 7/22 – 8/7, 2013, Shanghai

Lecture outline

!   Linear solvers: direct, iterative, hybrid
!   Gaussian elimination
!   Sparse Gaussian elimination: elimination graph, elimination tree
!   Symbolic factorization, ordering, graph traversal

!   only integers, no FP involved

2

§  Solving a system of linear equations Ax = b	

•  Sparse: many zeros in A; worth special treatment	

§  Iterative methods (CG, GMRES, …)	

§  A is not changed (read-only)	

§  Key kernel: sparse matrix-vector multiply	

§  Easier to optimize and parallelize	

§  Low algorithmic complexity, but may not converge	

§  Direct methods	

§  A is modified (factorized)	

§  Harder to optimize and parallelize	

§  Numerically robust, but higher algorithmic complexity	

§  Often use direct method (factorization) to precondition iterative method	

§  Solve an easy system: M-1Ax = M-1b	

Strategies of sparse linear solvers

3

Gaussian Elimination (GE)

!   Solving a system of linear equations Ax = b

!   First step of GE

!   Repeat GE on C
!   Result in LU factorization (A = LU)

–  L lower triangular with unit diagonal, U upper triangular

!   Then, x is obtained by solving two triangular systems with L
and U

⎥
⎦

⎤
⎢
⎣

⎡
⋅⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

C
w

IvBv
w

A
TT

0/
01 α

α
α

4

α

TwvBC ⋅
−=

Numerical Stability: Need for Pivoting

!   One step of GE:

!  

–  If α small, some entries in B may be lost from addition

!   Pivoting: swap the current diagonal with a larger entry from
the other part of the matrix

!   Goal: control element growth (pivot growth) in L & U

⎥
⎦

⎤
⎢
⎣

⎡
⋅⎥
⎦

⎤
⎢
⎣

⎡
=⎥

⎦

⎤
⎢
⎣

⎡
=

C
w

IvBv
w

A
TT

0/
01 α

α
α

5

α

TwvBC ⋅
−=

Sparse GE

!   Goal: Store only nonzeros and perform operations only on
nonzeros

!   Scalar algorithm: 3 nested loops
!   Can re-arrange loops to get different variants: left-looking, right-

looking, . . .
!   Fill: new nonzeros in factor

!   Typical fill-ratio: 10x for 2D problems, 30-50x for 3D problems

6

1
2

3
4

6
7

5 L

U for i = 1 to n
 A(:,j) = A(:,j) / A(j,j) % cdiv(j) col_scale
 for k = i+1 to n s.t. A(i,k) != 0
 for j = i+1 to n s.t. A(j,i) != 0
 A(j,k) = A(j,k) - A(j,i) * A(i,k)

Useful tool to discover fill: Reachable Set

!   Given certain elimination order (x1, x2, . . ., xn), how do you determine
the fill-ins using original graph of A ?
–  An implicit elimination model

!   Definition: Let S be a subset of the node set. The reachable set of y
through S is:
 Reach(y, S) = { x | there exists a directed path (y,v1,…vk, x), vi in S}

!   “Fill-path theorem” [Rose/Tarjan ’78] (general case):
 Let G(A) = (V,E) be a directed graph of A, then an edge (v,w) exists in
the filled graph G+(A) if and only if

–  G+(A) = graph of the {L,U} factors

w ∈ Reach(v, {v1,…vk}), where, vi <min(v,w), 1≤ i ≤ k

8

Concept of reachable set, fill-path

Edge (x,y) exists in filled graph G+ due to the path: x à 7 à 3 à 9 à y

!   Finding fill-ins ßà finding transitive closure of G(A)

+

+

+

y

+

+

+

+

3

7

9

x

o

o o

Sparse Column Cholesky Factorization LLT
for j = 1 : n

 L(j:n, j) = A(j:n, j);
 for k < j with L(j, k) nonzero
 % sparse cmod(j,k)
 L(j:n, j) = L(j:n, j) – L(j, k) * L(j:n, k);
 end;

 % sparse cdiv(j)
 L(j, j) = sqrt(L(j, j));
 L(j+1:n, j) = L(j+1:n, j) / L(j, j);

end;

Column j of A becomes column j of L

L	

L	

LT	

A	

j	

!   Fill-path theorem [George ’80] (symmetric case)
 After x1, …, xi are eliminated, the set of nodes adjacent to y in the
 elimination graph is given by Reach(y, {x1, …, xi}), xi<min(x,y)

Elimination Tree

10

1 3

2

4

5

6

7

8

9

Cholesky factor L	

 G+(A)	

 T(A)	

10

1

3

2
4

5

6

7

8

9

T(A) : parent(j) = min { i > j : (i, j) in G+(A) }

parent(col j) = first nonzero row below diagonal in L

•  T describes dependencies among columns of factor
•  Can compute G+(A) easily from T
•  Can compute T from G(A) in almost linear time

11

Symbolic Factorization

precursor to numerical factorization

•  Elimination tree
•  Nonzero counts
•  Supernodes
•  Nonzero structure of {L, U}

	

! Cholesky [Davis’06 book, George/Liu’81 book]	

–  Use elimination graph of L and its transitive reduction (elimination tree)	

–  Complexity linear in output: O(nnz(L))	

!   LU	

–  Use elimination graphs of L & U and their transitive reductions

(elimination DAGs) [Tarjan/Rose `78, Gilbert/Liu `93, Gilbert `94]	

–  Improved by symmetric structure pruning [Eisenstat/Liu `92]	

–  Improved by supernodes	

–  Complexity greater than nnz(L+U), but much smaller than flops(LU)	

Can we reduce fill?

!   Reordering, permutation

12

1 2 3 4 5
2 2
3 3
4 4
5 5

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

 (all filled after elimination)

⇒

1
1

1
1

1

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

1 2 3 4 5
2 2
3 3
4 4
5 5

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

1
1

1
1

1

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

=

5 5
4 4

3 3
2 2

5 4 3 2 1

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

 (no fill after elimination)

Fill-in in Sparse GE

Ø  Original zero entry Aij
 becomes nonzero in L or U

!   Red: fill-ins

Natural order: NNZ = 233 Min. Degree order: NNZ = 207

13

Ordering : Minimum Degree (1/3)

Graph game:

Eliminate 1

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

x

x

x

x

xxxxx
i j k l

1

i

j

k

l ⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

••••

••••

••••

••••

x

x

x

x

xxxxx
i j k l

1

i

j

k

l

l

 1

i

j

k

Eliminate 1
i

k

j

l

14 Maximum fill: all the edges between neighboring vertices (“clique”)

Minimum Degree Ordering (2/3)

!   Greedy approach: do the best locally
!   Best for modest size problems
!   Hard to parallelize

!   At each step
!   Eliminate the vertex with the smallest degree
!   Update degrees of the neighbors

!   Straightforward implementation is slow and requires too much memory
!   Newly added edges are more than eliminated vertices

15

Minimum Degree Ordering (3/3)

!   Use quotient graph (QG) as a compact representation
[George/Liu ’78]

!   Collection of cliques resulting from the eliminated vertices
affects the degree of an uneliminated vertex

!   Represent each connected component in the eliminated
subgraph by a single “supervertex”

!   Storage required to implement QG model is bounded by
size of A

!   Large body of literature on implementation variants
! Tinney/Walker `67, George/Liu `79, Liu `85, Amestoy/Davis/

Duff `94, Ashcraft `95, Duff/Reid `95, et al., . .

!   Extended the QG model to nonsymmetric using bipartite
graph [Amestoy/Li/Ng `07]

16

Ordering : Nested Dissection

!   Model problem: discretized system Ax = b from certain
PDEs, e.g., 5-point stencil on k x k grid, n = k2

!   Recall fill-path theorem:
 After x1, …, xi are eliminated, the set of nodes adjacent to y in the
 elimination graph is given by Reach(y, {x1, …, xi}), xi<min(x,y)

17

ND ordering: recursive application of bisection

18

!   ND gives a separator
tree (i.e elimination tree)

43-49

40-42

37-39

19-21

7-9 16-18 28-30

19

ND analysis on a square grid (k x k = n)

!   Theorem [George ’73, Hoffman/Martin/Ross]: ND ordering gave
optimal complexity in exact factorization.

 Proof:
–  Apply ND by a sequence of “+” separators
–  By “reachable set” argument, all the separators are essentially dense

submatrices
–  Fill-in estimation: add up the nonzeros in the separators

k2 + 4(k / 2)2 + 42(k / 4)2 +=O(k2 log2 k) =O(n log2 n)

1 2

3 4
5

6 7

8 9

11 12

13 14

16 17

18 19

21

10

15 20

(more precisely: 31 / 4 (k2 log2 k)+O(k2))

Similarly: Operation count: O(k3) =O(n3/2)

Complexity of direct methods

n1/2 n1/3

2D 3D

Space (fill): O(n log n) O(n 4/3)

Time (flops): O(n 3/2) O(n 2)

Time and
space to solve
any problem
on any well-
shaped finite
element mesh

ND Ordering: generalization
!   Generalized nested dissection [Lipton/Rose/Tarjan ’79]

–  Global graph partitioning: top-down, divide-and-conqure
–  First level

–  Recurse on A and B
!   Goal: find the smallest possible separator S at each level

–  Multilevel schemes:
•  (Par)Metis [Karypis/Kumar `95], Chaco [Hendrickson/

Leland `94], (PT-)Scotch [Pellegrini et al.`07]
–  Spectral bisection [Simon et al. `90-`95]
–  Geometric and spectral bisection [Chan/Gilbert/Teng `94]

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

Sxx
xB
xA

0
0

21

A B S

ND Ordering

22

CM / RCM Ordering
! Cuthill-McKee, Reverse Cuthill-McKee
!   Reduce bandwidth

!   Construct level sets via breadth-first search, start from the vertex of
minimum degree

!   At any level, priority is given to a vertex with smaller number of
neighbors

!   RCM: Simply reverse the ordering found by CM

23

[Duff, Erisman, Reid]

RCM good for envelop (profile) Solver
(also good for SpMV)

Ø  Define bandwidth for each row or column
!   Data structure a little more sophisticated than band solver, but simpler

than general sparse solver

Ø  Use Skyline storage (SKS)
!   Lower triangle stored row by row

 Upper triangle stored column by column
!   In each row (column), first nonzero

 defines a profile
!   All entries within the profile

 (some may be zeros) are stored
!   All the fill is contained inside the profile

Ø  A good ordering would be based on bandwidth reduction
!   E.g., Reverse Cuthill-McKee

24

Envelop (profile) solver (2/2)

!   Lemma: env(L+U) = env(A)
–  No more fill-ins generated outside the envelop!

 Inductive proof: After N-1 steps,

vvv

wwwwL

ULAts
t
wU

v
L

sv
wA

A

T

TT

 as same theis vofposition nonzerofirst , Usolve

 as same theis ofposition nonzerofirst , solve
Then,

..,
1

111

111

111
11

1

11

=

=

=⎟
⎠

⎞
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟

⎠

⎞
⎜
⎝

⎛
=

25

Envelop vs. general solvers

!   Example: 3 orderings (natural, RCM, MD)
!   Envelop size = sum of bandwidths

26

Env = 31775 Env = 22320
Env = 61066
NNZ(L, MD) = 12259

27

Ordering for unsymmetric LU – symmetrization

!   Can use a symmetric ordering on a symmetrized matrix . . .

!   Case of partial pivoting (sequential SuperLU):
 Use ordering based on ATA
!   If RTR = ATA and PA = LU, then for any row permutation P,
 struct(L+U) ⊆ struct(RT+R) [George/Ng `87]
!   Making R sparse tends to make L & U sparse . . .

!   Case of diagonal pivoting (static pivoting in SuperLU_DIST):
 Use ordering based on AT+A
!   If RTR = AT+A and A = LU, then struct(L+U) ⊆ struct(RT+R)
!   Making R sparse tends to make L & U sparse . . .

28

c1 r1

r2
c2

c3

Eliminate 1 r1

r2

c1

c2

c3

 1 1

•  Bipartite graph
•  After a vertex is eliminated, all the row & column vertices adjacent to it

become fully connected – “bi-clique” (assuming diagonal pivot)
•  The edges of the bi-clique are the potential fill-ins (upper bound !)

Eliminate 1

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

×

×

××××1

r1

r2

c1 c2 c3

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

•••×

•••×

××××1

r1

r2

c1 c2 c3

Unsymmetric variant of “Min Degree” ordering
(Markowitz scheme)

29

Results of Markowitz ordering [Amestoy/Li/Ng’02]

! Extend the QG model to bipartite quotient graph
! Same asymptotic complexity as symmetric MD

–  Space is bounded by 2*(m + n)
–  Time is bounded by O(n * m)

! For 50+ unsym. matrices, compared with MD on A’+A:
–  Reduction in fill: average 0.88, best 0.38
–  Reduction in FP operations: average 0.77, best 0.01

!   How about graph partitioning for unsymmetric LU?
–  Hypergraph partition [Boman, Grigori, et al. `08]
–  Similar to ND on ATA, but no need to compute ATA

Remark: Dense vs. Sparse GE

!   Dense GE: Pr A Pc = LU
! Pr and Pc are permutations chosen to maintain stability
!   Partial pivoting suffices in most cases : Pr A = LU

!   Sparse GE: Pr A Pc = LU
! Pr and Pc are chosen to maintain stability, preserve sparsity, increase

parallelism
!   Dynamic pivoting causes dynamic structural change

•  Alternatives: threshold pivoting, static pivoting, . . .

30

31

Numerical Pivoting
!   Goal of pivoting is to control element growth in L & U for stability	

–  For sparse factorizations, often relax the pivoting rule to trade with better
sparsity and parallelism (e.g., threshold pivoting, static pivoting , . . .)	

!   Partial pivoting used in sequential SuperLU and SuperLU_MT (GEPP) 	

–  Can force diagonal pivoting (controlled by diagonal	

	

threshold)	

–  Hard to implement scalably for sparse factorization	

!   Static pivoting used in SuperLU_DIST (GESP)	

–  Before factor, scale and permute A to maximize diagonal: Pr Dr A Dc = A’	

–  During factor A’ = LU, replace tiny pivots by , without changing data

structures for L & U	

–  If needed, use a few steps of iterative refinement after the first solution	

è  quite stable in practice	

Aε

b

s x x

x x x

x

Use many heuristics

!   Finding an optimal fill-reducing ordering is NP-complete à use
heuristics:
!   Local approach: Minimum degree
!   Global approach: Nested dissection (optimal in special case), RCM
!   Hybrid: First permute the matrix globally to confine the fill-in, then

reorder small parts using local heuristics
•  Local methods effective for smaller graph, global methods

effective for larger graph

!   Numerical pivoting: trade-off stability with sparsity and parallelism
!   Partial pivoting too restrictive
!   Threshold pivoting
!   Static pivoting
!   …

32

Algorithmic phases in sparse GE

1.  Minimize number of fill-ins, maximize parallelism
! Sparsity structure of L & U depends on that of A, which can be changed by

row/column permutations (vertex re-labeling of the underlying graph)
!   Ordering (combinatorial algorithms; “NP-complete” to find optimum

[Yannakis ’83]; use heuristics)

2.  Predict the fill-in positions in L & U
!   Symbolic factorization (combinatorial algorithms)

3.  Design efficient data structure for storage and quick retrieval of the
nonzeros
!   Compressed storage schemes

4.  Perform factorization and triangular solutions
!   Numerical algorithms (F.P. operations only on nonzeros)
!   Usually dominate the total runtime

!   For sparse Cholesky and QR, the steps can be separate;
 for sparse LU with pivoting, steps 2 and 4 my be interleaved.

33

References
•  T. Davis, Direct Methods for Sparse Linear Systems, SIAM, 2006. (book)
•  A. George and J. Liu, Computer Solution of Large Sparse Positive Definite

Systems, Prentice Hall, 1981. (book)
•  I. Duff, I. Erisman and J. Reid, Direct Methods for Sparse Matrices, Oxford

University Press, 1986. (book)
•  C. Chevalier, F. Pellegrini, “PT-Scotch”, Parallel Computing, 34(6-8), 318-331,

2008. http://www.labri.fr/perso/pelegrin/scotch/
•  G. Karypis, K. Schloegel, V. Kumar, ParMetis: Parallel Graph Partitioning and

Sparse Matrix Ordering Library”, University of Minnesota. http://www-
users.cs.umn.edu/~karypis/metis/parmetis/

•  E. Boman, K. Devine, et al., “Zoltan, Parallel Partitioning, Load Balancing and
Data-Management Services”, Sandia National Laboratories.

 http://www.cs.sandia.gov/Zoltan/
•  J. Gilbert, “Predicting structures in sparse matrix computations”, SIAM. J.

Matrix Anal. & App, 15(1), 62–79, 1994.
•  J.W.H. Liu, “Modification of the minimum degree algorithm by multiple

elimination”, ACM Trans. Math. Software, Vol. 11, 141-153, 1985.
•  T.A. Davis, J.R. Gilbert, S. Larimore, E. Ng, “A column approximate minimum

degree ordering algorithm”, ACM Trans. Math. Software, 30 (3), 353-376, 2004
•  P. Amestoy, X.S. Li and E. Ng, “Diagonal Markowitz Scheme with Local

Symmetrization”, SIAM J. Matrix Anal. Appl., Vol. 29, No. 1, pp. 228-244, 2007.

34

Exercises

!   Homework3 in Hands-On-Exercises/ directory
!   Show that:
 If RTR = AT+A and A = LU, then struct(L+U) ⊆ struct(RT+R)
!   Show that: [George/Ng `87]

 If RTR = ATA and PA = LU, then for any row permutation P,
 struct(L+U) ⊆ struct(RT+R)

35

Lecture 4

Sparse Factorization: Data-flow Organization

Xiaoye Sherry Li
Lawrence Berkeley National Laboratory, USA

xsli@lbl.gov

crd-legacy.lbl.gov/~xiaoye/G2S3/

4th Gene Golub SIAM Summer School, 7/22 – 8/7, 2013, Shanghai

Lecture outline

!   Dataflow organization: left-looking, right-looking
!   Blocking for high performance

! Supernode, multifrontal
!   Triangular solution

2

Dense Cholesky
!   Left-looking Cholesky

for k = 1,…,n do
 for i = k,…,n do
 for j = 1,…k-1 do

 end for
 end for

 for i = k+1,…,n do

 end for
end for

3

aik
(k) = aik

(k) − lij ⋅ lkj

lkk = akk
(k−1)

!   Right-looking Cholesky

for k = 1,…,n do

 for i = k+1,…,n do

 for j = k+1,…,i do

 end for
 end for
end for

lkk = akk
(k−1)

lik = aik
(k−1) / lkk

aij
(k) = aij

(k) − lik ⋅ l jk

lik = aik
(k−1) / lkk

Sparse Cholesky

!   Reference case: regular 3 x 3 grid ordered by nested dissection.
Nodes in the separators are ordered last

!   Notation:
!   cdiv(j) : divide column j by a scalar
! cmod(j, k) : update column j with column k
! struct(L(1:k), j)) : the structure of L(1:k, j) submatrix

4

9

1

2

3

4

6

7

8

5

G(A) 	

T(A) 	

1 2
3

4

6
7

8

9

5

5 9 6 7 8 1 2 3 4
1

5

2
3
4

9

6
7
8

A 	

Sparse left-looking Cholesky

for j = 1 to n do
 for k in struct(L(j, 1 : j-1)) do
 cmod(j, k)
 end for
 cdiv(j)
end for

Before variable j is eliminated, column j is updated with all the
columns that have a nonzero on row j. In the example above,
struct(L(7,1:6)) = {1; 3; 4; 6}.
!   This corresponds to receiving updates from nodes lower in the

subtree rooted at j
!   The filled graph is necessary to determine the structure of each

row

5

Sparse right-looking Cholesky

for k = 1 to n do
 cdiv(k)
 for j in struct(L(k+1 : n, k)) do
 cmod(j,k)
 end for
end for

After variable k is eliminated, column k is used to update all the columns
corresponding to nonzeros in column k. In the example above,
struct(L(4:9,3))={7; 8; 9}.
!   This corresponds to sending updates to nodes higher in the elimination

tree
!   The filled graph is necessary to determine the structure of each column

6

 



 






•  Left-looking: many more reads
than writes

U(1:j-1, j) = L(1:j-1, 1:j-1) \ A(1:j-1, j)
for j = 1 to n do
 for k in struct(U(1:j-1, j)) do
 cmod(j, k)
 end for
 cdiv(j)
end for

Sparse LU

7

DONE

NOT
TOUCHED

U

L

A

ACTIVE

j

•  Right-looking: many more
writes than reads

for k = 1 to n do
 cdiv(k)
 for j in struct(U(k, k+1:n)) do
 cmod(j, k)
 end for
end for

DONE

ACTIVE

U

L A

j

High Performance Issues: Reduce Cost of
Memory Access & Communication

!   Blocking to increase number of floating-point operations performed
for each memory access

!   Aggregate small messages into one larger message

!  Reduce cost due to latency

!   Well done in LAPACK, ScaLAPACK
!  Dense and banded matrices

!   Adopted in the new generation sparse software
!  Performance much more sensitive to latency in sparse case

8

Blocking: supernode

!   Use (blocked) CRS or CCS, and any ordering method
–  Leave room for fill-ins ! (symbolic factorization)

!   Exploit “supernodal” (dense) structures in the factors
–  Can use Level 3 BLAS
–  Reduce inefficient indirect addressing (scatter/gather)
–  Reduce graph traversal time using a coarser graph

9

Nonsymmetric supernodes

1
2

3
4

5
6

10

7
8

9

Original matrix A	

 Factors L+U	

1
2

3
4

5
6

10

7
8

9

SuperLU speedup over unblocked code

!   Sorted in increasing “reuse ratio” = #Flops/nonzeros
!   ~ Arithmetic Intensity

!   Up to 40% of machine peak on large sparse matrices on
IBM RS6000/590, MIPS R8000

11

Symmetric-pattern multifrontal factorization
[John Gilbert’s lecture]

T(A) 	

1 2

3

4

6

7

8

9

5

5 9 6 7 8 1 2 3 4
1

5

2
3
4

9

6
7
8

A 	

9

1

2

3

4

6

7

8

5

G(A) 	

Symmetric-pattern multifrontal factorization

T(A) 	

1 2

3

4

6

7

8

9

5

For each node of T from leaves to root:
!   Sum own row/col of A with children’s

Update matrices into Frontal matrix
!   Eliminate current variable from Frontal

matrix, to get Update matrix

!   Pass Update matrix to parent

9

1

2

3

4

6

7

8

5

G(A) 	

Symmetric-pattern multifrontal factorization

T(A) 	

1 2

3

4

6

7

8

9

5

1 3 7
1
3
7

3 7
3
7

F1 = A1	

 => U1	

For each node of T from leaves to root:
!   Sum own row/col of A with children’s

Update matrices into Frontal matrix
!   Eliminate current variable from Frontal

matrix, to get Update matrix

!   Pass Update matrix to parent

9

1

2

3

4

6

7

8

5

G(A) 	

Symmetric-pattern multifrontal factorization

2 3 9
2
3
9

3 9
3
9

F2 = A2	

 => U2	

1 3 7
1
3
7

3 7
3
7

F1 = A1	

 => U1	

For each node of T from leaves to root:
!   Sum own row/col of A with children’s

Update matrices into Frontal matrix
!   Eliminate current variable from Frontal

matrix, to get Update matrix

!   Pass Update matrix to parent

T(A) 	

1 2

3

4

6

7

8

9

5

9

1

2

3

4

6

7

8

5

G(A) 	

Symmetric-pattern multifrontal factorization

T(A) 	

 2 3 9
2
3
9

3 9
3
9

F2 = A2	

 => U2	

1 3 7
1
3
7

3 7
3
7

F1 = A1	

 => U1	

3 7 8 9
3
7
8
9

7 8 9
7
8
9

F3 = A3+U1+U2	

 => U3	

1 2

3

4

6

7

8

9

5

9

1

2

3

4

6

7

8

5

G(A) 	

Symmetric-pattern multifrontal factorization

T(A) 	

1 2

3

4

6

7

8

9

5

5 9 6 7 8 1 2 3 4
1

5

2
3
4

9

6
7
8

L+U 	

9

1

2

3

4

6

7

8

5

G+(A) 	

Symmetric-pattern multifrontal factorization

T(A) 	

1 2

3

4

6

7

8

9

5

1

2

3

4

6

7

8

9
5

G(A) 	

!   variant of right-looking

!   Really uses supernodes, not nodes

!   All arithmetic happens on
dense square matrices.

!   Needs extra memory for a stack of pending
update matrices

!   Potential parallelism:
1.  between independent tree branches
2.  parallel dense ops on frontal matrix

Sparse triangular solution

!   Forward substitution for x = L \ b (back substitution for x = U \ b)
!   Row-oriented = dot-product = left-looking

 for i = 1 to n do

 x(i) = b(i);
 // dot-product
 for j = 1 to i-1 do
 x(i) = x(i) – L(i, j) * x(j);

 end for
 x(i) = x(i) / L(i, i);

 end for

19

 



 









 



 






 

 

Sparse triangular solution: x = L \ b

!   column-oriented = saxpy = right-looking
!   Either way works in O(nnz(L)) time

 x(1:n) = b(1:n);
 for j = 1 to n do

 x(j) = x(j) / L(j, j);
 // saxpy
 x(j+1:n) = x(j+1:n) –

 L(j+1:n, j) * x(j);
 end for

20

 



 









 



 






 

 

Sparse right-hand side: x = L \ b, b sparse

!   If A is triangular, G(A) has no cycles
!   Lower triangular => edges directed from higher to lower #s

!   Upper triangular => edges directed from lower to higher #s

1 2

3

4 7

6

5

A	

 G(A) 	

Use Directed Acyclic Graph (DAG)

Sparse right-hand side: x = L \ b, b sparse

1 5 2 3 4

=	

G(LT)	

1

2 3

4

5

L	

 x	

 b	

1.  Symbolic:
–  Predict structure of x by depth-first search from nonzeros of b

2.  Numeric:
–  Compute values of x in topological order

 Time = O(flops)	

b is sparse, x is also sparse, but may have fill-ins

Recall: left-looking sparse LU

!   Used in symbolic factorization to find nonzeros in column j

U(1:j-1, j) = L(1:j-1, 1:j-1) \ A(1:j-1, j)
for j = 1 to n d
 for k in struct(U(1:j-1, j)) do
 cmod(j, k)
 end for
 cdiv(j)
end for

DONE

NOT
TOUCHED

U

L

A

ACTIVE

j

sparse right-hand side

24

References

•  M.T. Heath, E. Ng., B.W. Peyton, “Parallel Algorithms for Sparse
Linear Systems”, SIAM Review, Vol. 33 (3), pp. 420-460, 1991.

•  E. Rothberg and A. Gupta, “Efficient Sparse Matrix Factorization
on High-Performance Workstations--Exploiting the Memory
Hierarchy”, ACM. Trans. Math, Software, Vol. 17 (3), pp. 313-334,
1991

•  E. Rothberg and A. Gupta, “An Efficient Block-Oriented Approach
to Parallel Sparse Cholesky Factorization, SIAM J. Sci. Comput.,
Vol. 15 (6), pp. 1413-1439, 1994.

•  J. W. Demmel, S. C. Eisenstat, J. R. Gilbert, X. S. Li, and J. W.H.
Liu, “A Supernodal Approach to Sparse Partial Pivoting'’, SIAM J.
Matrix Analysis and Applications, vol. 20 (3), pp. 720-755, 1999.

•  J. W. H. Liu, “The Multifrontal Method for Sparse Matrix Solution:
theory and Practice”, SIAM Review, Vol. 34 (1), pp. 82-109, 1992.

Exercises

1.  Study and run the OpenMP code of dense LU factorization in
Hands-On-Exercises/ directory

25

Lecture 5

Parallel Sparse Factorization, Triangular Solution

Xiaoye Sherry Li
Lawrence Berkeley National Laboratory, USA

xsli@lbl.gov

crd-legacy.lbl.gov/~xiaoye/G2S3/

4th Gene Golub SIAM Summer School, 7/22 – 8/7, 2013, Shanghai

Lecture outline

!   Shared-memory
!   Distributed-memory
!   Distributed-memory triangular solve

!   Collection of sparse codes, sparse matrices

2

3

SuperLU_MT [Li, Demmel, Gilbert]

§  Pthreads or OpenMP	

§  Left-looking – relatively more READs than WRITEs	

§  Use shared task queue to schedule ready columns in the elimination tree

(bottom up)	

§  Over 12x speedup on conventional 16-CPU SMPs (1999)	

P1 P2	

DONE	

 NOT	

TOUCHED	

WORKING	

U	

L	

A	

P1	

P2	

DONE	

 WORKING	

Benchmark matrices

apps dim nnz(A) SLU_MT
Fill

SLU_DIST
Fill

Avg.
S-node

g7jac200 Economic
model

59,310 0.7 M 33.7 M 33.7 M 1.9

stomach 3D finite
diff.

213,360 3.0 M 136.8 M 137.4 M 4.0

torso3 3D finite
diff.

259,156 4.4 M 784.7 M 785.0 M 3.1

twotone Nonlinear
analog
circuit

120,750 1.2 M 11.4 M 11.4 M 2.3

4

Multicore platforms

v  Intel Clovertown (Xeon 53xx)	

Ø  2.33 GHz Xeon, 9.3 Gflops/core	

Ø  2 sockets x 4 cores/socket	

Ø  L2 cache: 4 MB/2 cores	

v  Sun Niagara 2 (UltraSPARC T2): 	

Ø  1.4 GHz UltraSparc T2, 1.4 Gflops/core	

Ø  2 sockets x 8 cores/socket x 8 hardware threads/core	

Ø  L2 cache shared: 4 MB	

	

5

Intel Clovertown, Sun Niagara 2

6

!   Maximum speed up 4.3 (Intel), 20 (Sun)
!   Question: tools to analyze resource contention?

Matrix distribution on large distributed-memory machine

Ø  2D block cyclic recommended for many linear algebra algorithms
!   Better load balance, less communication, and BLAS-3

7

1D blocked 1D cyclic

1D block cyclic 2D block cyclic

2D Block Cyclic Distr. for Sparse L & U

8

2

3	

 4

1	

5

0	

 2

3	

 4

1	

5

0	

2
3	

 4

1	

5

0	

2

3	

 4

1	

5

0	

2	

1	

0	

2
3	

 4

1	

5

0	

2

3	

 4

1	

5

0	

2 1	

0	

3	

0	

3	

0	

3	

0	

0	

Matrix

ACTIVE	

0 2
3	

 4

1	

 5

Process(or) mesh

§  SuperLU_DIST : C + MPI	

§  Right-looking – relatively more WRITEs than READs	

§  2D block cyclic layout	

§  Look-ahead to overlap comm. & comp.	

§  Scales to 1000s processors	

SuperLU_DIST: GE with static pivoting
[Li, Demmel, Grigori, Yamazaki]

! Target: Distributed-memory multiprocessors
! Goal: No pivoting during numeric factorization

1.  Permute A unsymmetrically to have large elements on
the diagonal (using weighted bipartite matching)

2.  Scale rows and columns to equilibrate
3.  Permute A symmetrically for sparsity

4.  Factor A = LU with no pivoting, fixing up small pivots:

 if |aii| < ε · ||A|| then replace aii by ±ε1/2 · ||A||

5.  Solve for x using the triangular factors: Ly = b, Ux = y
6.  Improve solution by iterative refinement

Row permutation for heavy diagonal [Duff, Koster]	

•  Represent A as a weighted, undirected bipartite graph
(one node for each row and one node for each column)

•  Find matching (set of independent edges) with maximum
product of weights

•  Permute rows to place matching on diagonal
•  Matching algorithm also gives a row and column scaling

to make all diag elts =1 and all off-diag elts <=1

1 5 2 3 4
1

5

2
3
4

A	

1

5

2

3

4

1

5

2

3

4

1 5 2 3 4
4

2

5
3
1

PA	

SuperLU_DIST: GE with static pivoting
[Li, Demmel, Grigori, Yamazaki]

•  Target: Distributed-memory multiprocessors
•  Goal: No pivoting during numeric factorization

1.  Permute A unsymmetrically to have large elements on
the diagonal (using weighted bipartite matching)	

2.  Scale rows and columns to equilibrate	

3.  Permute A symmetrically for sparsity

4.  Factor A = LU with no pivoting, fixing up small pivots:	

	

if |aii| < ε · ||A|| then replace aii by ±ε1/2 · ||A||

5.  Solve for x using the triangular factors: Ly = b, Ux = y	

6.  Improve solution by iterative refinement	

SuperLU_DIST: GE with static pivoting
[Li, Demmel, Grigori, Yamazaki]

•  Target: Distributed-memory multiprocessors
•  Goal: No pivoting during numeric factorization

1.  Permute A unsymmetrically to have large elements on
the diagonal (using weighted bipartite matching)	

2.  Scale rows and columns to equilibrate	

3.  Permute A symmetrically for sparsity

4.  Factor A = LU with no pivoting, fixing up small pivots:	

	

if |aii| < ε · ||A|| then replace aii by ±ε1/2 · ||A||

5.  Solve for x using the triangular factors: Ly = b, Ux = y	

6.  Improve solution by iterative refinement	

SuperLU_DIST steps to solution

1.  Matrix preprocessing
•  static pivoting/scaling/permutation to improve

numerical stability and to preseve sparsity
2.  Symbolic factorization

•  compute e-tree, structure of LU, static comm. &
comp. scheduling

•  find supernodes (6-80 cols) for efficient dense
BLAS operations

3.  Numerical factorization (dominate)
•  Right-looking, outer-product
•  2D block-cyclic MPI process grid

4.  Triangular solve with forward, back
substitutions

13

2x3 process grid

SuperLU_DIST right-looking factorization

for j = 1, 2, . . . , Ns (# of supernodes)
 // panel factorization (row and column)
 - factor A(j,j)=L(j,j)*U(j,j), and ISEND to PC(j) and PR(j)

 - WAIT for Lj,j and factor row Aj, j+1:Ns
 and SEND right to PC (:)
 - WAIT for Uj,j and factor column Aj+1:Ns, j
 and SEND down to PR(:)

 // trailing matrix update
 - update Aj+1:Ns, j+1:Ns
 end for

Scalability bottleneck:
!   Panel factorization has sequential flow and limited parallelism.
!   All processes wait for diagonal factorization & panel factorization

14

0

3 4
0 1 2

3 4 5 3

0 2 0 1

3 4 5 3 4 5

0 1 2 0 1 2 0

1

1

2

2

5

0 1

4

0 1 2 0

3 4 5

2

5

0

0

3

3

3

2x3 process grid

SuperLU_DIST 2.5 on Cray XE6

!   Profiling with IPM
!   Synchronization dominates on a large number of cores

!   up to 96% of factorization time

15

8 32 128 512 2048
0

5

10

15

20

25

30

35

40

45

50

Number of cores

F
a
ct

o
ri
za

tio
n
 t
im

e
(s

)

Factorization
Communication

32 128 512 2048
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Number of cores

F
a

ct
o

ri
za

tio
n

 t
im

e
(s

)

Factorization
Communication

Accelerator (sym), n=2.7M, fill-ratio=12 DNA, n = 445K, fill-ratio= 609

Look-ahead factorization with window size nw
for j = 1, 2, . . . , Ns (# of supernodes)
 // look-ahead row factorization
 for k = j+1 to j+nw do
 if (Lk,k has arrived) factor Ak,(k+1):Ns and ISEND to PC(:)
 end for
 // synchronization
 - factor Aj,j =Lj,jUj,j, and ISEND to PC(j) and PR(j)
 - WAIT for Lj,j and factor row Aj, j+1:Ns
 - WAIT for L:, j and Uj, :

 // look-ahead column factorization
 for k = j+1 to j+nw do
 update A:,k

 if (A:,k is ready) factor Ak:Ns,k and ISEND to PR(:)

 end for
 // trailing matrix update
 - update remaining A j+nw+1:Ns, j+nw+1:Ns
 end for

!   At each j-th step, factorize all “ready” panels in the window

!   reduce idle time; overlap communication with computation; exploit more parallelism

16

0

3 4

0 1 2

3 4 5 3

0 2 0 1

3 4 5 3 4 5

0 1 2 0 1 2 0

1

1

2

2

5

0 1

4

0 1 2 0

3 4 5

2

5

0

0

3

3

3

look−ahead window

Expose more “Ready” panels in window

!   Schedule tasks with better order as long as tasks dependencies
are respected

Dependency graphs:
1.  LU DAG: all dependencies
2.  Transitive reduction of LU DAG: smallest graph, removed all

redundant edges, but expensive to compute
3.  Symmetrically pruned LU DAG (rDAG): in between LU DAG and

its transitive reduction, cheap to compute
4.  Elimination tree (e-tree):

•  symmetric case: e-tree = transitive reduction of Cholesky DAG,
cheap to compute

•  unsymmetric case: e-tree of |A|T+|A|, cheap to compute

17

Example: reordering based on e-tree

18

11

1

2 3

4

5 6

7

9 8 10

11

1

6 2

7

8 3

4

9

510

Window size = 5
! Postordering based on depth-first

search

! Bottomup level-based ordering

SuperLU_DIST 2.5 and 3.0 on Cray XE6

8 32 128 512 2048
0

5

10

15

20

25

30

35

40

45

50

Number of cores

F
a

ct
o

ri
za

tio
n

/C
o

m
m

u
n

ic
a

tio
n

 t
im

e
 (

s)

version 2.5
version 3.0

19

32 128 512 2048
0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

Number of cores

F
a

ct
o

ri
za

tio
n

/C
o

m
m

u
n

ic
a

tio
n

 t
im

e
 (

s)

version 2.5
version 3.0

Accelerator (sym), n=2.7M, fill-ratio=12 DNA, n = 445K, fill-ratio= 609

!   Idle time was significantly reduced (speedup up to 2.6x)
!   To further improve performance:

!   more sophisticated scheduling schemes
!   hybrid programming paradigms

Examples

!   Sparsity-preserving ordering: MeTis applied to structure of A’+A
20

Name Application Data
type

N |A| / N
Sparsity

|L\U|
(10^6)

Fill-ratio

g500 Quantum
Mechanics
(LBL)

Complex 4,235,364 13 3092.6 56.2

matrix181 Fusion,
MHD eqns
(PPPL)

Real 589,698 161 888.1 9.3

dds15 Accelerator,
Shape
optimization
(SLAC)

Real 834,575 16 526.6 40.2

matick Circuit sim.
MNA method
(IBM)

Complex 16,019 4005 64.3 1.0

Performance on IBM Power5 (1.9 GHz)

Ø  Up to 454 Gflops factorization rate

21

Performance on IBM Power3 (375 MHz)

Ø  Quantum mechanics, complex

22

•  Challenge: higher degree of dependency

Distributed triangular solution

23

ii

i

j
jiji

i L

xLb
x

∑
−

=

⋅−

=

1

1

1
0 0

0

0

1

1

1 2 2

2 0

3

33

3

3

33 4

4 4

4

4 5 5

5

5

0
4

2
3

1

5
0

4

1

+

0 2
3 4

1
 5

Process mesh

2

3 4

•  Diagonal process
computes the solution

•  Clovertown: 8 cores; IBM Power5: 8 cpus/node

•  OLD code: many MPI_Reduce of one integer each, accounting for
75% of time on 8 cores

•  NEW code: change to one MPI_Reduce of an array of integers

•  Scales better on Power5

Parallel triangular solution

24

MUMPS: distributed-memory multifrontal
[Current team: Amestoy, Buttari, Guermouche, L‘Excellent, Uçar]

!   Symmetric-pattern multifrontal factorization
!   Parallelism both from tree and by sharing dense ops
!   Dynamic scheduling of dense op sharing
!   Symmetric preordering
!   For nonsymmetric matrices:

!   optional weighted matching for heavy diagonal
!   expand nonzero pattern to be symmetric
!   numerical pivoting only within supernodes if possible

(doesn’t change pattern)
!   failed pivots are passed up the tree in the update matrix

Collection of software, test matrices

!   Survey of different types of direct solver codes
 http://crd.lbl.gov/~xiaoye/SuperLU/SparseDirectSurvey.pdf
!   LLT (s.p.d.)
!   LDLT (symmetric indefinite)
!   LU (nonsymmetric)
!   QR (least squares)
!   Sequential, shared-memory, distributed-memory, out-of-core

•  Accelerators such as GPU, FPGA become active, have papers, no
public code yet

!   The University of Florida Sparse Matrix Collection
 http://www.cise.ufl.edu/research/sparse/matrices/

26

References
•  X.S. Li, “An Overview of SuperLU: Algorithms, Implementation, and User Interface”,

ACM Transactions on Mathematical Software, Vol. 31, No. 3, 2005, pp. 302-325.
•  X.S. Li and J. Demmel, “SuperLU_DIST: A Scalable Distributed-memory Sparse

Direct Solver for Unsymmetric Linear Systems”, ACM Transactions on Mathematical
Software, Vol. 29, No. 2, 2003, pp. 110-140.

•  X.S. Li, “Evaluation of sparse LU factorization and triangular solution on multicore
platforms”, VECPAR'08, June 24-27, 2008, Toulouse.

•  I. Yamazaki and X.S. Li, “New Scheduling Strategies for a Parallel Right-looking
Sparse LU Factorization Algorithm on Multicore Clusters”, IPDPS 2012, Shanghai,
China, May 21-25, 2012.

•  L. Grigori, X.S. Li and J. Demmel, “Parallel Symbolic Factorization for Sparse LU
with Static Pivoting”. SIAM J. Sci. Comp., Vol. 29, Issue 3, 1289-1314, 2007.

•  P.R. Amestoy, I.S. Duff, J.-Y. L'Excellent, and J. Koster, “A fully asynchronous
multifrontal solver using distributed dynamic scheduling”, SIAM Journal on Matrix
Analysis and Applications, 23(1), 15-41 (2001).

•  P. Amestoy, I.S. Duff, A. Guermouche, and T. Slavova. Analysis of the Solution
Phase of a Parallel Multifrontal Approach. Parallel Computing, No 36, pages 3-15,
2009.

•  A. Guermouche, J.-Y. L'Excellent, and G.Utard, Impact of reordering on the memory
of a multifrontal solver. Parallel Computing, 29(9), pages 1191-1218.

•  F.-H. Rouet, Memory and Performance issues in parallel multifrontal factorization
and triangular solutions with sparse right-hand sides, PhD Thesis, INPT, 2012.

•  P. Amestoy, I.S. Duff, J-Y. L'Excellent, X.S. Li, “Analysis and Comparison of Two
General Sparse Solvers for Distributed Memory Computers”, ACM Transactions on
Mathematical Software, Vol. 27, No. 4, 2001, pp. 388-421.

27

Exercises

1.  Download and install SuperLU_MT on your machine, then run the
examples in EXAMPLE/ directory.

2.  Run the examples in SuperLU_DIST_3.3 directory.

28

Lecture 6

Incomplete Factorization

Xiaoye Sherry Li	

Lawrence Berkeley National Laboratory, USA

xsli@lbl.gov

crd-legacy.lbl.gov/~xiaoye/G2S3/

4th Gene Golub SIAM Summer School, 7/22 – 8/7, 2013, Shanghai

Lecture outline

! Supernodal LU factorization (SuperLU)
! Supernodal ILUTP with adaptive dual dropping

§  Threshold dropping in supernode
§  Secondary dropping for memory concern

!   Variants: Modified ILU (MILU)
!   Extensive experiments, comparison with other approaches

§  232 matrices

2

Preconditioner
!   Improve efficiency and robustness of iterative solvers
!   Solve a transformed linear system, hopefully easier:

!   M-1Ax = M-1b …. Left preconditioning
!   AM-1u = b, x = M-1u …. Right preconditioning

!   Goal: find preconditioner M ~ A, so that the eigenvalue spectrum of
M-1A is improved.
1.  Cheap to construct, store, “invert”, parallelize
2.  Good approximation of A

 contradictory goals à tradeoff
!   Standard design strategy:

!   Start with a complete factorization
!   Add approximations to make it cheaper (cf. 1) while (hopefully/

provably) affecting little 2.
!   We will present two approaches

!   Incomplete factorization
!   Low-rank approximations

3

ILU preconditioner

!   Structure-based dropping: level-of-fill
§  ILU(0), ILU(k)
§  Rationale: the higher the level, the smaller the entries
§  Separate symbolic factorization to determine fill-in pattern

!   Value-based dropping: drop truly small entries
§  Fill-in pattern must be determined on-the-fly

!   ILUTP [Saad]: among the most sophisticated, and (arguably)
robust; implementation similar to direct solver
§  “T” = threshold, “P” = pivoting
§  Dual dropping: ILUTP(p, tau)

1)  Remove elements smaller than tau
2)  At most p largest kept in each row or column

4

SuperLU [Demmel/Eisenstat/Gilbert/Liu/Li ’99]
 http://crd.lbl.gov/~xiaoye/SuperLU

5

•  Left-looking, supernode

DONE NOT
TOUCHED

WORKING

U

L
A

panel
1. Sparsity ordering of columns

use graph of A’*A
2. Factorization

For each panel …
•  Partial pivoting
•  Symbolic fact.
•  Num. fact. (BLAS 2.5)

3. Triangular solve

Primary dropping rule: S-ILU(tau)

!   Similar to ILUTP, adapted to supernode
1.  U-part:

2.  L-part: retain supernode

!   Remarks

1)  Delayed dropping
2)  Entries computed first, then dropped.

 May not save many flops compared to LU
3)  Many choices for RowSize() metric

6

0set then ,)(:, If =⋅<
∞ ijij ujAu τ

zero torowth - entire set the then ,):,(if),:(:, Supernode itsiRowSizetsL τ<

i	

Dropping in supernode

RowSize() metric: let m = t-s+1 be the supernode size

1)  Mean: [used by Gupta/George for IC]

2)  Generalized-mean:

3)  Infinity-norm:
Every dropped entry in L would also be
dropped in a column-wise algorithm

7

Supernode L(:, s : t), if RowSize(i, s : t)< τ , then set the entire i-th row to zero

i	

veconservati is 3) ,aggressivemost is 1) , |||||||||||| Since 21
∞≤≤ x

m
x

m
x

m
xxRowSize 2||||)(=

∞= ||||)(xxRowSize

m
xxRowSize 1||||)(=

Secondary dropping rule: S-ILU(p,tau)

!   Control fill ratio with a user-desired upper bound
!   Earlier work, column-based

§  [Saad]: ILU(p, tau), at most p largest nonzeros allowed in each row
§  [Gupta/George]: p adaptive for each column

 May use interpolation to compute a threshold function, no sorting

!   Our new scheme is area-based
§ 

§  Define adaptive upper bound function

Ø  More flexible, allow some columns to fill more, but limit overall

8

))(:,()(jAnnzjp ⋅= γ

)):1(:,(/)):1(:,()(
j toup 1column from ratio fillat Look
jAnnzjFnnzjfr
:

=

γ

],1[)(γ∈jf
)()(such that largest, ponly retain , exceeds)(If jfjfrf(j)jfr ≤

):1(:, jF

j+1

Experiments: GMRES + ILU

!   Use restarted GMRES with ILU as a right preconditioner

!   Size of Krylov subspace set to 50
!   Initial guess is a 0-vector
!   Stopping criteria:

!   232 unsymmetric test matrices; RHS is generated so the true
solution is 1-vector
§  227 from Univ. of Florida Sparse Matrix Collection

 dimension 5K – 1M, condition number below 1015
§  5 from MHD calculation in tokamak design for plasma fusion energy

!   AMD Opteron 2.4 GHz quad-core (Cray XT5), 16 GBytes memory,
PathScale pathcc and pathf90 compilers

9

PbyULPA - =1)~~(Solve

b - A xk 2
 ≤ 10−8 b

2
 and ≤ 500 iterations

Compare with column C-ILU(p, tau)
!   C-ILU: set maximum supernode size to be 1
!   Maxsuper = 20, gamma = 10, tau = 1e-4

10

 Factor construction GMRES Total Sec.

Fill-
ratio

S-node
Cols

Flops
(109)

Fact.
sec.

Iters Iter sec.

 138 matrices succeeded

S-ILU 4.2 2.8 7.60 39.69 21.6 2.93 42.68

C-ILU 3.7 1.0 2.65 65.15 20.0 2.55 67.75

 134 matrices succeeded

S-ILU 4.2 2.7 9.45 54.44 20.5 3.4 57.0

C-ILU 3.6 1.0 2.58 74.10 19.8 2.88 77.04

mxxRowSize /||||)(2=

∞= ||||)(xxRowSize

Supernode vs. column

!   Less benefit using supernode compared to complete LU
§  Better, but Less than 2x speedup

!   What go against supernode?

§  The average supernode size is smaller than in LU.
§  The row dropping rule in S-ILU tends to leave more fill-ins and

operations than C-ILU … we must set a smaller “maxsuper”
parameter.

e.g., 20 in ILU vs. 100 in LU

11

S-ILU for extended MHD calculation (fusion)

!   ILU parameters:
!   Up to 9x smaller fill ratio, and 10x faster

12

Problems order Nonzeros
(millions)

ILU
time fill-ratio

GMRES
time iters

SuperLU
time fill-ratio

matrix31 17,298 2.7 m 8.2 2.7 0.6 9 33.3 13.1

matrix41 30,258 4.7 m 18.6 2.9 1.4 11 111.1 17.5

matrix61 66,978 10.6 m 54.3 3.0 7.3 20 612.5 26.3

matrix121 263,538 42.5 m 145.2 1.7 47.8 45 fail -

matrix181 589,698 95.2 m 415.0 1.7 716.0 289 fail -

10 ,10 4 == − γτ

Performance profile
E.D. Dolan and J.J. More, “Benchmarking optimization software with performance
profiles”, Mathematical Programming, 91(2):201–203, 2002.

!   Visually compare solvers X inputs

!   Let M = set of matrices, S = set of solvers
! fr(m, s) and t(m, s) denote the fill ratio and total time needed to

solve matrix “m” by solver s.
!   Calculate the cumulative distribution functions for each solver s:

!   fraction of the problems that s could solve within the fill ratio x

!   fraction of the problems that s could solve within a factor of x of the
best solution time among all the solvers

13

Prf (s, x) =
#{m ∈M : fr(m, s) ≤ x}

#M
, x ∈ R

Prt (s, x) =
m ∈M : t(m, s)

mins∈S{t(m, s)}
≤ x

#
$
%

&
'
(

)(

#M
, x ∈ R

S-ILU comprehensive tests
!   Performance profile of fill ratio – fraction of the problems a solver could

solve within a fill ratio of X
!   Performance profile of runtime – fraction of the problems a solver could

solve within a factor X of the best solution time

!   Conclusion:
§  New area-based heuristic is much more robust than column-based one
§  ILUTP(tau) is reliable; but need secondary dropping to control memory

14

Other features in the software

!   Zero pivot ?

!   Threshold partial pivoting

! Preprocecssing with MC64 [Duff-Koster]

§  With MC64, 203 matrices converge, avg. 12 iterations
§  Without MC64, 170 matrices converge, avg. 11 iterations

!   Modified ILU (MILU)
§  Reduce number of zero pivots

15

dconditione-ill not too is so , with increasing adaptive, ,10)(ˆ

||)(:,||)(ˆ it toset ,0 if
)/1(2 Ujj

jAju
nj

jj

−−

∞

=

=

τ

τ

Modified ILU (MILU)

!   Reduce the effect of dropping: for a row or column, add up the
dropped elements to the diagonal of U

!   Classical approach has the following property:
§  Maintain row-sum for a row-wise algorithm:
§  Maintain column-sum for a column-wise algorithm:

!   Another twist … proposed for MIC
 Maintain for any x, using diagonal perturbations
§  Dupont-Kendall, Axelsson-Gustafsson, Notay (DRIC)
§  Reduce condition number of elliptic discretization matrices by order of

magnitude (i.e., from O(h-2) to O(h-1))

16

eAeUL =
~~

xDxAxLU Λ+=

AeULe TT =
~~

MILU algorithm

!   C-MILU:
1)  Obtain filled column F(:, j), drop from F(:, j)
2)  Add up the dropped entries: s = ∑dropped fij ; Set fij := fij + s
3)  Set U(1:j, j) := F(1:j, j); L(j+1:n, j) := F(j+1: n, j) / F(j, j)

!   S-MILU:
1)  First drop from U, s = ∑dropped U(:,j)

Set ujj := fjj + s;
2)  When a supernode is formed in L, drop more

 rows in L, add the dropped entries to
 diagonal of U

!   Our variants:
§  S-MILU-1: s = ∑dropped U(:,j)
§  S-MILU-2: s = | ∑dropped U(:,j) |, ujj := fij + sign(fjj)*s
§  S-MILU-3: s = ∑dropped |U(:,j)|, ujj := fij + sign(fjj)*s

17

i	

Modified ILU (MILU)

18

Another look at MILU – 232 matrices

Converge Slow Diverge Zero
pivots

Average
iterations

S-ILU 133 51 46 1737 35

S-MILU-1 125 72 33 1058 34

S-MILU-2 127 71 31 296 30

S-MILU-3 129 73 28 289 33

19

Compare with the other preconditioners

!   SPARSKIT [saad] : ILUTP, closest to ours
§  Row-wise algorithm, no supernode
§  Secondary dropping uses a fixed p for each row

!   ILUPACK [Bolhoefer et al.] : very different
§  Inverse-based approach: monitor the norm of the k-th row of L-1, if too

large, delay pivot to next level
§  Multilevel: restart the delayed pivots in a new level

! ParaSails [Chow]: very different
§  Sparse approximate inverse: M ~ A-1

§  Pattern of powers of sparsified A as the pattern of M
 “thresh” to sparsify A, “nlevels” to keep level of neighbors

§  Default setting: thresh = 0.1, nlevels = 1
 Only 39 matrices converge, 62 hours to construct M, 63 hours after
GMRES

§  Smaller thresh and larger nlevels help, but too expensive

20

Compare with SPARSKIT, ILUPACK

!   S-ILU:
!   ILUPACK :
!   SPARSKIT :

21

0.1h diag_thres ,5 ,10 4 === − ηγτ
5 ,5 ,10 4 === − νγτ

n
nnzp ⋅=== − γγτ ,5 ,10 4

Comparison (cont) … a closer look …

!   S-ILU and ILUPACK are comparable: S-ILU is slightly faster,
ILUPACK has slightly lower fill

!   None of the preconditioners works for all problems … unlike direct
methods

!   They do not solve the same set of problems
§  S-ILU succeeds with 142
§  ILUPACK succeeds with 130
§  Both succeed with 100 problems

!   Remark
 Two methods complimentary to one another, both have their place
in practice

22

Summary

!   Secondary dropping: area-based, adaptive-p, adaptive-tau
§  More reliable

!   Empirical study of MILU

§  Limited success, disappointing in general

23

Summary

!   60-70% success with S-ILUTP for 232 matrices.
 When it works, much more efficient than direct solver.

! Supernode
§  Useful, but to less extend compared with complete LU

!   Secondary dropping: area-based, adaptive-p, adaptive-tau
§  More reliable

!   Software
§  Available in serial SuperLU V4.0, June 2009
§  Same can be done for SuperLU_MT (left-looking, multicore)

!   Scalable parallel ILUTP?
§  How to do this with right-looking, multifrontal algorithms?

 e.g., SuperLU_DIST, MUMPS
§  Even lower Arithmetic Intensity than complete LU

24

References

•  X.S. Li and M. Shao, “A Supernodal Approach to Incomplete LU
Factorization with Partial Pivoting”, ACM Trans. Math. Software,
Vol. 37, No. 4, Article No. 43, 2011.

•  Y. Saad, “Iterative methods for sparse linear systems (2nd
edition)”, SIAM, 2003. (book)

•  M. Benzi, “Preconditioning techniques for large linear systems: a
survey”, Journal of Computational Physics 182 (2), 418-477, 2002.
•  Contains 296 references

25

Exercises

1.  Run the ILU + GMRES example in SuperLU_4.3/EXAMPLE/
directory

2.  Study the incomplete Cholesky code (CholIC) in Hands-On-
Exercises/ directory
•  Implement the subroutine Chol_IC() in the file graph_facto_mod.f90
•  Compile and run your completed program

26

Lecture 7

Low Rank Approximate Factorizations

Xiaoye Sherry Li
Lawrence Berkeley National Laboratory, USA

xsli@lbl.gov

1 / 47

Introduction

Consider solving large sparse linear system Au = b with Gaussian
elimination: A = LU

Deliver reliable solution, error bounds, condition estimation, efficient for
many RHS, . . .

Complexity wall ... not linear time
[George ’73] For model problems, (exact) sparse LU with best ordering
Nested Dissection gives optimal complexity:

I 2D (kxk = n grids): O(n log n) Fill, O(n3/2) Flops

Fill: adding up the dense submatrices of all the “+” separators:

k2 + 4
(

k
2

)2

+ 42
(

k
4

)2

+ . . . =
∑
i=0

4i
(

k
2i

)2

= O(k2 log k)

Flops: dominated by cubic term of factorizing top-level separator: O(k3)

2 / 47

Approximation

Exploit “data-sparseness” structure in separators
data-sparse: matrix may be dense, but has a compressed representation
smaller than N2

Low-rank matrices as basic building blocks

If B has exact rank at most k:
I Outer-product form: Bm×n = Um×kVT

k×n, k ≤ n
I Orthonormal outer-product form:

Bm×n = Um×kXk×kVT
k×n, UTU = VTV = Ik

If A has numerical low rank k (called ε-rank):
A = UΣVT ≈ Ak := UΣkVT , Σ = diag(σ1, . . . , σk, σk+1, . . . , σn)
Σk = diag(σ1, . . . , σk, 0, . . . , 0), with σk > ε

Algorithms:
truncated SVD
rank-revealing QR
randomized sampling, ...

3 / 47

Approximations by LR matrices

Singular Value Decomposition (SVD)
A = UΣVT ≈ Ak := UΣkVT

Σ = diag(σ1, . . . , σk, σk+1, . . . , σn)
Σk = diag(σ1, . . . , σk, 0, . . . , 0)

I accuracy: ‖A− Ak‖2 = σk+1
I cost: O(m2n) (m ≤ n)

Rank-Revealing QR decomposition (RRQR)

AΠ = QR, R =

[
R11 R12
0 R22

]
, Π permutation matrix

Choose U = Q(:, 1 : k),V = Π[R11 R12]T

I accuracy: ‖A− UVT‖2 = ‖R22‖2 ≤ c σk+1
I cost: O(kmn) (m ≤ n, k ≈ m)

4 / 47

LR Matrices (con’t)

Randomized sampling
1 Pick random matrix Ωn×(k+p), p small, e.g. 10
2 Sample matrix S = AΩ, with slight oversampling p
3 Compute Q = ON-basis(S)

I accuracy: with probability ≥ 1− 6 · p−p,
‖A− QQ∗A‖ ≤ [1 + 11

√
k + p ·

√
min{m, n}]σk+1

I cost: O(kmn)

Remarks
I Kernel: All have same asymptotic cost with explicit matrix

F RS can be faster when fast matrix-vector available
F RS useful when only matrix-vector available

I Putting in sparse solver: costs will be different ...

5 / 47

LR Matrices (con’t)

Randomized sampling
1 Pick random matrix Ωn×(k+p), p small, e.g. 10
2 Sample matrix S = AΩ, with slight oversampling p
3 Compute Q = ON-basis(S)

I accuracy: with probability ≥ 1− 6 · p−p,
‖A− QQ∗A‖ ≤ [1 + 11

√
k + p ·

√
min{m, n}]σk+1

I cost: O(kmn)

Remarks
I Kernel: All have same asymptotic cost with explicit matrix

F RS can be faster when fast matrix-vector available
F RS useful when only matrix-vector available

I Putting in sparse solver: costs will be different ...

5 / 47

Data-sparse representations
Hierarchical matrices: H-matrix,H2-matrix
[Bebendorf, Borm, Grasedyck, Hackbusch, Le Borne, Martinsson, Tygert, ...]

allow Fast matrix-vector multiplication, factorization, inversion, ...

H-matrix : Given a “suitable” partition P : I × J of row and column
dimensions, ranks of all blocks Ab ≤ k. (low-rank blocks chosen
independently from each other)

I Example [Bebendorf 2008]: Hilbert matrix
hij = 1

i+j−1 and the blockwise ranks:

I Flops of matrix-vector multiplication:
O(k(|I| log |I|+ |J| log |J|))

H2-matrix is a uniformH-matrix with nested cluster bases
I more restrictive but faster thanH-matrix
I Flops of matrix-vector multiplication: O(k(|I|+ |J|)) (algebraic

generalization of the Fast Multipole method)

6 / 47

Data-sparse representations

(Hierarchically) Semi-Separable matrices
[Bini, Chandrasekaran, Dewilde, Eidelman, Gemignani, Gohberg, Gu, Kailath, Olshevsky, van

der Veen, Van Barel, Vandebril, White, et al.]

SS matrix: S = triu(UVT) + tril(WZT), where U,V,W, and Z are
rank-k matrices.

I Example: can be used to represent the inverse of a banded matrix
HSS matrix: the bases are required to be nested

I special case ofH2-matrix

Other low-rank factorization ideas:

BLR (Block LR) (Amestoy et al.)

MLR (Multilevel LR) (Saad et al.)

7 / 47

Outline

How it works operationally?
I Hierarchical matrix representation, factorization
I HSS-embedded multifrontal factorization

F targeting at nonsymetric systems (with PDE behind)

Theory
I Schur monotonicity
I conditioning analysis
I rank analysis for discretized PDEs

Practice
I ordering within separator
I parallelization
I preconditioning

Summary

8 / 47

Hierarchically Semi-Separable matrices

An HSS matrix A is a dense matrix whose off-diagonal blocks are low-rank.
High-level structure: 2× 2 blocks

A =

[
D1 U1B1VT

1

U2B2VT
1 D2

]

Fundamental property required for efficiency: nested bases

U3 =

[
U1 0
0 U2

]
Usmall

3 ,Usmall
3 : 2k × k

Same for U3, U6, V6 and recursively at subsequent levels.

9 / 47

Hierarchically Semi-Separable matrices

An HSS matrix A is a dense matrix whose off-diagonal blocks are low-rank.
Recursion

A =


D1 U1B1VT

2 U3B3VT
6U2B2VT

1 D2

U6B6VT
3

D4 U4B4VT
5

U5B5VT
4 D5


Fundamental property required for efficiency: nested bases

U3 =

[
U1 0
0 U2

]
Usmall

3 ,Usmall
3 : 2k × k

Same for U3, U6, V6 and recursively at subsequent levels.

9 / 47

Hierarchically Semi-Separable matrices

An HSS matrix A is a dense matrix whose off-diagonal blocks are low-rank.
Recursion

A =


D1 U1B1VT

2 U3B3VT
6U2B2VT

1 D2

U6B6VT
3

D4 U4B4VT
5

U5B5VT
4 D5


Fundamental property required for efficiency: nested bases

U3 =

[
U1 0
0 U2

]
Usmall

3 ,Usmall
3 : 2k × k

Same for U3, U6, V6 and recursively at subsequent levels.

9 / 47

Hierarchical bases, HSS tree

For efficiency, require:

U3 =

[
U1 0
0 U2

]
Usmall

3 ,Usmall
3 : 2k × k, U6 =

[
U4 0
0 U5

]
Usmall

6 , Usmall
6 : 2k × k

U7 =

[
U3 0
0 U6

]
Usmall

7 , Usmall
7 : 2k × k

Each basis is a product of descendents’ bases:

U7 =


U1 0 0 0
0 U2 0 0
0 0 U4 0
0 0 0 U5

[Usmall
3 0
0 Usmall

6

]
Usmall

7 ,

Not to multiply out!
10 / 47

HSS explicit representation (construction)

[Martinsson]

keep it as an unevaluated product & sum

operations going up / down the HSS tree

11 / 47

Structured factorization

HSS node :

() ≈ V(T̃r , T̃H
c)

2. Compl. basis with V⊥:
(V⊥ , V) is unitary

3. Change basis:
D̃ = (V⊥ , V)H (V⊥ , V)

4. Partially factorize D̃:(
DL

Dc T̃D

)(
DU Dr

I

)
= D̃

12 / 47

Structured factorization

}
I5

}

I4 }
I6

}

I1

}

I2 }
I3 
I7

HSS node :

() ≈ V(T̃r , T̃H
c)

2. Compl. basis with V⊥:
(V⊥ , V) is unitary

3. Change basis:
D̃ = (V⊥ , V)H (V⊥ , V)

4. Partially factorize D̃:(
DL

Dc T̃D

)(
DU Dr

I

)
= D̃

12 / 47

Structured factorization

}
I2

}
I1 
I3

HSS node :

() ≈ V(T̃r , T̃H
c)

2. Compl. basis with V⊥:
(V⊥ , V) is unitary

3. Change basis:
D̃ = (V⊥ , V)H (V⊥ , V)

4. Partially factorize D̃:(
DL

Dc T̃D

)(
DU Dr

I

)
= D̃

12 / 47

Structured factorization

D Tr

Tc

}
I2

}
I1 
I3

HSS node 1:

1. Approximate:
(Tr , TH

c) ≈ V(T̃r , T̃H
c)

2. Compl. basis with V⊥:
(V⊥ , V) is unitary

3. Change basis:
D̃ = (V⊥ , V)H (V⊥ , V)

4. Partially factorize D̃:(
DL

Dc T̃D

)(
DU Dr

I

)
= D̃

12 / 47

Structured factorization

D VT̃r

T̃T
c VH

}
I2

}
I1 
I3

HSS node 1:

1. Approximate:
(Tr , TH

c) ≈ V(T̃r , T̃H
c)

2. Compl. basis with V⊥:
(V⊥ , V) is unitary

3. Change basis:
D̃ = (V⊥ , V)H (V⊥ , V)

4. Partially factorize D̃:(
DL

Dc T̃D

)(
DU Dr

I

)
= D̃

12 / 47

Structured factorization

D VT̃r

T̃T
c VH

}
I2

}
I1 
I3

HSS node 1:

1. Approximate:
(Tr , TH

c) ≈ V(T̃r , T̃H
c)

2. Compl. basis with V⊥:
(V⊥ , V) is unitary

3. Change basis:
D̃ = (V⊥ , V)H (V⊥ , V)

4. Partially factorize D̃:(
DL

Dc T̃D

)(
DU Dr

I

)
= D̃

12 / 47

Structured factorization

D VT̃r

T̃T
c VH

}
I2

}
I1 
I3

(
V⊥ V

)
×(

VH
⊥

VH

)
×

HSS node 1:

1. Approximate:
(Tr , TH

c) ≈ V(T̃r , T̃H
c)

2. Compl. basis with V⊥:
(V⊥ , V) is unitary

3. Change basis:
D̃ = (V⊥ , V)H D (V⊥ , V)

4. Partially factorize D̃:(
DL

Dc T̃D

)(
DU Dr

I

)
= D̃

12 / 47

Structured factorization

D̃ T̃r

T̃T
c

}
I2

}
I1 
I3

HSS node 1:

1. Approximate:
(Tr , TH

c) ≈ V(T̃r , T̃H
c)

2. Compl. basis with V⊥:
(V⊥ , V) is unitary

3. Change basis:
D̃ = (V⊥ , V)H D (V⊥ , V)

4. Partially factorize D̃:(
DL

Dc T̃D

)(
DU Dr

I

)
= D̃

12 / 47

Structured factorization

D̃ T̃r

T̃T
c

}
I2

}
I1 
I3

HSS node 1:

1. Approximate:
(Tr , TH

c) ≈ V(T̃r , T̃H
c)

2. Compl. basis with V⊥:
(V⊥ , V) is unitary

3. Change basis:
D̃ = (V⊥ , V)H D (V⊥ , V)

4. Partially factorize D̃:(
DL

Dc T̃D

)(
DU Dr

I

)
= D̃

12 / 47

Structured factorization

T̃D T̃r

T̃T
c

}
I2

}
I1 
I3

HSS node 1:

1. Approximate:
(Tr , TH

c) ≈ V(T̃r , T̃H
c)

2. Compl. basis with V⊥:
(V⊥ , V) is unitary

3. Change basis:
D̃ = (V⊥ , V)H D (V⊥ , V)

4. Partially factorize D̃:(
DL

Dc T̃D

)(
DU Dr

I

)
= D̃

12 / 47

Structured factorization

D Tr

TT
c

}
I2

}
I1 
I3

HSS node 2:

1. Approximate:
(Tr , TH

c) ≈ V(T̃r , T̃H
c)

2. Compl. basis with V⊥:
(V⊥ , V) is unitary

3. Change basis:
D̃ = (V⊥ , V)H D (V⊥ , V)

4. Partially factorize D̃:(
DL

Dc T̃D

)(
DU Dr

I

)
= D̃

12 / 47

Structured factorization

T̃D T̃r

T̃T
c

}
I2

}
I1 
I3

HSS node 2:

1. Approximate:
(Tr , TH

c) ≈ V(T̃r , T̃H
c)

2. Compl. basis with V⊥:
(V⊥ , V) is unitary

3. Change basis:
D̃ = (V⊥ , V)H D (V⊥ , V)

4. Partially factorize D̃:(
DL

Dc T̃D

)(
DU Dr

I

)
= D̃

12 / 47

Structured factorization

}
I2

}
I1 
I3

}
I2

}
I1 
I3

HSS node 2:

1. Approximate:
(Tr , TH

c) ≈ V(T̃r , T̃H
c)

2. Compl. basis with V⊥:
(V⊥ , V) is unitary

3. Change basis:
D̃ = (V⊥ , V)H D (V⊥ , V)

4. Partially factorize D̃:(
DL

Dc T̃D

)(
DU Dr

I

)
= D̃

12 / 47

Structured factorization

D Tr

TT
c

}
I2

}
I1 
I3

HSS node 3:

1. Approximate:
(Tr , TH

c) ≈ V(T̃r , T̃H
c)

2. Compl. basis with V⊥:
(V⊥ , V) is unitary

3. Change basis:
D̃ = (V⊥ , V)H D (V⊥ , V)

4. Partially factorize D̃:(
DL

Dc T̃D

)(
DU Dr

I

)
= D̃

12 / 47

Structured factorization

T̃D T̃r

T̃T
c

}
I2

}
I1 
I3

HSS node 3:

1. Approximate:
(Tr , TH

c) ≈ V(T̃r , T̃H
c)

2. Compl. basis with V⊥:
(V⊥ , V) is unitary

3. Change basis:
D̃ = (V⊥ , V)H D (V⊥ , V)

4. Partially factorize D̃:(
DL

Dc T̃D

)(
DU Dr

I

)
= D̃

12 / 47

Structured factorization

T̃D T̃r

T̃T
c

}
I2

}
I1 
I3

HSS node 3:

5. Partially factorize:(
DL

Dc U

)(
DU Dr

I

)
=

(
T̃D T̃r

T̃c T̃U

)

12 / 47

Embedding HSS in multifrontal

Approximate Frontal & Update matrices by HSS

Need following operations:

frontal HSS factorization of Fi

extend-add of two HSS update matrices Ui

and Uj

Final Cholesky factor: Classical vs HSS-embedded

13 / 47

Theory

Schur monotonicity for approximate Cholesky factorization

conditioning analysis

rank analysis for discretized PDEs

14 / 47

Schur monotonicity for approximate Cholesky A = RTR

R =


R1,1 R1,2 · · · R1,n

R2,2 · · · R2,n

. . .
...

Rn,n

, R ≈ R̃ =


R1 R̃1,2 · · · R̃1,n

R2 · · · R̃2,n

. . .
...

Rn


First approximation step: RT

1 R1 = A11 and H1 = D−T
1 A1,2:n

H1 =
(

U1 Û1

)(
Q1 Q̂1

)T
, HT

1 H1 = Q1QT
1 + Q̂1Q̂1eT , ‖Q̂1‖2 ≤ τ

Orthogonal dropping: H̃1 = U1Q1 −→ H̃T
1 (H1 − H̃1) = 0

Schur complement: A1 = A2:n,2:n − HT
1 H1 = A2:n,2:n −Q1QT

1 − Q̂1Q̂T
1 .

Approximate A1 by Ã1 = A2:n,2:n −Q1QT
1 = A1 + Q̂1Q̂T

1 = A1 + O
(
τ 2)

Nice Property: Successive Schur complements do not decrease in SPD sense
⇒ factorization is breakdown free

1. M. Gu, X.S. Li, P. Vassilevski, “Direction-Preserving and Schur-Monotonic Semiseparable Approximations of
Symmetric Positive Definite Matrices”, SIMAX, 31 (5), 2650-2664, 2010.

2. J. Xia, M. Gu, “Robust approximate Cholesky factorization of rank-structured symmetric positive definite matrices”,
SIMAX, 31 (5), 2899-2920, 2010.

15 / 47

Conditioning analysis when RTR as preconditioner (Napov)

Goal: analyze spectral condition number κ(R−TAR−1)
Sketch: look at approximation after each step k of total l step; capture
different approximation order:

Bk =

(
R(k)

11
T

R̃(k)
12

T
S̃(k)

B

)(
R(k)

11 R̃(k)
12
I

)
, S̃(k)

B = Aik+1:n,ik+1:n − R̃
(k)
12

T
R̃(k)

12

SSS bound (sequential order):

κ(R−T AR−1) ≤
l∏

k=1

1 + γk

1− γk
, where γk = ‖(R(k)

12 − R̃
(k)
12)S̃(k)

B
−1/2
‖ < 1

HSS bound: can be computed numerically using good estimates
γk estimate: γk ≤

∥∥∥(R(k)
12 − R̃

(k)
12

∥∥∥ ‖A−1‖1/2

I can estimate ‖A−1‖ with a few iterations of Conjugate Gradient

Adaptive threshold strategy based on γk estimate

A. Napov, “Conditioning analysis of incomplete Cholesky factorizations with
orthogonal dropping”, SIMAX, Vol. 34, No. 3, 1148-1173, 2013.

16 / 47

Rank analysis for some PDEs

Consider n× m grid, lexicographical (layer-by-layer) order gives rise to block
tridiagonal matrix:

A =



A1,1 A1,2

A2,1 A2,2

. . .

. . .
. . . Am−1,m

Am,m−1 Am,m


, each n × n Schur compl. Si+1 = Ai,i − Ai,i−1S−1

i Ai,i−1

Model problem (Chandrasekaran et al.):
Ai,i = Aj,j,Ai−1,i = Aj−1,j,Ai,i−1 = Aj,j−1

In 2D, ε-rank of the off-diagonal Hankel block is constant, for n→∞
In 3D (k3), ε-rank of the strip Hankel block is bounded by O(k)

Helmholtz equations with constant velocity (Engquist,Ying):
look at the Green’s function of the Helmholtz operator.

In 2D (k2), ε-rank of the off-diagonal block bounded by O(log k)
In 3D (k3), O(k)

1. S. Chandrasekaran, P. Dewilde, M. Gu, and N. Somasunderam, “On the Numerical Rank of the Off-Diagonal Blocks
of Schur Complements of Discretized Elliptic PDEs”, SIMAX, 31 (5), 2261-2290, 2010.

2. B. Engquist, L. Ying, “Sweeping preconditioner for the Helmholtz equation: Hierarchical matrix representation”,
Communications in Pure and Applied Mathematics 64 (2011).

17 / 47

Complexity of HSS-embedded multifrontal factorization

With ND order, the intermediate Schur complements my have slightly
higher ranks, but no more than twice:

A =

A11 A33
A22 A23

A31 A32 A33

 , Schur compl. S = A33 − A31A−1
11 A13 − A32A−1

22 A32

Each contribution −A31A−1
11 A13 (or −A32A−1

22 A32) satisfies the
off-diagonal rank bound, together, the off-diagonal rank bound of S is at
most twice as that of layer-by-layer order.
Given the rank bounds, can show the following cost of the HSS-MF
factorization algorithm:

Problem r MF HSS-MF
flops fill flops fill

2D Elliptic O(1)
O(n3/2) O(n log n) O(n log n) O(n log log n)

(k2) Helmholtz O(log k)
3D Elliptic O(k)

O(n2) O(n4/3) O(n4/3 log n) O(n log n)
(k3) Helmholtz O(k)

J. Xia, “Efficient structured multifrontal factorization for general large sparse
matrices”, SISC, 35 (2), A832-A860, 2012.

Warning: The constant prefactor may be large: ∼ O(100s) (∼ 10 for classical)
18 / 47

Practice

ordering within separator

parallelization

preconditioning

19 / 47

Separator ordering: vertex-based vs edge-based

{
{

Vertex-based approach:

Edge-based approach: {
{

HSS leaf 1

HSS leaf 2

HSS leaf 1

HSS leaf 2

1 2

1
2

1 2

1

2

2D separator from a 3D domain.

2D separator from a 3D domain.

Frontal matrix.

Frontal matrix.

{Fully-summed
variables
(separator)

CB

{Fully-summed
variables
(separator)

CB{

{

An edge-based ordering allows us to simply match parts of the separators with nodes
of the HSS tree. 20 / 47

Ordering of separators: shape

In order to ensure some kind of admissibility condition, parts should have a
small diameter.

Large diameters. Small diameters.

For simplicity, we divide the separator into square blocks (chessboard).

21 / 47

Ordering of separators: ordering of blocks

In the HSS compression stage, blocks are merged two-by-two following a tree
flow. Merged blocks should also have small diameter, thus the partioning
should have some recursive property.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2 5 6

3 4 7 8

9 10 13 14

10 11 15 16

Leaf level.

We use an edge-based Nested Dissection (we cut the domain into squares, and
order these squares using ND/Morton ordering).

22 / 47

Ordering of separators: ordering of blocks

In the HSS compression stage, blocks are merged two-by-two following a tree
flow. Merged blocks should also have small diameter, thus the partioning
should have some recursive property.

1+2+3+4

5+6+7+8

9+10+11+12

13+14+15+16

1+2+3+4 5+6+7+8

9+10+11+12 13+14+15+16

Two levels above leaves: blocks are merged four-by-four.

We use an edge-based Nested Dissection (we cut the domain into squares, and
order these squares using ND/Morton ordering).

22 / 47

Results - topmost separator

Topmost separator of a 2003 domain (200× 200 plane). We compare:
VND: vertex-based ND.

Nat: square blocks ordering in natural/lexicographic order.
END: edge-based ND: square blocks ordered in ND.

VND Nat END
Total HSS time (s) 55.0 51.8 32.3
Max rank 731 893 646
Min time in RRQR (s) 15.2 20.3 11.0
Max time in RRQR (s) 53.0 50.2 30.7

Ranks at the top of HSS trees:
/

483

562 558

475

603 481

VND.

/

437

441 878

436

875 440

Nat.

/

450

413 540

451

607 467

END.

END yields lower rank and better balance of ranks.
23 / 47

Results - complete problem

Helmholtz equations with PML boundary(
−∆− ω

v(x)2

)
u(x, ω) = s(x, ω)

On the complete problem, with 256 cores and HSS compression at the 8
topmost levels of the tree:

VND Nat END
Total factorization time (s) 984.8 978.5 938.0
Max rank 865 893 868
Min time in RRQR (s) 304.8 322.1 310.9
Max time in RRQR (s) 674.9 683.8 654.7

END: marginal (5%) improvement in run time but better workload balance,
so hopefully more potential for strong scaling.

24 / 47

Parallelization: two types of tree-based parallelism

Outer tree: separator tree for multifrontal factorization

Inner tree: HSS tree at each internal separator node

1 2

3

4 5

6

7

8

10 13

12119

14

15

16

21

22

23 24

25

26 27

28

30

17

31

29

19

18

20

parallel multifrontal tree

switch
level

parallel
level

HSS trees

0 1 2 3

10 32

32
10

25 / 47

Parallelization strategy for HSS

Work along the HSS tree level-wise, bottom up.
2D block-cyclic distribution at each tree node (#Levels = log P)

I each Pi works on the bottom level leaf node i
I every 2 processes cooperate on a Level 2 node
I every 4 processes cooperate on a Level 3 node

Level 1: local Fi = UiF̃i

0

1

2

3

4

5

6

7

0

11

2 2

3 3

4 5 4

5 5

66

7

nodes

1

2

4

5

8

9

11

12

2D-procs mapped to HSS tree nodes

26 / 47

Parallel row compression (cont)

Level 2 (2-cores/group)
0

1

2

3

4

5

6

7

0

1

2

3

5

6

7

nodes

3

6

10

13

4

10 10 10

32 32 32

54 54 54

76 76 76

Level 3 (4-cores/group)
0

1

2

3

4

5

6

7

0

1

2

3

5

6

7

nodes

7

14

1 2 4 5 8 9 11 12

4

32
0 1

76
4 5

0 1

2 3

4 5

6 7

32
0 1

76
4 5

2D-procs mapped to HSS tree nodes

27 / 47

Summary of parallel row compression & complexity

Each step involves RRQR and redistribution
I pairwise exchange

Flop count: O(r N2

P)

Communication in row compression:
#msg = O(r log2 P)
#words = O(r N log P)
(assume no overlap between comm. and comp.)

Arithmetic Intensity: O(N
P log P)

(c.f. ScaLAPACK dense LU: O(N√
P

))

28 / 47

Parallel test

Cray XE6 (hopper at NERSC)

Example: Helmholtz equation with PML boundary(
−∆− ω2

v(x)2

)
u(x, ω) = s(x, ω), (1)

∆: Laplacian
ω: angular frequency
v(x): seismic velocity field
u(x, ω): time-harmonic wavefield solution

FD discretized linear system:
I Complex, pattern-symmetric, non-Hermitian,
I Indefinite, ill-conditioned

29 / 47

Parallel HSS performance

HSS constrcution on the last Schur complement corresp. to the top
separator.

Performance ratio of LU over HSS:

(a) 2D, max_rank=7 (b) 3D, max_rank=848

S. Wang, X.S. Li, J. Xia, and M.V. de Hoop, “Efficient scalable algorithms for solving
linear systems with hierarchically semiseparable matrices”, SISC, Nov. 2012. (revised)

30 / 47

Parallel HSS-MF performance

64 256 1024 4096
0

0.5

1

1.5

2

2.5

3

3.5

4
2D −− ratio of MF over HSS−MF factorization

#Cores

Matr. size 10k
2

20k
2

40k
2

80k
2

M
F

 /
 H

S
S

−
M

F
 f
a
c
to

ri
z
a
ti
o
n

Time

GFlops rate

Max. Peak Memory

(c) 2D Helmholtz, 10Hz

64 256 1024 4096
0

1

2

3

4

5

6
3D −− ratio of MF over HSS−MF factorization

#Cores

Matr. size 100
3

200
3

300
3

400
3

M
F

 /
 H

S
S

−
M

F
 f
a
c
to

ri
z
a
ti
o
n

Time

Gflops rate

Max. Peak Memory

(d) 3D Helmholtz, 5Hz

HSS-MF succeeded with 6003 on 16,384 cores, while MF failed.
S. Wang, X.S. Li, F.-H. Rouet, J. Xia, and M. de Hoop, “A Parallel Geometric
Multifrontal Solver Using Hierarchically Semiseparable Structure”, ACM TOMS, June
2013. (in submission)

31 / 47

Sparse results - 2D problems

2D Helmholtz problems on square grids (mesh size k, N = k2), 10 Hz.

k 10,000 20,000 40,000 80,000

P 64 256 1,024 4,096

MF

Factorization (s) 258.6 544.8 1175.8 2288.5

Gflops/s 507.3 2109.3 8185.6 31706.9

Solution+refinement (s) 10.4 10.8 11.5 11.6

Factors size (GB) 120.1 526.7 2291.2 9903.7

Max. peak (GB) 2.3 2.5 2.7 2.9

Communication volume (GB) 136.2 1202.5 9908.1 79648.4

HSS

HSS+ULV (s) 97.9 172.5 325.3 659.3

Gflops/s 196.9 715.6 2820.7 9820.6

Solution+refinement (s) 20.2 55.4 61.4 115.8

Steps 3 3 9 9

Factors size (GB) 66.2 267.7 1333.2 4572.3

Max. peak (GB) 1.7 1.7 1.7 1.7

Communication volume (GB) 74.2 573.8 4393.4 41955.8

HSS rank 258 503 1013 2015

||x− xMF||/||xMF|| 1.5× 10−5 2.2× 10−5 3.1× 10−5 3.5× 10−6

maxi
|Ax−b|i

(|A||x|+|b|)i
7.1× 10−6 1.0× 10−5 2.0× 10−6 3.5× 10−6

32 / 47

Results - 3D problems

3D Helmholtz problems on cubic grids (mesh size k, N = k3), 5 Hz.

k 100 200 300 400

P 64 256 1,024 4,096

MF

Factorization (s) 88.4 1528.0 1175.8 6371.6

Gflops/s 600.6 2275.7 9505.6 35477.3

Solution+refinement (s) 0.6 2.2 3.5 4.8

Factors size (GB) 16.6 280.0 1450.1 4636.1

Max. peak (GB) 0.5 1.9 2.5 2.0

Communication volume (GB) 83.1 2724.7 26867.8 165299.3

HSS

HSS+ULV (s) 120.4 1061.3 2233.8 3676.5

Gflops/s 207.8 720.4 2576.6 6494.8

Solution+refinement (s) 2.3 8.2 31.5 182.8

Steps 4 5 10 6

Factors size (GB) 10.7 112.9 434.3 845.3

Max. peak (GB) 0.5 1.7 2.1 0.4

Communication volume (GB) 93.6 2241.2 18621.1 143300.0

HSS rank 481 925 1391 1860

||x− xMF||/||xMF|| 6.2× 10−6 9.4× 10−7 1.1× 10−6 1.7× 10−6

maxi
|Ax−b|i

(|A||x|+|b|)i
1.5× 10−7 5.7× 10−7 9.7× 10−7 3.7× 10−6

33 / 47

Preconditioning results

Test matrices: 2D & 3D
I model problems
I convection-diffusion: constant coefficient, variable coefficient
I curl-curl edge elements (Nedelec elements)
I Helmholtz
I general matrices

RHS = (1, 1, . . .)T

GMRES(30)
I right preconditioner
I initial x0 = (0, 0, . . .)T

I stopping criterion: ‖rk‖2
‖b‖2
≤ 10−6

34 / 47

Convection-diffusion

−ν∆u + v · ∇ u = b on Ω .
v = ...

r constant coeff. variable coeff.
2D (1/

√
2 1/

√
2) (x(1− x)(2y− 1) y(1− y)(2x− 1))

3D (1/2 1/2 1/
√

2) (x(1− x)(2y− 1)z y(y− 1)(2x− 1) (2x− 1)(2y− 1)z(z− 1))

2D:500 1k 2k 3k 4k 3d:20 40 60 80 100
2

4

6

8

10

12

14

16

18

Convection−diffusion: variable coeff.

ITERATIONS

Const. coeff
Var. Coeff

2D:500 1k 2k 3k 4k 3d:20 40 60 80 100
10

20

30

40

50

60

70

80

90

100

110

Convection−diffusion: variable coeff.

FILL RATIO

Const. coeff
Var. Coeff

2D:500 1k 2k 3k 4k 3d:20 40 60 80 100
10−1

100

101

102

103

104

Convection−diffusion: variable coeff.

Se
co

nd
s

FACTOR TIME

Const. coeff
Var. Coeff

35 / 47

Curl-curl edge element (Nedelec element)

∇×∇× u + β = b on Ω
τ = 10−8

tt
tt
t

tt
tt
t

tt
tt
t

tt
tt
t

tt
tt

tt
tt

tt
tt

tt
tt

tt
tt

mesh size HSS-rank fill-ratio factor (s) Its GMRES (s)
5002 59 14.8e 5.8 2 0.5

10002 52 14.9 25.0 3 3.3
20002 60 14.9 106.1 3 13.3
30002 50 14.4 114.6 5 48.7

203 388 78.9 6.7 2 0.1
403 824 125.6 261.5 3 1.7
603 804 156.1 2055.8 3 7.4

36 / 47

Helmholtz(
−∆− ω

v(x)2

)
u(x, ω) = s(x, ω)

τ = 10−4

mesh size HSS-rank fill-ratio factor (s) Its GMRES (s)
5002 85 8.8 8.6 4 1.6

10002 210 9.5 53.1 4 6.5
20002 229 9.7 307.1 71 500.1
30002 380 10.0 950.2 139 2464.1

203 275 13.3 2.4 3 0.1
403 533 27.0 151.9 3 1.1
603 1039 38.8 1434.6 3 5.3
803 1167 47.3 7708.1 3 16.8

37 / 47

Model problems: ∆u = f

Compare to ILU in SuperLU (Li/Shao 10)
I supernode-based ILUTP, threshold, partial pivoting
I 10−4 for HSS trunction, and ILU threshold

2D:500 1k 2k 3k 4k 3d:20 40 60 80 100
0

10

20

30

40

50

60

70

80

90

Model problems

ITERATIONS

StruMF
ILU

2D:500 1k 2k 3k 4k 3d:20 40 60 80 100
0

50

100

150

200

250

300

Model problems

FILL RATIO

StruMF
ILUTP
MF

2D:500 1k 2k 3k 4k 3d:20 40 60 80 100
10−1

100

101

102

103

104

Model problems

Se
co

nd
s

FACTOR TIME

StruMF
ILUTP

38 / 47

General matrices

HSS- Fill-ratio Factor (s) Its
Matr. Descr. N rank HSS ILU HSS ILU HSS ILU
add32 circuit 4,690 0 2.1 1.3 0.01 0.01 1 2
mchln85ks17 car tire 84,180 948 13.5 12.3 133.8 216.1 4 39
mhd500 plasma 250,000 100 11.6 15.6 2.5 7.9 2 8
poli_large economic 15,575 64 4.8 1.6 0.04 0.02 1 2
stomach bio eng. 213,360 92 12.1 2.9 13.8 18.7 2 2
tdr190k accelerator 1,100242 596 14.1 – 629.2 – 7 –
torso3 bio eng. 259,156 136 22.6 2.4 86.7 63.7 2 2
utm5940 TOKAMAK 5,940 123 6.7 8.0 0.1 0.16 3 15
wang4 device 26,068 385 45.3 23.1 4.4 6.4 3 4

39 / 47

HSS truncation tolerance

tdr190k – Maxwell equations in frequency domain, eigenvalue problem

0 20 40 60 80 100
10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

101

Iterations

R
el

at
iv

e
re

si
du

al

tdr190k : accelerator cavity structure

HSS(1.0e−4)
HSS(1.0e−5)
HSS(1.0e−6)

40 / 47

Summary

More theory has been developed
In practice: very promising for large problems, large machines

I demonstrated that it is implementable in parallel, with reduced
communication

Compare to ILU preconditioner
I breakdown free
I More parallel
I Dropping operation may be more expensive (row/col vs. entry-wise in

ILU)

41 / 47

Future work

Parallel low-rank factorization using randomized sampling
Analyze communication lower bound for HSS-structured sparse
factorization

I Classical sparse Cholesky (Gupta et al.’97):
3D model problem: O(N4/3

√
P

) COMM-Volume

Black-box preconditioner?
I Apply to broader simulation problems: accelerator, fusion, etc.
I compare to other preconditioners, e.g., ILU, multigrid

Precondition the Communication-Avoiding Krylov algorithms [with

Demmel’s group]

Compare to sparse solvers usingH-matrix [Weisbecker et al., Ying et al.]

Resilience at extreme scale

42 / 47

Rank-revealing via randomized sampling

1 Pick random matrix Ωn×(k+p), p small, e.g. 10
2 Sample matrix S = AΩ, with slight oversampling p
3 Compute Q = ON-basis(S)

accuracy: with probability ≥ 1− 6 · p−p,
‖A− QQ∗A‖ ≤ [1 + 11

√
k + p ·

√
min{m, n}]σk+1

cost: O(kmn)

43 / 47

Randomized sampling simplies extend-add

HSS construction via RS [Martinsson’11]
I SRRQR repeatedly applied to matrices with reduced column dimention

Multifrontal HSS via RS
1 Compress frontal Fi:

Form sample matrix Yi = FiXi, where Xi = (X(1)
i X(2)

i)T random,
Construct HSS of Fi with help of Yi

2 ULV factorize Fi(1, 1)
3 HSS approximation of Ui

4 Form sample matrix Zi = UiX
(2)
i , where X(2)

i is a submatrix of Xi

corresponding to Ui
5 extend-add of sample matrices to parent:

Yp ≡ FpXp = (ApXp)⊕ Zi ⊕ Zj

44 / 47

At Child
Compression of Fi

Partial elimination of Fi

Compute update matrix Ui: Ui = Fi(2, 2)− UqBT
k (ŨT

k D̃−1
k Ũk)BkUT

q
I fast low-rank update: obtain Ui generators directly from Fi(2, 2)

generators

45 / 47

At Parent: extend-add of sample matrices from children

RS simplies extend-add: Yp ≡ FpXp = (ApXp)⊕ Zi ⊕ Zj

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa

bbbbb
bbbbb
bbbbb
bbbbb
bbbbb

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa

bbbbb
bbbbb
bbbbb
bbbbb
bbbbb

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa

bbbbb
bbbbb
bbbbb
bbbbb
bbbbb

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa

bbbbb
bbbbb
bbbbb
bbbbb
bbbbb

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa

bbbbb
bbbbb
bbbbb
bbbbb
bbbbb

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa

bbbbb
bbbbb
bbbbb
bbbbb
bbbbb

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa

bbbbb
bbbbb
bbbbb
bbbbb
bbbbb

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa

bbbbb
bbbbb
bbbbb
bbbbb
bbbbb

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa

bbbbb
bbbbb
bbbbb
bbbbb
bbbbb

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa

bbbbb
bbbbb
bbbbb
bbbbb
bbbbb

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa

bbbbb
bbbbb
bbbbb
bbbbb
bbbbb

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa

bbbbb
bbbbb
bbbbb
bbbbb
bbbbb

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa

bbbbb
bbbbb
bbbbb
bbbbb
bbbbb

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa

bbbbb
bbbbb
bbbbb
bbbbb
bbbbb

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa

bbbbb
bbbbb
bbbbb
bbbbb
bbbbb

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa

bbbbb
bbbbb
bbbbb
bbbbb
bbbbb

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa

bbbbb
bbbbb
bbbbb
bbbbb
bbbbb

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa

bbbbb
bbbbb
bbbbb
bbbbb
bbbbb

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa

bbbbb
bbbbb
bbbbb
bbbbb
bbbbb

aaaaa
aaaaa
aaaaa
aaaaa
aaaaa

bbbbb
bbbbb
bbbbb
bbbbb
bbbbb

aa
aa
bb
bb

aa
aa
bb
bb

aa
aa
bb
bb

aa
aa
bb
bb

Zi = UiX
(2)
i = Fi(2, 2)X(2)

i − UqBT
k (ŨT

k D̃−1
k Ũk)BkUT

q X(2)
i

= Y(2)
i − UqBT

k UT
k X(1)

i − UqBT
k (ŨT

k D̃−1
k Ũk)BkUT

q X(2)
i

= Y(2)
i − UqBT

k

[
UT

k X(1)
i + (ŨT

k D̃−1
k Ũk)BkUT

q X(2)
i

]
46 / 47

References

M. Bebendorf, “Hierarchical Matrices: A Means to Efficiently Solve Elliptic Boundary Value
Problems”, Lecture Notes in Computational Science and Engineering, Springer, 2008.

M. Gu, X.S. Li, P. Vassilevski, “Direction-Preserving and Schur-Monotonic Semiseparable
Approximations of Symmetric Positive Definite Matrices”, SIMAX, 31 (5), 2650-2664, 2010.

J. Xia, M. Gu, “Robust approximate Cholesky factorization of rank-structured symmetric positive
definite matrices”, SIMAX, 31 (5), 2899-2920, 2010.

J. Xia, “Efficient structured multifrontal factorization for general large sparse matrices”, SISC, 35
(2), A832-A860, 2012.

A. Napov, “Conditioning analysis of incomplete Cholesky factorizations with orthogonal dropping”,
to appear in SIMAX.

Martinsson, “A Fast Randomized Algorithm for Computing A Hierarchically Semiseparable
Representation of A Matrix”, SIMAX, Vol.32, No.4, 1251-1274, 2011.

S. Wang, X.S. Li, J. Xia, and M.V. de Hoop, “Efficient scalable algorithms for solving linear
systems with hierarchically semiseparable matrices”, SISC, Nov. 2012. (revised)

S. Wang, X.S. Li, F.-H. Rouet, J. Xia, and M. de Hoop, “A Parallel Geometric Multifrontal Solver
Using Hierarchically Semiseparable Structure”, ACM TOMS, June 2013. (in submission)

P.R. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J.-Y. L’Excellent, C. Weisbecker, “Improving
Multifrontal Methods by Means of Block Low-Rank Representations”, SISC, submitted, 2012.
Tech report, RT/APO/12/6, ENSEEIHT, Toulouse, France.

47 / 47

Lecture 8

Hybrid Solvers based on Domain Decomposition

Xiaoye Sherry Li
Lawrence Berkeley National Laboratory, USA

xsli@lbl.gov

crd-legacy.lbl.gov/~xiaoye/G2S3/

4th Gene Golub SIAM Summer School, 7/22 – 8/7, 2013, Shanghai

Lecture outline

!   Hybrid solver based on Schur complement method

!   Design target: indefinite problems, high degree concurrency

!   Combinatorial problems in hybrid solver
!   Multi-constraint graph partitioning
!   Sparse triangular solution with sparse right-hand sides

2

Schur complement method

! a.k.a iterative substructuring method
 or, non-overlapping domain decomposition

!   Divide-and-conquer paradigm . . .
!   Divide entire problem (domain, graph) into subproblems (subdomains,

subgraphs)
!   Solve the subproblems
!   Solve the interface problem (Schur complement)

!   Variety of ways to solve subdomain problems and Schur

complement … lead to a powerful poly-algorithm or hybrid solver
framework

 3

Structural analysis view

!   Case of two subdomains

4

1Ω 2Ω

Interface A(k) =
Ai i

(k) Ai I
(k)

AI i
(k) AI I

(k)

!

"

#
##

$

%

&
&&
 i = "interior"

I = "Interface"

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

+

=
)2()1()2()1(

)2()2(

)1()1(

matrix block Assembled 1.

IIIIiIiI

Iiii

Iiii

AAAA
AA
AA

A

2. Perform direct elimination of A(1) and A(2) independently,
 Local Schur complements (unassembled): S (k) = AI I

(k) − AI i
(k) (Aii

(k))−1Ai I
(k)

 Global Schur complement (assembled): S = S (1) + S (2)

Substructure contribution:

Algebraic view

1.  Reorder into 2x2 block system, A11 is block diagonal

2.  Schur complement

 S corresponds to interface (separator) variables, no need to form
explicitly

3.  Compute the solution

 5

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2

1

2

1

2221

1211

b
b

x
x

AA
AA

111111

2212
1

1121112212
1

112122

 where ULA
GWA)A (L)A – (U A A A – A AS -TT-T-

=

⋅−===

(1) x2 = S−1(b2 – A21 A11
-1 b1) ← iterative solver

(2) x1 = A11
-1(b1 – A12 x2) ← direct solver

Solving the Schur complement system
!   SPD, conditioning property [Smith/Bjorstad/Gropp’96]

 For an SPD matrix, condition number of a Schur complement is no
larger than that of the original matrix.
!   S is SPD, much reduced in size, better conditioned, but denser, good

for preconditioned iterative solver
!   Two approaches to preconditioning S

1.  Global approximate S (e.g., PDSLin [Yamazaki/Li.’10], HIPS [Henon/
Saad’08])

•  general algebraic preconditioner, more robust, e.g. ILU(S)
2.  Local S (e.g. MaPHys [Giraud/Haidary/Pralet’09])

•  restricted preconditioner, more parallel
•  e.g., additive Schwarz preconditioner

6

…)3()2()1(SSSS ⊕⊕=

…
1)3(1)2(1)1(−−−

⊕⊕= SSSM

Related work

PDSLin
(LBNL)

MaPHyS
(INRIA/CERFACS)

HIPS
(INRIA)

•  Multi. procs/subdom,
•  Smaller Schur

compl.

•  Multi. procs/subdom,
•  Smaller Schur compl.

•  Multi. subdoms/proc,
•  Larger Schur compl.,
•  Good load balance

•  Threshold “ILU”,
•  Global approx.

Schur
•  Robust

•  Additive Schwartz,
•  Local Schur
•  Scalable

•  Level-based ILU,
•  Global approx. Schur
•  Scalable

7

! PDSLin
!   Uses two levels of parallelization and load-balancing techniques for tackling

large-scale systems
!   Provides a robust preconditioner for solving highly-indefinite or ill-

conditioned systems

!   Future work: compare the 3 solvers

Parallelization with serial subdomain

!   No. of subdomains increases with increasing core count.
è Schur complement size and iteration count increase

!   HIPS (serial subdomain) vs. PDSLin (parallel subdomain)
!   M3D-C1, Extended MHD to model fusion reactor tokamak, 2D slice of

3D torus
!   Dimension 801k, 70 nonzeros per row, real unsymmetric

8

P NS HIPS 1.0
sec (iter)

PDSLin
sec (iter)

8 13k 284.6 (26) 79.9 (15)
32 29k 55.4 (64) 25.3 (16)

128 62k -- 17.1 (16)
512 124k -- 21.9 (17)

Parallelism – extraction of multiple subdomains

!   Partition adjacency graph of |A|+|AT|
 Multiple goals: reduce size of separator, balance size of subdomains
!   Nested Dissection (e.g., PT-Scotch, ParMetis)
!   k-way partition (preferred)

!   Memory requirement: fill is restricted within
!   “small” diagonal blocks of A11, and
!   ILU(S), maintain sparsity via numerical dropping

9

A11 A12
A21 A22

!

"

#
#

$

%

&
& =

D1 E1
D2 E2
 

Dk Ek

F1 F2 … Fk A22

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

Ordering

!   Permute all the separators to the end

10

1 2 3 4 5 6 7 8

12 11 10 9

13 14

15

Separator tree

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2221

22

11

2221

1211

AFFF
ED

ED
ED

AA
AA

k

kk

…



Hierarchical parallelism
!   Multiple processors per subdomain

!   one subdomain with 2x3 procs (e.g. SuperLU_DIST, MUMPS)

!   Advantages:
!   Constant #subdomains, Schur size, and convergence rate, regardless

of core count.
!   Need only modest level of parallelism from direct solver.

11

P P(0 : 5)

P(6 : 11)

P(12 : 17)

P(18 : 23)

P(0 : 5)

P(6 : 11)

P(12 : 17)

P(18 : 23)

P(0 : 5) P(6 : 11) P(12 : 17)
P(18 : 23)

D1

D2

D3

D4

E1

E2

E3

E4

F1 F2 F3 F4 A22

Combinatorial problems

!   K-way, multi-constraint graph partitioning
!   Small separator
!   Similar subdomains
!   Similar connectivity

!   Sparse triangular sol. with many sparse RHS (intra-subdomain)

!   Sparse matrix–matrix multiplication (inter-subdomain)

12

W← sparsify(W, σ1); G← sparsify(G, σ1)
T (p) ← W (p) ⋅ G(p)

Ŝ (p) ← A22
(p) − T (q) (p)

q∑ ; S← sparsify(Ŝ, σ 2)

S = A22 – (Ul
-T Fl

T)T (Ll
-1El)

l
∑ = Wl ⋅Gl

l
∑ , where Dl = LlUl

I. Yamazali, F.-H. Rouet, X.S. Li, B. Ucar, “On partitioning and reordering problems in a
hierarchically parallel hybrid linear solver”, IPDPS / PDSEC Workshop, May 24, 2013.

PDSLin package
http://crd-legacy.lbl.gov/FASTMath-LBNL/Software/
! Parallel Domain decomposition Schur complement based Linear

solver
!   C and MPI, with Fortran interface.
! Unsymmetric / symmetric, real / complex, multiple RHSs.

!   Features
!   parallel graph partitioning:

•  PT-Scotch
•  ParMetis

! subdomain solver options:
•  SuperLU, SuperLU_MT, SuperLU_DIST
•  MUMPS
•  PDSLin
•  ILU (inner-outer)

! Schur complement solver options:
•  PETSc
•  SuperLU_DIST

13

PDSLin encompass Hybrid, Iterative, Direct

14

Default
Subdomain: LU
Schur: Krylov

User Options

(1) num_doms = 0
 Schur = A: Krylov

(2) Subdomain: ILU
 Schur: Krylov
 (FGMRES inner-outer)

User Options

(1) Subdomain: LU
 Schur: LU
 drop_tol = 0.0

(2) num_doms = 1
 Domain: LU

D1 E1
D2 E2
 

Dk Ek

F1 F2 … Fk A22

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

Application 1: Burning plasma for fusion energy

!   DOE SciDAC project: Center for Extended Magnetohydrodynamic
Modeling (CEMM), PI: S. Jardin, PPPL

!   Develop simulation codes to predict microscopic MHD instabilities
of burning magnetized plasma in a confinement device (e.g.,
tokamak used in ITER experiments).
!   Efficiency of the fusion configuration increases with the ratio of thermal

and magnetic pressures, but the MHD instabilities are more likely with
higher ratio.

!   Code suite includes M3D-C1, NIMROD

15

ϕ R

Z

•  At each ϕ = constant plane, scalar 2D data
 is represented using 18 degree of freedom
 quintic triangular finite elements Q18

•  Coupling along toroidal direction

(S. Jardin)

2-Fluid 3D MHD Equations

∂n
∂t
+∇•(nV) = 0 continuity

∂B
∂t

= −∇×E, ∇•B = 0, µ0J = ∂×B Maxwell

nMt
∂V
∂t

+V •∇V
%

&
'

(

)
*+∇p = J ×B−∇•ΠGV −∇•Πµ Momentum

E +V ×B =ηJ + 1
ne

(J ×B−∇pe −∇•Πe) Ohm's law

3
2
∂pe
∂t

+∇•
3
2
peV

%

&
'

(

)
*= −pe∇•∇+ηJ

2 −∇•qe +QΔ electron energy

3
2
∂pi
∂t

+∇•
3
2
piV

%

&
'

(

)
*= −pi∇•∇−Πµ •∇V −∇•qi −QΔ ion energy

16

The objective of the M3D-C1 project is to solve these equations as
accurately as possible in 3D toroidal geometry with realistic B.C.
and optimized for a low-β torus with a strong toroidal field.

PDSLin vs. SuperLU_DIST

!   Cray XT4 at NERSC
!   Matrix211 : extended MHD to model burning plasma

!   dimension = 801K, nonzeros = 56M, real, unsymmetric
!   PT-Scotch extracts 8 subdomains of size ≈ 99K, S of size ≈ 13K
! SuperLU_DIST to factorize each subdomain, and compute

 preconditioner LU()
! BiCGStab of PETSc to solve Schur system on 64 processors with

residual < 10-12 , converged in 10 iterations

!   Needs only 1/3 memory of
 direct solver

17

S~

Application 2: Accelerator cavity design

18

•  DOE SciDAC: Community Petascale Project for Accelerator
 Science and Simulation (ComPASS), PI: P. Spentzouris, Fermilab
•  Development of a comprehensive computational infrastructure
 for accelerator modeling and optimization
•  RF cavity: Maxwell equations in electromagnetic field
•  FEM in frequency domain leads to large sparse eigenvalue
 problem; needs to solve shifted linear systems

bMx MK 00
2

0)(
problem eigenvaluelinear
=−σ

ΓE Closed
Cavity

ΓM

Open
Cavity

Waveguide BC

Waveguide BC

Waveguide BC

(L.-Q. Lee)

bx M W - i K =+)(
problem eigenvaluecomplex nonlinear

0
2

0 σσ

RF unit in ILC

PDSLin for RF cavity (strong scaling)

!   Cray XT4 at NERSC; used 8192 cores
!   Tdr8cavity : Maxwell equations to model cavity of International

Linear Collider
!   dimension = 17.8M, nonzeros = 727M
!   PT-Scotch extracts 64 subdomains of size ≈ 277K, S of size ≈ 57K
! BiCGStab of PETSc to solve Schur system on 64 processors with

residual < 10-12, converged in 9 ~ 10 iterations

!   Direct solver failed !

19

PDSLin for largest system

!   Matrix properties:
!   3D cavity design in Omega3P, 3rd order basis function for each matrix

element
!   dimension = 52.7 M, nonzeros = 4.3 B (~80 nonzeros per row), real,

symmetric, highly indefinite
! Experimental setup:

!   128 subdomains by PT-Scotch (size ~410k)
!   Each subdomain by SuperLU_DIST, preconditioner LU() of size

247k (32 cores)
! BiCGStab to solve Sy = d by PETSc

!   Performance:
!   Fill-ratio (nnz(Precond.)/nnz(A)): ~ 250
!   Using 2048 cores:

•  preconditioner construction: 493.1 sec.
•  solution: 108.1 second (32 iterations)

20

S~

Combinatorial problems . . .

!   K-way graph partitioning with multiple objectives
!   Small separator
!   Similar subdomains
!   Similar connectivity

!   Sparse triangular solution with many sparse RHS

!   Sparse matrix–matrix multiplication

21

) ,ˆ(sparsify~ ;)(ˆ

~~
) ,(sparsify~ ;) ,(sparsify~

2
)()(

22
)(

)()()(

11

σ

σσ

SSpTAS

GWT

WWGG

q
qpp

ppp

←−←

×←

←←

∑

S = A22 – (Ul
-T Fl

T)T (Ll
-1El)

l
∑ = A22 – G ⋅W

l
∑ , where Dl = LlUl

Two graph models

!   Standard graph : G=(V, E)
!   GPVS: graph partitioning with vertex separator
!   GPES: graph partitioning with edge separator

! Hypergraph : H = (V, N), net = “edge”, may include more than two
vertices
!   Column-net hypergraph: H = (R, C)

 rows = vertices, columns = nets
 n3 = {1, 3, 4}

!   Row-net hypergraph: H = (C, R)
 columns = vertices, rows = nets

!   Partition problem: π(V) = {V1, V2, . . . , Vk}, disjoint parts

!   Graph: a cut edge connects two parts
! Hypergraph: a cut net connects multiple parts
è Want to minimize the cutsize in some metric (Objective), and keep

equal weights among the parts (Constraints).

22

1 x
2

3
x 4

5

!

"

#
#
#
#
#
#

$

%

&
&
&
&
&
&

1. K-way subdomain extraction
!   Problem with ND:

 Imbalance in separator size at different
branches à Imbalance in subdomain size

!   Alternative: directly partition into K

parts, meet multiple constraints:
1.  Compute k-way partitioning à balanced

subdomains
2.  Extract separator à balanced

connectivity

23

k-way partition: objectives, constraints

24

D1 E1
D2 E2
 

Dk Ek

F1 F2 … Fk A22

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

Objectives to minimize:
•  number of interface vertices

à separator size
•  number of interface edges
 à nonzeros in interface

Balance constraints:
•  number of interior vertices and

edges à LU of Di

•  number of interface vertices and
edges à local update matrix

 (Ul
-T Fl

T)T (Ll
-1El)

!   Initial partition to extract vertex-separator impacts load balance:

K-way edge partition
!   Extract vertex-separator from k-way edge partition

!   Compute k-way edge partition satisfying balanced subdomains (e.g.,
PT-Scotch, Metis)

!   Extract vertex-separator from edge-separators to minimize and
balance interfaces (i.e. minimum vertex cover)

!   Heuristics to pick the next vertex: pick a vertex from largest
subdomain to maintain balance among subdomains
!   pick the vertex with largest degree to minimize separator size
!   pick the vertex to obtain best balance of interfaces (e.g., nnz).

25

Balance & Solution time with edge part. + VC
!   tdr190k from accelerator cavity design: N = 1.1M, k = 32
!   Compared to ND of SCOTCH
!   balance = max valueℓ / min valueℓ, for ℓ = 1, 2, . . . , k
!   Results

!   Improved balance of subdomains, but not of interfaces due to larger
separator à total time not improved

!   Post-processing already-computed partition is not effective to balance
multiple constraints

26
min−dim(S) bal−nnz(E) PT−SCOTCH

0

1

2

3

4

5

6

7

8

ba
la

nc
e

(m
ax

/m
in

)

tdr190k with 32 subdomains, k−way edge partition

dim(D)
nnz(D)
col(E)
nnz(E)
Time

44K 80K

28K

Recursive Hypergraph Bisection
!   Column-net HG partition to permute an m-by-n matrix M to a

singly-bordered form (e.g., Patoh):

!   Recursive hypergraph bisection (RHB)
!   Compute structural decomposition str(A) = str(MTM)

•  e.g., using edge clique cover of G(A) [Catalyurek ’09]
!   Compute 2-way partition of M (with multiple constraints) into a singly-

bordered form based on recursive bisection
!   Permute A as:

27

str(PcAPc
T) =

D1 E1
D2 E2

F1 F2 C

!

"

#
#
##

$

%

&
&
&&
=

M1
T

M2
T

C C2
T

!

"

#
#
#
#

$

%

&
&
&
&

•
M1 C1

M2 C2

!

"

#
#

$

%

&
&

PrMPc
T =

M1 C1
M2 C2

 
Mk Ck

!

"

#
#
#
#
#

$

%

&
&
&
&
&

→ Pc (M
TM)Pc

T =

M1
TM1 M1

TC1
M2

TM2 M2
TC2

 
Mk

TMk Mk
TCk

C1
TM1 C2

TM2  Ck
TMk Cl

TCl∑

!

"

#
#
#
#
#
#
#

$

%

&
&
&
&
&
&
&

RHB: objectives, constraints

! Objective: minimize cutsize
 Metrics of cutsize:

!   Connectivity – 1, (interface nz columns)

!   Cut-net, (separator size)

!   Sum-of-external degree (soed), (sum of above)

Where, j-th net nj is in the cut, and λj is the number of parts to which nj is
connected

! Constraints: equal weights of different parts
 i-th vertex weights (based on previous partition):

!   unit weight (subdomain dimension)
! nnz(Mk(i, :)) (subdomain nnz)
! nnz(Mk(i, :)) + nnz(Ck(i, :)) (interface nnz)

28

λ(j)−1()
nj∈N
∑

1
nj∈N ,λ (j)>1
∑

λ(j)
nj∈N ,λ (j)>1
∑

Balance & Time results with RHB
!   tdr190k from accelerator cavity design: N = 1.1M, k = 32
!   Compared to ND of SCOTCH
!   Results

!   Single-constraint improves balance without much increase of
separator size à 1.7x faster than ND

!   Multi-constraints improves balance, but larger separator

29 CON1 CNET SOED PT−SCOTCH
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

b
a
la

n
c
e
 (

m
a
x
/m

in
)

tdr190k with 32 subdomains, single−constraint with nnz weights

dim(D)
nnz(D)

col(E)
nnz(E)
Time

32K
32K

32K

28K

2. Sparse triangular solution with sparse RHS
 (intra-group within a subdomain)
!   RHS vectors Eℓ and Fℓ are sparse (e.g., about 20 nnz per column);

There are many RHS vectors (e.g., O(104) columns)

!   Blocking RHS vectors
!   Reduce number of calls to the symbolic routine and number of

messages, and improve read reuse of the LU factors
Ø  Achieved over 5x speedup
!   zeros must be padded to fill the block à memory cost !

30

Sparse triangular solution with sparse RHSs

!   Objective: Reorder columns of Eℓ to maximize structural similarity
among the adjacent columns.

!   Where are the fill-ins?
 Path Theorem [Gilbert’94] Given the elimination tree of Dl, fills
generated in Gl at the positions associated with nodes on the path
from nodes of the nonzeros in El to the root

31

24 padded zeros

Sparse RHS … postordering

! Postorder-conforming ordering of the RHS vectors
! Postorder elimination tree of Dl
!   Permute columns of El s.t. row indices of the first nonzeros are in

ascending order
!   Increased overlap of the paths to the root, fewer padded zeros
!   20–40% reduction in solution time over ND

32

13 padded zeros

Sparse triangular solution … Hypergraph

!   Partition/group columns using row-net HG
!   Define a cost function ≈ padded zeros

 “connectivity-1” metric constant

!   Minimize cost(π) using Patoh
!   Additional 10% reduction in time

33

cost(Π) = λiB− nnz(Gl (i, :))()
row i=1

n

∑

= λi −1()
 i=1

n

∑ B + B
i=1

n

∑ + nnz(G)

x 0 x 0 0 x row i

B

Sparse RHS: memory saving

!   tdr190k from accelerator cavity design: N = 1.1M, k = 8
!   Fraction of padded zeros, with different block size

34

20 40 60 80 100120140 160180200 220240 260280300

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.1

block size

fra
ct

io
n

of
 p

ad
de

d
ze

ro
s

tdr190k with 8 interior domains

max
avg

1.58
1.26

1.62
1.3

1.7
1.35

1.68
1.31

1.6
1.31

1.39
1.26

1.42
1.23

1.4
1.25

1.25
1.14

1.23
1.16

1.43
1.2

1.38
1.16

1.26
1.13

1.34
1.11

1.32
1.14

natural
postorder
hypergraph

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300

10

15

20

25

30

35

40

45

max
avg

1.12
1.05

1.14
1.08

1.18
1.1

1.17
1.11

1.2
1.11

1.18
1.11

1.19
1.11

1.22
1.14

1.13
1.08

1.31
1.13

1.27
1.13

1.2
1.12

1.23
1.1

1.27
1.1

1.18
1.12

block size

so
lu

tio
n

tim
e

(s
)

tdr190k with 8 interior domains

natural
postorder
hypergraph

Summary

!   Graph partitioning
!   Direct edge partition + min. vertex cover not effective
!   Recursive Hypergraph Bisection: 1.7x faster

!   Reordering sparse RHS in sparse triangular solution
! postordering: 20-40% faster; hypergraph: additional 10% faster

Remarks
!   Direct solvers can scale to 1000s cores
!   Domain-decomposition type of hybrid solvers can scale to 10,000s

cores
!   Can maintain robustness too

!   Beyond 100K cores: Working on AMG combined with low-rank
approximate factorization preconditioner

35

References

•  B. Smith, P. Bjorstad, W. Gropp, “Domain Decomposition: Parallel
Multilevel Methods for Elliptic Partial Differential Equations”,
Cambridge University Press, 1996. (book)

•  I. Yamazaki and X.S. Li, “On techniques to improve robustness
and scalability of the Schur complement method, VECPAR'10,
June 22-25, 2010, Berkeley.

•  I. Yamazaki, X.S. Li, F.-H. Rouet, and B. Ucar, “On partitioning and
reordering problems in a hierarchically parallel hybrid linear
solver'’, PDSEC Workshop at IPDPS, 2013, Boston.

36

Exercises

1.  Show that for a symmetric positive definite matrix, the condition
number of a Schur complement is no larger than that of the
original matrix.

37

Acknowledgements

Funded through DOE SciDAC projects:

Solvers:
!   TOPS (Towards Optimal Petascale Simulations)
! FASTMath (Frameworks, Algorithms, and Scalable

Technologies for Mathematics)

Application partnership:
!   CEMM (Center for Extended MHD Modeling, fusion energy)
! ComPASS (Community Petascale Project for Accelerator

Science and Simulation)

38

