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Course outline 

1.  Fundamentals of high performance computing 
2.  Basics of sparse matrix computation: data structure, graphs, 

matrix-vector multiplication 
3.  Combinatorial algorithms in sparse factorization: ordering, 

pivoting, symbolic factorization 
4.  Numerical factorization & triangular solution: data-flow 

organization 
5.  Parallel factorization & triangular solution 
6.  Preconditioning: incomplete factorization 
7.  Preconditioning: low-rank data-sparse factorization 
8.  Hybrid methods: domain decomposition, substructuring method 

Course materials online: crd-legacy.lbl.gov/~xiaoye/G2S3/ 
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Lecture 1 
  

Fundamentals: Parallel computing, Sparse matrices 
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Lawrence Berkeley National Laboratory, USA 
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Lecture outline 

•  Parallel machines and programming models 
•  Principles of parallel computing performance 
•  Design of parallel algorithms 

"   Matrix computations: dense & sparse 
"   Partial Differential Equations (PDEs) 
"   Mesh methods 
"   Particle methods 
"   Quantum Monte-Carlo methods 
"   Load balancing, synchronization techniques 
 



Parallel machines & programming model 
(hardware & software) 
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Idealized Uniprocessor Model 
"   Processor names bytes, words, etc. in its address space 

"   These represent integers, floats, pointers, arrays, etc. 
"   Operations include 

"   Read and write into very fast memory called registers 
"   Arithmetic and other logical operations on registers 

"   Order specified by program 
"   Read returns the most recently written data 
"   Compiler and architecture translate high level expressions into 

“obvious” lower level instructions (assembly) 

"   Hardware executes instructions in order specified by compiler 
"   Idealized Cost 

"   Each operation has roughly the same cost 
 (read, write, add, multiply, etc.) 

A = B + C ⇒ 
Read address(B) to R1 
Read address(C) to R2 
R3 = R1 + R2 
Write R3 to Address(A) 
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Uniprocessors in the Real World 

"   Real processors have 
"   registers and caches 

•  small amounts of fast memory 
•  store values of recently used or nearby data 
•  different memory ops can have very different costs 

"   parallelism 
•  multiple “functional units” that can run in parallel 
•  different orders, instruction mixes have different costs 

"   pipelining 
•  a form of parallelism, like an assembly line in a factory 

"   Why need to know this? 
"   In theory, compilers and hardware “understand” all this and 

can optimize your program; in practice they don’t. 
"   They won’t know about a different algorithm that might be a 

much better “match” to the processor 



Parallelism within single processor – pipelining 
"   Like assembly line in manufacturing 
"   Instruction pipeline allows overlapping execution of multiple 

instructions with the same circuitry 

"   Sequential execution: 5 (cycles) * 5 (inst.) = 25 cycles 
"   Pipelined execution: 5 (cycles to fill the pipe, latency) + 5 (cycles, 1 

cycle/inst. throughput) = 10 cycles 
"   Arithmetic unit pipeline: A FP multiply may have latency 10 cycles, 

but throughput of 1/cycle 
"   Pipeline helps throughput/bandwidth, but not latency 
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IF = Instruction Fetch 
ID = Instruction Decode 
EX = Execute 
MEM = Memory access 
WB = Register write back 



Parallelism within single processor – SIMD 

"   SIMD: Single Instruction, Multiple Data 
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•  Scalar processing 
•  traditional mode 
•  one operation produces 

one result 

•  SIMD processing 
•  with SSE / SSE2 
•  SSE = streaming SIMD extensions 

•  one operation produces multiple results  
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SSE / SSE2 SIMD on Intel 

• SSE2 data types: anything that fits into 16 bytes, e.g., 

•  Instructions perform add, multiply etc. on all the data in 
this 16-byte register in parallel 

• Challenges: 
•  Need to be contiguous in memory and aligned 
•  Some instructions to move data around from one part of 

register to another 
•  Similar on GPUs, vector processors (but many more simultaneous 

operations) 

16x bytes 

4x floats 

2x doubles 



Variety of node architectures 
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Cray XE6: dual-socket x 2-die x 6-core, 24 cores  Cray XC30: dual-socket x 8-core, 16 cores  

Cray XK7: 16-core AMD + K20X GPU   Intel MIC: 16-core host + 60+ cores co-processor    
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TOP500 (www.top500.org) 
"   Listing of 500 fastest computers 
"   Metric: LINPACK benchmark 

"   “How fast is your computer?” =  
 “How fast can you solve dense linear system Ax=b?” 

"   Current records (June, 2013) 

Rank  Machine Cores Linpack 
(Petaflop/s) 

Peak 
(Petaflop/s) 

1 Tianhe-2 – Intel MIC 
(China National Univ. of 
Defense Technology) 

3,120,000 33.8 
 

(61%) 

54.9 

2 Titan – Cray XK7 
(US Oak Ridge National Lab) 

560, 640 17.6 
(65%) 

27.1 

3 Sequoia – BlueGene/Q 
(US Lawrence Livermore 
National Lab) 

1,572,864 17.1 
(85%) 

20.1 
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Units of measure in HPC 

"   High Performance Computing (HPC) units are: 
"   Flop: floating point operation 
"   Flops/s: floating point operations per second 
"   Bytes: size of data (a double precision floating point number is 8) 

"   Typical sizes are millions, billions, trillions… 
Mega  Mflop/s = 106 flop/sec  Mbyte = 220 = 1048576 ~ 106 bytes 
Giga  Gflop/s = 109 flop/sec  Gbyte = 230 ~ 109 bytes 
Tera  Tflop/s = 1012 flop/sec  Tbyte = 240 ~ 1012 bytes  
Peta  Pflop/s = 1015 flop/sec  Pbyte = 250 ~ 1015 bytes 
Exa  Eflop/s = 1018 flop/sec  Ebyte = 260 ~ 1018 bytes 
Zetta  Zflop/s = 1021 flop/sec  Zbyte = 270 ~ 1021 bytes 
Yotta  Yflop/s = 1024 flop/sec  Ybyte = 280 ~ 1024 bytes   



15"

Memory Hierarchy … Flops is not everything 
"   Most programs have a high degree of locality in their accesses 

"   spatial locality: accessing things nearby previous accesses 
"   temporal locality: reusing an item that was previously accessed 

"   Memory hierarchy tries to exploit locality to improve average 

on-chip 
cache registers 

datapath 

control 

processor 

Second 
level 

cache 
(SRAM) 

Main 
memory 

(DRAM) 

Secondary 
storage 
(Disk) 

Tertiary 
storage 

(Disk/Tape) 

Speed 1ns 10ns 100ns 10ms 10sec 

Size KB MB GB TB PB 



Hopper Node Topology 
Understanding NUMA Effects     [J. Shalf] 



Arithmetic Intensity 

"   Arithmetic Intensity (AI) ~ Total Flops / Total DRAM Bytes 
"   E.g.: dense matrix-matrix multiplication: n3 flops / n2 memory 

"   Higher AI à better locality à amenable to many optimizations à 
achieve higher % machine peak  
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A r i t h m e t i c  I n t e n s i t y 

O( N ) 
O( log(N) ) 

O( 1 ) 

SpMV, BLAS1,2 

Stencils (PDEs) 

Lattice Methods 

FFTs 
Dense Linear Algebra 

(BLAS3) 
Naïve Particle Methods PIC codes 

[S. Williams] 



Roofline model (S. Williams) 
basic concept 
"   Synthesize communication, computation, and locality into a single 

visually-intuitive performance figure using bound and bottleneck 
analysis. 
"   Assume FP kernel maintained in DRAM, and perfectly overlap 

computation and communication w/ DRAM 
"   Arithmetic Intensity (AI) is computed based on DRAM traffic after 

being filtered by cache 
"   Question : is the code computation-bound or memory-bound? 

"   Time is the maximum of the time required to transfer the data and 
the time required to perform the floating point operations. 
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Byte’s  /  STREAM Bandwidth 

Flop’s  /  Flop/s 

time 



Roofline model 
simple bound 

 

"   Roofline 
"   Given the code AI, can inspect the 

figure to bound performance 
"   Provides insights as to which 

optimizations will potentially be 
beneficial 

"   Machine-dependent, code-
dependent 
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Attainable 
Performanceij 

= min 
FLOP/s  (with Optimizations1-i) 

AI * Bandwidth  (with Optimizations1-j) 
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Example 
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"   Consider the Opteron 2356: 
"   Dual Socket (NUMA) 
"   limited HW stream prefetchers 
"   quad-core (8 total) 
"   2.3GHz 
"   2-way SIMD (DP) 
"   separate FPMUL and FPADD 

 datapaths 
"   4-cycle FP latency 

"   Assuming expression of parallelism is the challenge on this 
architecture, what would the roofline model look like ? 



Roofline Model 
Basic Concept 
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v  Naively, one might assume 
peak performance is 
always attainable. 
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Roofline Model 
Basic Concept 

22 

v  However, with a lack of 
locality, DRAM bandwidth 
can be a bottleneck 

v  Plot on log-log scale 
v  Given AI, we can easily 

bound performance 
v  But architectures are much 

more complicated 

v  We will bound performance 
as we eliminate specific 
forms of in-core parallelism 
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Roofline Model 
computational ceilings 

23 

v  Opterons have dedicated 
multipliers and adders. 

v  If the code is dominated by 
adds, then attainable 
performance is half of peak. 

v  We call these Ceilings 
v  They act like constraints on 

performance  
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Roofline Model 
computational ceilings 
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v  Opterons have 128-bit 
datapaths. 

v  If instructions aren’t 
SIMDized, attainable 
performance will be halved 
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Roofline Model 
computational ceilings 
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v  On Opterons, floating-point 
instructions have a 4 cycle 
latency. 

v  If we don’t express 4-way 
ILP, performance will drop 
by as much as 4x 
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Roofline Model 
communication ceilings 
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v  We can perform a similar 
exercise taking away 
parallelism from the 
memory subsystem 
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Roofline Model 
communication ceilings 
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v  Explicit software prefetch 
instructions are required to 
achieve peak bandwidth 

actual FLOP:Byte ratio 
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Roofline Model 
communication ceilings 
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v  Opterons are NUMA 
v  As such memory traffic 

must be correctly balanced 
among the two sockets to 
achieve good Stream 
bandwidth. 

v  We could continue this by 
examining strided or 
random memory access 
patterns 
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Roofline Model 
computation + communication ceilings 
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v  We may bound 
performance based on the 
combination of expressed 
in-core parallelism and 
attained bandwidth. 
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"   Parallel machines 
"   Shared memory 
"   Shared address space 
"   Message passing 
"   Data parallel: vector processors 
"   Clusters of SMPs 
"   Grid 

"   Programming model reflects hardware 
"   Historically, tight coupling 
"   Today, portability is important 
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A generic parallel architecture 

•  Where is the memory physically located? 

P P P P 

Interconnection Network 

M M M M 

Memory 
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Parallel programming models 

"   Control 
"   How is parallelism created? 
"   What orderings exist between operations? 
"   How do different threads of control synchronize? 

"   Data 
"   What data is private vs. shared? 
"   How is logically shared data accessed or communicated? 

"   Operations 
"   What are the atomic (indivisible) operations? 

"   Cost 
"   How do we account for the cost of each of the above? 
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Machine model 1a: shared memory 

"   Processors all connected to a common shared memory. 
"   Processors à sockets à dies à cores 
"   Intel, AMD :  multicore, multithread chips 

"   Difficulty scaling to large numbers of processors 
"   <= 32 processors typical 

"   Memory access: 
"   uniform memory access (UMA) 
" Nonuniform memory access (NUMA, more common now) 

"   Cost: much cheaper to access data in cache than main memory. 

bus 

memory 

P1 
$

P2 
$

Pn 
$ $ = cache 
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Machine model 1b: distributed shared memory 

"   Memory is logically shared, but physically distributed (e.g., 
SGI Altix) 
"   Any processor can access any address in memory 
"   Cache lines (or pages) are passed around machine 
"   Limitation is cache coherency protocols – how to keep cached 

copies of the same address consistent 

network 

memory 

P1 
$

P2 

$
Pn 

$

memory memory 
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Simple programming example 

Consider dot product:  
•  Parallel Decomposition:  

§  Each evaluation and each partial sum is a task. 
•  Assign n/p numbers to each of p procs 

§  Each computes independent “private” results and partial sum. 
§  One (or all) collects the p partial sums and computes the global 

sum. 
Two Classes of Data:  
•  Logically Shared 

§  The original n numbers, the global sum. 
•  Logically Private 

§  The individual partial sums. 

∑
−

=

1

0
)(*)(

n

i
iyix



OpenMP shared-memory programming 

"   Share the node address space. 

 
"   Most data shared within node. 
"   Threads communicate via 

 memory read & write. 
"   Concurrent write to shared 

 data needs locking or  
 atomic operation. 
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F o r k 

J o i n 

 
Master thread 

Thread 1 Thread 5 

Shared data 

Private data 

Master thread 

Private data 
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Incorrect program 

•  There is a race condition on variable s in the program 
•  A race condition or data race occurs when: 

-  two threads access the same variable, and at least one does a 
write. 

-  the accesses are concurrent (not synchronized) so they could 
happen simultaneously 

Thread 1 
 
   for i = 0, n/2-1 
        s = s + x(i)*y(i) 

Thread 2 
 
  for i = n/2, n-1 
        s = s + x(i)*y(i) 

int s = 0; 
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Correct program 

"   Since addition is associative, it’s OK to rearrange order 
"   Most computation is on private variables 

"   Sharing frequency is also reduced, which might improve speed  
"   Race condition is fixed by adding locks to critical region (only one 

thread can hold a lock at a time; others wait for it) 
"   Shared-memory programming standards: OpenMP, PTHREADS 

Thread 1 
 
    local_s1= 0 
    for i = 0, n/2-1 
        local_s1 = local_s1 + x(i)*y(i) 
     
    s = s + local_s1 
     

Thread 2 
 
    local_s2 = 0 
    for i = n/2, n-1 
        local_s2= local_s2 + x(i)*y(i) 
     
    s = s +local_s2 
     

int s = 0; 
Lock lk; 

lock(lk); 

unlock(lk); 

lock(lk); 

unlock(lk); 



Dot-product using OpenMP in C 

int n = 100; 
double x[100], y[100]; 
double s = 0, local_s; 
 
#pragma omp parallel shared (s) private (local_s) 
{ 
    local_s = 0.0; 
    #pragma omp for 
        for (i = 0; i < n; ++i) { 
             local_s = local_s + x[i] * y[i]; 
        } 
    #pragma omp critical 
    { 
         s = s + local_s; 
    } 
} 
 
Exercise: complete this program, and run it with at least 4 threads. 
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OpenMP tutorial: 
https://computing.llnl.gov/tutorials/openMP/ 
 
OpenMP sample programs: 
https://computing.llnl.gov/tutorials/openMP/exercise.html 
 

40 
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Machine model 2: distributed memory 

"   Cray XE6, IBM SP, PC Clusters ..., can be large 
"   Each processor has its own memory and cache, but cannot 

directly access another processor’s memory. 
"   Each “node” has a Network Interface (NI) for all communication 

and synchronization. 

interconnect 

P0 

memory 

NI 

. . . 

P1 

memory 

NI Pn 

memory 

NI 
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Programming Model 2:  Message Passing 

•  Program consists of a collection of named processes 
"   Usually fixed at program startup time 
"   Thread of control plus local address space -- NO shared data 

•  Processes communicate by explicit send/receive pairs 
"   Coordination is implicit in every communication event. 
"   Message Passing Interface (MPI) is the most commonly used SW 

Pn P1 P0 

y = ..s ... 

s: 12  

i: 2 

s: 14  

i: 3 

s: 11  

i: 1 

send P1,s 

Network 

receive Pn,s 

Private 
memory 
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Distributed dot product 

Processor 1 
 
  s = 0 
  for i = 0, n/2-1 
        s = s + x(i)*y(i) 
  MPI_Recv(s_remote, p2,...) 
  MPI_Send(s, p2, ...) 
  s = s + s_remote   

Processor 2 
 
  s = 0 
  for i = 0, n/2-1 
        s = s + x(i)*y(i) 
  MPI_Send(s, p1, ...) 
  MPI_Recv(s_remote, p1,...) 
  s = s + s_remote   
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MPI – the de facto standard 

"   MPI has become the de facto standard for parallel computing using 
message passing 

"   Pros and Cons 
"   MPI created finally a standard for applications development in the 

HPC community à portability 
"   The MPI standard is a least common denominator building on mid-80s 

technology, so may discourage innovation 
 
 

"   MPI tutorial: 
     https://computing.llnl.gov/tutorials/mpi/ 
     https://computing.llnl.gov/tutorials/mpi/exercise.html 

  



Other machines & programming models 

"   Data parallel 
"   SIMD 
"   Vector machines (often has compiler support) 

•  SSE, SSE2 (Intel: Pentium/IA64) 
•  Altivec (IBM/Motorola/Apple: PowerPC) 
•  VIS (Sun: Sparc) 

"   GPU, at a larger scale 
"   Hybrid: cluster of SMP/multicore/GPU node 
"   MPI + X 

"   X = OpenMP, CUDA/OpenCL, … 
"   Global Address Space programming (GAS languages) 

"   UPC, Co-Array Fortran 
"   Local and shared data, as in shared memory model 
"   But, shared data is partitioned over local processes 

45 
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Outline 

•  Parallel machines and programming models 

•  Principles of parallel computing performance 
•  Models of performance bound 

 
•  Design of parallel algorithms 



Principles of Parallel Computing 

"   Finding enough parallelism  (Amdahl’s Law) 
"   Granularity – how big should each parallel task be 
"   Locality – moving data costs more than arithmetic 
"   Load balance – don’t want 1K processors to wait for one slow one 
"   Coordination and synchronization – sharing data safely  
"   Performance modeling/debugging/tuning 

47 
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Finding enough parallelism 

"   Suppose only part of an application is parallel 
"   Amdahl’s law 

"   Let s be the fraction of work done sequentially, so                                
(1-s) is fraction parallelizable 

"   P = number of cores 

 ( e.g., s = 1% à speedup <= 100 )  
"   Even if the parallel part speeds up perfectly, performance is limited 

by the sequential part 

Speedup(P) = Time(1)/Time(P) 

                   <= 1/(s + (1-s)/P)  

                   <= 1/s 
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Overhead of parallelism 

"   Given enough parallel work, this is the biggest barrier to getting 
desired speedup 

 
"   Parallelism overheads include: 

"   cost of starting a thread or process 
"   cost of communicating shared data 
"   cost of synchronizing 
"   extra (redundant) computation 
 

"   Each of these can be in the range of milliseconds  
 (= millions of flops) on some systems 

 
"   Tradeoff: Algorithm needs sufficiently large units of work to run fast 

in parallel (I.e. large granularity), but not so large that there is not 
enough parallel work  
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Performance properties of a network 

"   Latency: delay between send and receive times 
"   Latency tends to vary widely across machines 
"   Vendors often report hardware latencies (wire time) 
"   Application programmers care about software latencies (user program 

to user program) 
Ø  Latency is important for programs with many small messages (e.g., 

sparse matrices) 
"   The bandwidth of a link measures how much volume can be 

transferred in unit-time (e.g., MBytes/sec) 
Ø  Bandwidth is important for applications with mostly large messages 

(e.g., dense matrices) 
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Latency and bandwidth model 

"   Time to send a message of length n is roughly 
 

 
      Called  “α-β model” and written: 

"   Usually α >> β >> time per flop 
à One long message is cheaper than many short ones. 

"   Can do hundreds or thousands of flops for cost of one message 

Time = latency + n * time_per_word 
         = latency + n / bandwidth 

α + n*β  <<  n*(α + 1*β) 

Time = α  + β×n



                         
                        

52 

Communication versus F.P. speed 

Cray XE6 at NERSC, LBNL: dual-socket x 2-die x 6-core, 24 cores  
 
"   Inter-node 

"   FP Peak/core: 8.5 Gflops à time_per_flop = 0.11 nanosec 
"  Communication using MPI 

 
 
 
"   Intra-node (on-node memory): 24 cores 

"   1.3 - 2.6 GB/core 
 

à Extremely difficult for accurate performance prediction. 
 
 

α =1.5microsec (≈13, 636 FPs)
1 / β = 5.8 GB/s, β = 0.17 nanosec (≈12 FPs/double-word)
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BLAS – Basic Linear Algebra Subroutines 
http://www.netlib.org/blas/blast-forum/ 

"   Building blocks for all linear algebra 
"   Parallel versions call serial versions on each processor 

"   So they must be fast! 
"    Reuse ratio: q = # flops / # mem references  (i.e. Arithmetic Intensity) 

"   The larger is q, the faster the algorithm can go in the presence of memory 
hierarchy 

BLAS  level Ex. # mem refs # flops q  

1 “Axpy”,     
Dot prod 

3n 2n1 2/3 

2 Matrix-
vector mult 

n2 2n2 2 

3 Matrix-
matrix mult 

4n2 2n3 n/2 



                         
                        

54 

BLAS performance 
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Parallel data layouts for matrices 

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3 

0 1 2 3 0 1 2 3 

1) 1D Column Blocked Layout 2) 1D Column Cyclic Layout 

3) 1D Column Block Cyclic Layout 

4) Row versions of the previous layouts 

Generalizes others 

0 1 0 1 0 1 0 1 
2 3 2 3 2 3 2 3 
0 1 0 1 0 1 0 1 
2 3 2 3 2 3 2 3 
0 1 0 1 0 1 0 1 
2 3 2 3 2 3 2 3 
0 1 0 1 0 1 0 1 
2 3 2 3 2 3 2 3 6) 2D Row and Column 

Block Cyclic Layout 

0 1 2 3 

0 1 

2 3 

5) 2D Row and Column Blocked Layout 

b 



Summary 

"   Performance bounds and models 
"   Roofline model: captures on-node memory speed 
"   Amdahl’s Law: upper bound of speedup 
"   “α-β model” (latency-bandwidth): captures network speed 
"   Strong/weaking scaling:  algorithm scalability (Lectures 3-4) 

"   Hybrid programming becomes necessary 
"   MPI + X 

"   Sparse matrix algorithms have much lower arithmetic density 
"   Critical to reduce memory access and communication 
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Exercises 

1.  Complete and run the OpenMP code to perform dot-product. 
•  Other examples: https://computing.llnl.gov/tutorials/openMP/

exercise.html 
2.  Write an OpenMP code to perform GEMM 

•  Validate correctness 
•  How fast does your program run on one node of the cluster? 

3.  Run the following MPI codes in Hands-On-Exercises/ 
•  Hello-MPI 
•  DOT-MPI   (Is it simpler than OpenMP DOT ?) 

4.  Write an MPI program to find the Maximum and Minimum entries 
of an array. 

5.  Run the MPI ping-pong benchmark code in Hands-On-Exercises/
LatencyBandwidth/ directory, to find {alpha, beta} on your 
machine. 
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Exercises 

6.  Run the MPI code to perform GEMM 
•  How to distribute the matrix? 
•  The parallel algorithm is called SUMMA 

7.  Write a hybrid MPI + OpenMP code to perform GEMM 
•  Use 2 nodes of the cluster (2 x 12 cores) 
•  Can have various MPI and OpenMP configurations: 

2 MPI tasks X 12 threads, 4 MPI tasks X 6 threads, … 
•  Other tuning parameters: 
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Cannon’s matrix-multiplication algorithm 

"   Views the processes as being arranged in a virtual two-
dimensional square array. It uses this array to distribute the 
matrices A, B, and the result matrix  C in a block fashion. 

"   If n x n is the size of each matrix and p is the total number of 
processes, then each matrix is divided into square blocks of size  

     n/√p x n/√p 
"   Process Pi,j in the grid is assigned the Ai,j, Bi,j, and Ci,j blocks of 

each matrix. 
"   The algorithm proceeds in √p steps. In each step, every process 

multiplies the local blocks of matrices A and B, and then sends the 
block of A to the leftward process, and the block of B to the upward 
process. 
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Lecture 2 
  

Sparse matrix data structures, graphs, manipulation 

Xiaoye Sherry Li 
Lawrence Berkeley National Laboratory, USA 

xsli@lbl.gov 
 

crd-legacy.lbl.gov/~xiaoye/G2S3/ 
 

4th Gene Golub SIAM Summer School, 7/22 – 8/7, 2013, Shanghai 
 



Lecture outline 

2 

!   PDE à discretization à sparse matrices 
!   Sparse matrix storage formats 

!   Sparse matrix-vector multiplication with various formats 
!   Graphs associated with the sparse matrices 
!   Distributed sparse matrix-vector multiplication 



Solving partial differential equations 

!   Hyperbolic problems (waves): 
!   Sound wave (position, time) 
!   Use explicit time-stepping: Combine nearest neighbors on grid 
!   Solution at each point depends on neighbors at previous time 

!   Elliptic (steady state) problems: 
!   Electrostatic potential (position) 
!   Everything depends on everything else, use implicit method 
!   This means locality is harder to find than in hyperbolic problems 
!   Canonical example is the Poisson equation 

 
!   Parabolic (time-dependent) problems: 

!   Temperature (position, time) 
!   Involves an elliptic solve at each time-step 

∂2u/∂x2  +  ∂2u/∂y2  +  ∂2u/∂z2  =  f(x,y,z) 
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PDE discretization leads to sparse matrices 
!   Poisson equation in 2D: 

!   Finite difference discretization à stencil computation 

4 

∂2u
∂x2 (x, y)+ ∂

2u
∂y2 (x, y) = f (x, y),   (x, y)∈ R

u(x, y) = g(x, y),   (x,y) on the boundary 

5-point stencil 



Matrix view 
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4    -1           -1 

-1    4    -1          -1 

      -1     4                 -1 

 -1                4     -1          -1 

       -1         -1     4    -1          -1           

              -1         -1     4                  -1 

                   -1                   4    -1 

                          -1            -1     4    -1 

                                -1             -1     4 

A = 4 

-1 

-1 

-1 

-1 

Graph and “stencil” 

4 ⋅u(i, j)−u(i−1, j)−u(i+1, j)−u(i, j −1)−u(i, j +1) = f (i, j)



Application 1: Burning plasma for fusion energy 
!   ITER – a new fusion reactor being constructed in Cadarache, France 

•  International collaboration: China, the European Union, India, Japan, 
Korea, Russia, and the United States 

•  Study how to harness fusion, creating clean energy using nearly 
inexhaustible hydrogen as the fuel. ITER promises to produce 10 times as 
much energy than it uses — but that success hinges on accurately 
designing the device. 

!   One major simulation goal is to predict microscopic MHD instabilities 
of burning plasma in ITER. This involves solving extended and 
nonlinear Magnetohydrodynamics equations.  
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Application 1: ITER modeling 
!   US DOE SciDAC project (Scientific Discovery through Advanced 

Computing) 
•  Center for Extended Magnetohydrodynamic Modeling (CEMM),   PI: S. 

Jardin, PPPL 
!   Develop simulation codes to predict microscopic MHD instabilities 

of burning magnetized plasma in a confinement device (e.g., 
tokamak used in ITER experiments). 
•  Efficiency of the fusion configuration increases with the ratio of thermal 

and magnetic pressures, but the MHD instabilities are more likely with 
higher ratio. 

!   Code suite includes M3D-C1, NIMROD 
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ϕ R

Z

•  At each ϕ = constant plane, scalar 2D data   
  is represented using 18 degree of freedom    
  quintic triangular finite elements Q18 
 
•   Coupling along toroidal direction 

(S. Jardin) 



ITER modeling: 2-Fluid 3D MHD Equations 

∂n
∂t
+∇•(nV ) = 0                                               continuity

∂B
∂t

= −∇×E, ∇•B = 0, µ0J = ∂×B                        Maxwell

nMt
∂V
∂t

+V •∇V
%

&
'

(

)
*+∇p = J ×B−∇•ΠGV −∇•Πµ     Momentum

E +V ×B =ηJ + 1
ne

(J ×B−∇pe −∇•Πe )  Ohm's law

3
2
∂pe
∂t

+∇•
3
2
peV

%

&
'

(

)
*= −pe∇•∇+ηJ

2 −∇•qe +QΔ electron energy

3
2
∂pi
∂t

+∇•
3
2
piV

%

&
'

(

)
*= −pi∇•∇−Πµ •∇V −∇•qi −QΔ ion energy
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The objective of the M3D-C1 project is to solve these equations as 
accurately as possible in 3D toroidal geometry with realistic B.C. 
and optimized for a low-β torus with a strong toroidal field. 



Application 2: particle accelerator cavity design 
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•   US DOE SciDAC project 
•   Community Petascale Project for Accelerator Science and 
Simulation (ComPASS),  PI: P. Spentzouris, Fermilab 

•   Development of a comprehensive computational infrastructure     
   for  accelerator modeling and optimization 
•   RF cavity: Maxwell equations in electromagnetic field 
•   FEM in frequency domain leads to large sparse eigenvalue 
    problem;  needs to solve shifted linear systems 

bMx MK 00
2

0 )(
problem eigenvaluelinear 
=−σ

ΓE Closed 
Cavity 

ΓM 

Open 
Cavity 

Waveguide BC 

Waveguide BC 

Waveguide BC 

(L.-Q. Lee) 

bx M W -  i  K =+ )(
problem eigenvaluecomplex nonlinear 

0
2

0 σσ

RF unit in ILC 
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RF Cavity Eigenvalue Problem  

Find frequency and field vector of normal modes:!
“Maxwell’s Equations” 

Nedelec-type finite-element discretization 

ΓE Closed 
Cavity 

ΓM 
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Cavity with Waveguide coupling for multiple 
waveguide modes 

!   Vector wave equation with waveguide boundary conditions can be 
modeled by a non-linear complex eigenvalue problem 

Open 
Cavity 

Waveguide BC 
Waveguide BC 

Waveguide BC 

where 



Sparse: lots of zeros in matrix 
!   fluid dynamics, structural mechanics, chemical process simulation, 

circuit simulation, electromagnetic fields, magneto-hydrodynamics, 
seismic-imaging, economic modeling,  optimization, data analysis, 
statistics, . . . 

!   Example: A of dimension 106,   10~100 nonzeros per row 
! Matlab:  > spy(A) 
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Mallya/lhr01 (chemical eng.) Boeing/msc00726 (structural eng.) 
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Sparse Storage Schemes 

!   Assume arbitrary sparsity pattern …  
!   Notation 

!   N – dimension 
!   NNZ – number of nonzeros 

!   Obvious: 
!   “triplets” format ({i, j, val}) is not sufficient . . . 

•  Storage: 2*NNZ integers, NNZ reals 
•  Not easy to randomly access one row or column 

!   Linked list format provides flexibility, but not friendly on 
modern architectures . . . 

•  Cannot call BLAS directly 
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Compressed Row Storage (CRS) 

!   Store nonzeros row by row contiguously 
!   Example: N = 7, NNZ = 19 
!   3 arrays: 

–  Storage: NNZ reals, NNZ+N+1 integers 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

7
6

5
4

3
2

1

lk
jih
g

fe
dc

b
a

Nzval    1  a   2  b    c  d  3   e  4  f   5  g   h  i  6  j   k  l  7    (NNZ) 

 colind    1  4    2  5   1  2  3   2  4 5   5  7   4  5 6 7  3  5  7     (NNZ) 

rowptr   1  3  5  8  11  13  17  20     (N+1) 

1            3             5                 8                11         13                 17              20 
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SpMV (y = Ax) with CRS 

!   “dot product” 
!   No locality for x 
!   Vector length usually short 
!   Memory-bound: 3 reads, 2 flops 

do  i = 1, N    . . .  row i of A 
    sum = 0.0 
    do  j = rowptr(i),  rowptr(i+1) – 1 
         sum = sum + nzval(j) * x(colind(j)) 
    enddo 
    y(i) = sum 
enddo 

Nzval    1  a   2  b    c  d  3   e  4  f   5  g   h  i  6  j   k  l  7    (NNZ) 

 colind    1  4    2  5   1  2  3   2  4 5   5  7   4  5 6 7  3  5  7     (NNZ) 

rowptr   1  3  5  8  11  13  17  20     (N+1) 

1            3             5                 8                11         13                 17              20 
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Compressed Column Storage (CCS) 

!   Also known as Harwell-Boeing format 
!   Store nonzeros columnwise contiguously 
!   3 arrays: 

–  Storage: NNZ reals, NNZ+N+1 integers 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

7
6

5
4

3
2

1

lk
jih
g

fe
dc

b
a

nzval    1  c   2  d  e   3  k   a  4  h    b  f  5  i  l   6   g  j  7     (NNZ) 

 rowind    1  3  2  3  4   3  7   1  4  6   2  4  5  6 7  6   5  6  7    (NNZ) 

colptr     1  3  6  8  11  16  17  20    (N+1) 
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SpMV (y = Ax) with CCS 

 

!   “SAXPY” 
!   No locality for y 
!   Vector length usually short 
!   Memory-bound: 3 reads, 1 write, 2 flops 

y(i) = 0.0,   i = 1…N 
do  j = 1, N    . . .   column j of A 
    t = x(j) 
    do  i = colptr(j),  colptr(j+1) – 1 
         y(rowind(i)) = y(rowind(i)) + nzval(i) * t 
    enddo 
enddo 

nzval    1  c   2  d  e   3  k   a  4  h    b  f  5  i  l   6   g  j  7     (NNZ) 

 rowind    1  3  2  3  4   3  7   1  4  6   2  4  5  6 7  6   5  6  7    (NNZ) 

colptr     1  3  6  8  11  16  17  20    (N+1) 



18 

Other Representations 

!   “Templates for the Solution of Linear Systems: Building Blocks for 
Iterative  Methods”,  R. Barrett et al. (online) 
!   ELLPACK, segmented-sum, etc. 

!   “Block entry” formats (e.g., multiple degrees of freedom 
are associated with a single physical location) 
!   Constant block size (BCRS) 
!   Variable block sizes (VBCRS) 

!   Skyline (or profile) storage (SKS) 
!   Lower triangle stored row by row 

 Upper triangle stored column by column 
!   In each row (column), first nonzero 

 defines a profile 
!   All entries within the profile  

 (some may be zero) are stored 



SpMV optimization – mitigate memory access bottleneck 

BeBOP (Berkeley Benchmark and Optimization group):  
http://bebop.cs.berkeley.edu 
 
Software: OSKI / pOSKI – Optimized Sparse Kernel Interface 
•  Matrix reordering: up to 4x over CSR 
•  Register blocking: find dense blocks, pad zeros if needed, 2.1x 

over CSR 
•  Cache blocking: 2.8x over CSR 
•  Multiple vectors (SpMM): 7x over CSR 
•  Variable block splitting 
•  Symmetry: 2.8x over CSR 
•  … 
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Graphs 

A graph G = (V, E) consists of a finite set V , called the vertex set and 
a finite, binary relation E on V , called the edge set. 
 
Three standard graph models 
!   Undirected graph: The edges are unordered pair of vertices, i.e. 

!   Directed graph: The edges are ordered pair of vertices, that is,  
     (u, v) and (v, u) are two different edges 
!   Bipartite graph: G = (U U V;E) consists of two disjoint vertex sets U 

and V such that for each edge 
 
An ordering or labelling of G = (V, E) having n vertices, i.e., |V| = n, is 
a mapping of V onto 1,2, …, n. 
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{u,v}∈ E, for some u,v ∈V

{u,v}∈ E, u∈U  and v ∈V



Graph for rectangular matrix 

!   Bipartite graph 
     Rows = vertex set U, columns = vertex set V 
     each nonzero A(i,j) = an edge (ri,cj), ri in U and cj in V 
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Graphs for square, pattern nonsymmetric matrix 

!   Bipartite graph as before 

!   Directed graph: 
     Rows / columns = vertex set V  
     each nonzero A(i,j) = an ordered edge (vi, vj) directed vi à vj 
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Graphs for square, pattern symmetric matrix 

!   Bipartite graph as before 

!   Undirected graph: 
     Rows / columns = vertex set V 
     each nonzero A(i,j) = an edge {vi, vj} 
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Parallel sparse matrix-vector multiply 

!   y = A*x, where A is a sparse  n x n matrix 

!   Questions 
!   which processors store 

•  y[i], x[i], and A[i,j] 
!   which processors compute 

•  y[i] = (row i of A) * x   … a sparse dot product 
!   Partitioning 

!   Partition index set {1,…,n} = N1 ∪ N2 ∪ … ∪ Np. 
!   For all i in Nk, Processor k stores y[i], x[i], and row i of A  
!   For all i in Nk, Processor k computes y[i] = (row i of A) * x 
!   “owner computes” rule: Processor k compute y[i]s it owns 

y 
i: [j1,v1], [j2,v2],
… 

X

P1 

P2 

P3 

P4 

P1        P2         P3      P4 

x x 

May need 
communication 
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Graph partitioning and sparse matrices 

!   A “good” partition of the graph has 
!   equal (weighted) number of nodes in each part (load and storage 

balance). 
!   minimum number of edges crossing between (minimize 

communication). 
!   Reorder the rows/columns by putting all nodes in one partition 

together. 

3

6

2

1

5

4

1    1     1                      1 

2    1     1             1               1 

3                   1     1               1 

4           1      1     1       1  

5    1                    1       1      1 

6            1     1              1      1 

 

  1     2      3      4      5      6 



                         
                        

26 

Matrix reordering via graph partitioning 
•  “Ideal” matrix structure for parallelism: block diagonal 

!   p (number of processors) blocks, can all be computed 
locally. 

!   If no non-zeros outside these blocks, no communication 
needed 

•  Can we reorder the rows/columns to get close to this? 
!   Most nonzeros in diagonal blocks, very few outside 

P0!

P1!

P2!

P3!

P4!

= *

P0    P1   P2   P3  P4  !
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Distributed Compressed Row Storage 

!   Each process has a structure to store local part of A 	

	
 	
	


   typedef struct {	

	
    int   nnz_loc;  // number of nonzeros in the local submatrix	

	
    int   m_loc;     // number of rows local to this processor	

	
    int   fst_row;   // global index of the first row	


          void   *nzval;     // pointer to array of nonzero values, packed by row	

	
    int   *colind;    // pointer to array of column indices of the nonzeros	

	
    int   *rowptr;   // pointer to array of beginning of rows in nzval[]and colind[]	

	
}  CRS_dist;	
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Distributed Compressed Row Storage 

!   Processor P0 data structure:	

–  nnz_loc = 5	

–  m_loc = 2	

–  fst_row = 0  // 0-based indexing 	

–  nzval  = { s,  u,  u,  l,  u }	

–  colind = { 0,  2,  4,  0,  1 }	

–  rowptr = { 0, 3, 5 }	


!   Processor P1 data structure:	

–  nnz_loc = 7	

–  m_loc    = 3	

–  fst_row  = 2   // 0-based indexing	

–  nzval   = { l,  p,  e,  u,  l,  l,  r }	

–  colind  = { 1, 2,  3,  4,  0, 1, 4 }	

–  rowptr = { 0, 2, 4, 7 }	


u	

s	
 u	
 u	

l	


p	

e	


l	
 l	
 r	


P0	


P1	

l	


A is distributed on 2 cores:	


u	




Sparse matrices in MATLAB 

!   In matlab, “A = sparse()”, create a sparse matrix A 
!   Type “help sparse”, or “doc sparse” 

!   Storage: compressed column (CCS) 
!   Operation on sparse (full) matrices returns sparse (full) matrix 
     operation on mixed sparse & full matrices returns full matrix 
!   Ordering: amd, symamd, symrcm, colamd 
!   Factorization: lu, chol, qr, … 
!   Utilities: spy 
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Summary 

!   Many representations of sparse matrices 
!   Depending on application/algorithm needs 

!   Strong connection of sparse matrices and graphs 
!   Many graph algorithms are applicable 

 

30 



31 

References 

•  Barrett, et al., “Templates for the solution of linear systems: 
Building Blocks for Iterative Methods, 2nd Edition”, SIAM, 1994 
(book online) 

•  Sparse BLAS standard:  http://www.netlib.org/blas/blast-forum 
•  BeBOP: http://bebop.cs.berkeley.edu/ 
•  J.R. Gilbert, C. Moler, R. Schreiber, “Sparse Matrices In MATLAB: 

Design And Implementation”, SIAM J. Matrix Anal. Appl, 13, 
333-356, 1992. 



Exercises 

1.  Write a program that converts a matrix in CCS format to CRS 
format, see code in sparse_CCS/ directory 

2.  Write a program to compute y = A^T*x without forming A^T 
•  A can be stored in your favorite compressed format 

3.  Write a SpMV code with ELLPACK representation 
4.  SpMV roofline model on your machine 
5.  Write an OpenMP program for SpMV 
6.  Run the MPI SpMV code in the Hands-On-Exercises/ directory 
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EXTRA SLIDES 
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ELLPACK 

!   ELLPACK: software for solving elliptic problems [Purdue] 
!   Force all rows to have the same length as the longest row, then 

columns are stored contiguously 

!   2 arrays:  nzval(N,L) and colind(N,L), where L = max row length 
–  N*L reals, N*L integers 

!   Usually L << N 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

→

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

07
6
005
04
03
002
001

7
6

5
4

3
2

1

lk
jih

g
fe

dc
b
a

lk
jih
g

fe
dc

b
a
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SpMV with ELLPACK 

 
 

!   Neither “dot” nor “SAXPY” 
!   Good for vector processor: long vector length (N) 
!   Extra memory, flops for padded zeros, especially bad if 

row lengths vary a lot  

y(i) = 0.0,  i = 1…N 
do j = 1, L 
    do i = 1, N 
        y(i) = y(i) + nzval(i, j) * x(colind(i, j)) 
    enddo 
enddo  
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Segmented-Sum  [Blelloch et al.] 

!   Data structure is an augmented form of CRS, 
 computational structure is similar to ELLPACK 

!   Each row is treated as a segment in a long vector 
!   Underlined elements denote the beginning of each segment 

 (i.e., a row in A) 
!   Dimension: S * L ~ NNZ, where L is chosen to approximate 

the hardware vector length 
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SpMV with Segmented-Sum 

!   2 arrays: nzval(S, L) and colind(S, L), where S*L ~ NNZ 
–  NNZ reals, NNZ integers 

!   SpMV is performed bottom-up, with each “row-sum” (dot) of 
Ax stored in the beginning of each segment 
–  Similar to ELLPACK, but with more control logic in inner-

loop 
!   Good for vector processors 
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do i = S, 1 
    do j = 1, L 
        . . .  
    enddo 
enddo 
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Lecture outline 

!   Linear solvers: direct, iterative, hybrid 
!   Gaussian elimination 
!   Sparse Gaussian elimination: elimination graph, elimination tree 
!   Symbolic factorization, ordering, graph traversal 

!   only integers, no FP involved 

2 



§  Solving a system of linear equations Ax = b	

•  Sparse:  many zeros in A;  worth special treatment	


§  Iterative methods (CG, GMRES, …)	

§  A is not changed (read-only)	

§  Key kernel: sparse matrix-vector multiply	

§  Easier to optimize and parallelize	

§  Low algorithmic complexity, but may not converge	


§  Direct methods	

§  A is modified (factorized)	

§  Harder to optimize and parallelize	

§  Numerically robust, but higher algorithmic complexity	


§  Often use direct method (factorization) to precondition iterative method	

§  Solve an easy system: M-1Ax = M-1b	


Strategies of sparse linear solvers 
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Gaussian Elimination (GE) 

!   Solving a system of linear equations Ax = b 

!   First step of GE 

!   Repeat GE on C 
!   Result in LU factorization (A = LU) 

–  L lower triangular with unit diagonal, U upper triangular 

!   Then, x is obtained by solving two triangular systems with L 
and U 
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Numerical Stability: Need for Pivoting 

!   One step of GE: 

!                         

–  If α small, some entries in B may be lost from addition 

!   Pivoting: swap the current diagonal with a larger entry from 
the other part of the matrix 

!   Goal: control element growth (pivot growth) in L & U 
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Sparse GE 

!   Goal: Store only nonzeros and perform operations only on 
nonzeros 

!   Scalar algorithm: 3 nested loops 
!   Can re-arrange loops to get different variants: left-looking, right-

looking, . . . 
!   Fill: new nonzeros in factor 

!   Typical fill-ratio: 10x for 2D problems, 30-50x for 3D problems 
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U for i = 1 to n 
    A(:,j) = A(:,j) / A(j,j)   % cdiv(j) col_scale 
    for k = i+1 to n  s.t.  A(i,k) != 0 
       for j = i+1 to n  s.t.  A(j,i) != 0  
           A(j,k) = A(j,k) - A(j,i) * A(i,k) 



Useful tool to discover fill: Reachable Set 

!   Given certain elimination order (x1, x2, . . ., xn), how do you determine 
the fill-ins using original graph of A ? 
–  An implicit elimination model 

!   Definition: Let S be a subset of the node set. The reachable set of y 
through S is: 
 Reach(y, S) = { x | there exists a directed path (y,v1,…vk, x), vi in S} 

!   “Fill-path theorem” [Rose/Tarjan ’78] (general case): 
 Let G(A) = (V,E) be a directed graph of A, then an edge (v,w) exists in 
the filled graph G+(A) if and only if 

–  G+(A) = graph of the {L,U} factors 

w ∈ Reach(v,  {v1,…vk}), where, vi <min(v,w), 1≤ i ≤ k
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Concept of reachable set, fill-path 

Edge (x,y) exists in filled graph G+ due to the path: x à 7 à 3 à 9 à y 
 
!   Finding fill-ins ßà  finding transitive closure of G(A) 
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Sparse Column Cholesky Factorization LLT 
for j = 1 : n 
 

   L(j:n, j) = A(j:n, j); 
   for k < j with L(j, k) nonzero 
      % sparse cmod(j,k) 
      L(j:n, j) = L(j:n, j) – L(j, k) * L(j:n, k); 
   end; 
 

   % sparse cdiv(j) 
   L(j, j) = sqrt(L(j, j)); 
   L(j+1:n, j) = L(j+1:n, j) / L(j, j); 
 

end; 

Column j of A becomes column j of L 

L	


L	

LT	


A	


j	


!   Fill-path theorem [George ’80] (symmetric case) 
     After x1, …, xi are eliminated, the set of nodes adjacent to y in the 
     elimination graph is given by Reach(y, {x1, …, xi}), xi<min(x,y) 



Elimination Tree 
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Cholesky factor L	
 G+(A)	
 T(A)	
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T(A) :   parent(j) = min { i > j : (i, j) in G+(A) } 
 

parent(col j) = first nonzero row below diagonal in L 

•  T describes dependencies among columns of factor 
•  Can compute G+(A) easily from T 
•  Can compute T from G(A) in almost linear time 
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Symbolic Factorization 
 
precursor to numerical factorization 

•  Elimination tree 
•  Nonzero counts 
•  Supernodes 
•  Nonzero structure of {L, U} 

	

! Cholesky [Davis’06 book, George/Liu’81 book]	


–  Use elimination graph of L and its transitive reduction (elimination tree)	

–  Complexity linear in output: O(nnz(L))	


!   LU	

–  Use elimination graphs of L & U and their transitive reductions 

(elimination DAGs) [Tarjan/Rose `78, Gilbert/Liu `93, Gilbert `94]	

–  Improved by symmetric structure pruning [Eisenstat/Liu `92]	

–  Improved by supernodes	

–  Complexity greater than nnz(L+U), but much smaller than flops(LU)	




Can we reduce fill?  

!   Reordering, permutation 
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Fill-in in Sparse GE 

Ø  Original zero entry Aij
 becomes nonzero in L or U 

!   Red: fill-ins 
 
Natural order: NNZ = 233                 Min. Degree order: NNZ = 207 
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Ordering : Minimum Degree (1/3) 

Graph game: 

Eliminate 1 
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14 Maximum fill: all the edges between neighboring vertices (“clique”) 



Minimum Degree Ordering (2/3) 

!   Greedy approach: do the best locally 
!   Best for modest size problems 
!   Hard to parallelize 
 

!   At each step 
!    Eliminate the vertex with the smallest degree 
!    Update degrees of the neighbors 

!   Straightforward implementation is slow and requires too much memory 
!   Newly added edges are more than eliminated vertices 
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Minimum Degree Ordering (3/3) 

!   Use quotient graph (QG) as a compact representation 
[George/Liu ’78] 

!   Collection of cliques resulting from the eliminated vertices 
affects the degree of an uneliminated vertex 

!   Represent each connected component in the eliminated 
subgraph by a single “supervertex” 

!   Storage required to implement QG model is bounded by 
size of A 

!   Large body of literature on implementation variants 
! Tinney/Walker `67, George/Liu `79, Liu `85, Amestoy/Davis/

Duff  `94, Ashcraft `95, Duff/Reid `95, et al., . .  

!   Extended the QG model to nonsymmetric using bipartite 
graph [Amestoy/Li/Ng `07] 
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Ordering : Nested Dissection 

!   Model problem: discretized system Ax = b from certain 
PDEs, e.g., 5-point stencil on  k x k grid,  n = k2 

!   Recall fill-path theorem: 
     After x1, …, xi are eliminated, the set of nodes adjacent to y in the 
     elimination graph is given by Reach(y, {x1, …, xi}), xi<min(x,y) 
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ND ordering: recursive application of bisection 
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!   ND gives a separator 
tree (i.e elimination tree) 

43-49 

40-42 

37-39 

19-21 

7-9 16-18 28-30 
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ND analysis on a square grid (k x k = n) 

!   Theorem [George ’73, Hoffman/Martin/Ross]: ND ordering gave 
optimal complexity in exact factorization. 

    Proof: 
–  Apply ND by a sequence of  “+” separators  
–  By “reachable set” argument, all the separators are essentially dense 

submatrices 
–  Fill-in estimation: add up the nonzeros in the separators 

k2 + 4(k / 2)2 + 42(k / 4)2 +=O(k2 log2 k) =O(n log2 n)

1 2 

3 4 
5 

6 7 

8 9 

11 12 

13 14 

16 17 

18 19 

21 

10 

15 20 

( more precisely:  31 / 4 (k2 log2 k)+O(k2 ) )

Similarly: Operation count:  O(k3) =O(n3/2 )



Complexity of direct methods 

n1/2 n1/3 

2D 3D 

Space (fill): O(n log n) O(n 4/3 ) 

Time (flops): O(n 3/2 ) O(n 2 ) 

Time and 
space to solve 
any problem 
on any well-
shaped finite 
element mesh 



ND Ordering: generalization 
!   Generalized nested dissection [Lipton/Rose/Tarjan ’79] 

–  Global graph partitioning: top-down, divide-and-conqure   
–  First level 

–  Recurse on A and B 
!   Goal: find the smallest possible separator S at each level 

–  Multilevel schemes:  
•  (Par)Metis [Karypis/Kumar `95], Chaco [Hendrickson/

Leland `94], (PT-)Scotch [Pellegrini et al.`07] 
–  Spectral bisection [Simon et al. `90-`95] 
–  Geometric and spectral bisection [Chan/Gilbert/Teng `94] 
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ND Ordering 
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CM / RCM Ordering 
! Cuthill-McKee, Reverse Cuthill-McKee  
!   Reduce bandwidth 

!   Construct level sets via breadth-first search, start from the vertex of 
minimum degree  

!   At any level, priority is given to a vertex with smaller number of 
neighbors 

 

!   RCM: Simply reverse the ordering found by CM 
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[Duff, Erisman, Reid] 



RCM good for envelop (profile) Solver 
(also good for SpMV) 

Ø  Define bandwidth for each row  or column 
!   Data structure a little more sophisticated than band solver, but simpler 

than general sparse solver 
 

Ø  Use Skyline storage (SKS) 
!   Lower triangle stored row by row 

 Upper triangle stored column by column 
!   In each row (column), first nonzero 

 defines a profile 
!   All entries within the profile  

 (some may be zeros) are stored 
!   All the fill is contained inside the profile 
 

Ø  A good ordering would be based on bandwidth reduction 
!   E.g., Reverse Cuthill-McKee 
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Envelop (profile) solver (2/2) 

!   Lemma: env(L+U) = env(A) 
–  No more fill-ins generated outside the envelop! 

 Inductive proof:  After N-1 steps, 
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Envelop vs. general solvers 

!   Example: 3 orderings (natural, RCM, MD) 
!   Envelop size = sum of bandwidths 
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Env = 31775 Env = 22320 
Env = 61066 
NNZ(L, MD) = 12259 
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Ordering for unsymmetric LU – symmetrization 

!   Can use a symmetric ordering on a symmetrized matrix . . . 

!   Case of partial pivoting (sequential SuperLU): 
 Use ordering based on ATA 
!   If  RTR = ATA and PA = LU, then for any row permutation P,  
      struct(L+U) ⊆ struct(RT+R)  [George/Ng `87] 
!   Making R sparse tends to make L & U sparse . . . 

!   Case of diagonal pivoting (static pivoting in SuperLU_DIST):  
 Use ordering based on AT+A 
!   If  RTR = AT+A and A = LU, then struct(L+U) ⊆ struct(RT+R) 
!   Making R sparse tends to make L & U sparse . . . 
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•  Bipartite graph 
•  After a vertex is eliminated, all the row & column vertices adjacent to it 

become fully connected – “bi-clique” (assuming diagonal pivot) 
•  The edges of the bi-clique are the potential fill-ins (upper bound !) 
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Unsymmetric variant of “Min Degree” ordering 
(Markowitz scheme) 
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Results of Markowitz ordering [Amestoy/Li/Ng’02] 

! Extend the QG model to bipartite quotient graph 
! Same asymptotic complexity as symmetric MD 

–  Space is bounded by 2*(m + n) 
–  Time is bounded by O(n * m) 

! For 50+ unsym. matrices, compared with MD on A’+A: 
–  Reduction in fill: average 0.88, best 0.38 
–  Reduction in FP operations: average 0.77, best 0.01 

!   How about graph partitioning for unsymmetric LU? 
–  Hypergraph partition [Boman, Grigori, et al. `08] 
–  Similar to ND on ATA, but no need to compute ATA 



Remark: Dense vs. Sparse GE 

!   Dense GE:    Pr A Pc = LU 
! Pr and Pc are permutations chosen to maintain stability 
!   Partial pivoting suffices in most cases :  Pr A = LU 
 

!   Sparse GE:   Pr A Pc = LU 
! Pr and Pc are chosen to maintain stability, preserve sparsity, increase 

parallelism 
!   Dynamic pivoting causes dynamic structural change 

•  Alternatives: threshold pivoting, static pivoting, . . . 
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Numerical Pivoting 
!   Goal of pivoting is to control element growth in L & U for stability	


–  For sparse factorizations, often relax the pivoting rule to trade with better 
sparsity and parallelism (e.g., threshold pivoting, static pivoting , . . .)	


!   Partial pivoting used in sequential SuperLU  and SuperLU_MT (GEPP) 	

–  Can force diagonal pivoting (controlled by diagonal	

	
threshold)	


–  Hard to implement scalably for sparse factorization	


!   Static pivoting used in SuperLU_DIST (GESP)	

–  Before factor, scale and permute A to maximize diagonal: Pr Dr A Dc = A’	

–  During factor A’ = LU, replace tiny pivots by           , without changing data 

structures for L & U	

–  If needed, use a few steps of iterative refinement after the first solution	

è  quite stable in practice	
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s x x 

x   x    x 

x 



Use many heuristics 

!   Finding an optimal fill-reducing ordering is NP-complete à use 
heuristics: 
!   Local approach: Minimum degree 
!   Global approach: Nested dissection (optimal in special case), RCM 
!   Hybrid: First permute the matrix globally to confine the fill-in, then 

reorder small parts using local heuristics 
•  Local methods effective for smaller graph, global methods 

effective for larger graph 

!   Numerical pivoting: trade-off stability with sparsity and parallelism 
!   Partial pivoting too restrictive 
!   Threshold pivoting 
!   Static pivoting 
!   … 
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Algorithmic phases in sparse GE 

1.  Minimize number of fill-ins, maximize parallelism 
! Sparsity structure of L & U depends on that of A, which can be changed by 

row/column permutations (vertex re-labeling of the underlying graph) 
!   Ordering (combinatorial algorithms; “NP-complete” to find optimum 

[Yannakis ’83]; use heuristics) 

2.  Predict the fill-in positions in L & U 
!   Symbolic factorization (combinatorial algorithms) 

3.  Design efficient data structure for storage and quick retrieval of the 
nonzeros 
!   Compressed storage schemes 

4.  Perform factorization and triangular solutions 
!   Numerical algorithms (F.P. operations only on nonzeros) 
!   Usually dominate the total runtime 

!   For sparse Cholesky and QR, the steps can be separate; 
     for sparse LU with pivoting, steps 2 and 4 my be interleaved. 
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Exercises 

!   Homework3 in Hands-On-Exercises/ directory 
!   Show that: 
     If  RTR = AT+A and A = LU, then struct(L+U) ⊆ struct(RT+R) 
!   Show that: [George/Ng `87] 

     If  RTR = ATA and PA = LU, then for any row permutation P,  
     struct(L+U) ⊆ struct(RT+R) 
 

35 



Lecture 4 
  

Sparse Factorization: Data-flow Organization 

Xiaoye Sherry Li 
Lawrence Berkeley National Laboratory, USA 

xsli@lbl.gov 
 

crd-legacy.lbl.gov/~xiaoye/G2S3/ 
 

4th Gene Golub SIAM Summer School, 7/22 – 8/7, 2013, Shanghai 
 



Lecture outline 

!   Dataflow organization: left-looking, right-looking 
!   Blocking for high performance 

! Supernode, multifrontal 
!   Triangular solution 

 

2 



Dense Cholesky 
!   Left-looking Cholesky 
 
for k = 1,…,n do 
     for i = k,…,n do 
         for j = 1,…k-1 do 
 
         end for 
     end for 
 
      for i = k+1,…,n do 
       
      end for 
end for 
 

3 

aik
(k ) = aik

(k ) − lij ⋅ lkj

lkk = akk
(k−1)

!   Right-looking Cholesky 
 
for k = 1,…,n do 
 
       for i = k+1,…,n do 
              
              for j = k+1,…,i do 
 
              end for 
        end for 
end for 
 

lkk = akk
(k−1)

lik = aik
(k−1) / lkk

aij
(k ) = aij

(k ) − lik ⋅ l jk

lik = aik
(k−1) / lkk



Sparse Cholesky 

!   Reference case: regular 3 x 3 grid ordered by nested dissection. 
Nodes in the separators are ordered last 

!   Notation: 
!   cdiv(j) : divide column j by a scalar 
! cmod(j, k) : update column j with column k 
! struct(L(1:k), j)) : the structure of L(1:k, j) submatrix 
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Sparse left-looking Cholesky 

 
for j = 1 to n do 
    for k in struct(L(j, 1 : j-1)) do 
         cmod(j, k) 
    end for 
    cdiv(j) 
end for 
 
Before variable j is eliminated, column j is updated with all the 
columns that have a nonzero on row j. In the example above, 
struct(L(7,1:6)) = {1; 3; 4; 6}. 
!   This corresponds to receiving updates from nodes lower in the 

subtree rooted at j 
!   The filled graph is necessary to determine the structure of each 

row 
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Sparse right-looking Cholesky 

for k = 1 to n do 
    cdiv(k) 
    for j in struct(L(k+1 : n, k)) do 
        cmod(j,k) 
    end for 
end for 
 
 
After variable k is eliminated, column k is used to update all the columns 
corresponding to nonzeros in column k. In the example above, 
struct(L(4:9,3))={7; 8; 9}. 
!   This corresponds to sending updates to nodes higher in the elimination 

tree 
!   The filled graph is necessary to determine the structure of each column 
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•  Left-looking: many more reads 
than writes 

 
U(1:j-1, j) = L(1:j-1, 1:j-1) \ A(1:j-1, j) 
for j = 1 to n do 
    for k in struct(U(1:j-1, j)) do 
         cmod(j, k) 
    end for 
    cdiv(j) 
end for 

 

Sparse LU 

7 

DONE 

NOT 
TOUCHED 

U 

L 

A 

ACTIVE 

j 

•  Right-looking: many more 
writes than reads 

 
for k = 1 to n do 
    cdiv(k) 
    for j in struct(U(k, k+1:n)) do 
         cmod(j, k) 
    end for 
end for 

 

DONE 

ACTIVE 

U 

L A 

j 



High Performance Issues: Reduce Cost of 
Memory Access & Communication 

!   Blocking to increase number of floating-point operations performed 
for each memory access 

 
!   Aggregate small messages into one larger message 

!  Reduce cost due to latency 

!   Well done in LAPACK, ScaLAPACK 
!  Dense and banded matrices 

!   Adopted in the new generation sparse software 
!  Performance much more sensitive to latency in sparse case 
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Blocking: supernode 

!   Use (blocked) CRS or CCS, and any ordering method 
–  Leave room for fill-ins !  (symbolic factorization) 

!   Exploit “supernodal” (dense) structures in the factors 
–  Can use Level 3 BLAS 
–  Reduce inefficient indirect addressing (scatter/gather) 
–  Reduce graph traversal time using a coarser graph 
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Nonsymmetric supernodes 
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SuperLU speedup over unblocked code 

 

!   Sorted in increasing “reuse ratio” = #Flops/nonzeros 
!   ~ Arithmetic Intensity 

!   Up to 40% of machine peak on large sparse matrices on 
IBM RS6000/590, MIPS R8000 
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Symmetric-pattern multifrontal factorization 
[John Gilbert’s lecture] 
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Symmetric-pattern multifrontal factorization 

T(A) 	
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5 

For each node of T from leaves to root: 
!   Sum own row/col of A with children’s 

Update matrices into Frontal matrix 
!   Eliminate current variable from Frontal 

matrix, to get Update matrix 

!   Pass Update matrix to parent 
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Symmetric-pattern multifrontal factorization 

T(A) 	
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F1 = A1	
  => U1	


For each node of T from leaves to root: 
!   Sum own row/col of A with children’s 

Update matrices into Frontal matrix 
!   Eliminate current variable from Frontal 

matrix, to get Update matrix 

!   Pass Update matrix to parent 
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Symmetric-pattern multifrontal factorization 
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  => U1	


For each node of T from leaves to root: 
!   Sum own row/col of A with children’s 

Update matrices into Frontal matrix 
!   Eliminate current variable from Frontal 

matrix, to get Update matrix 

!   Pass Update matrix to parent 
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Symmetric-pattern multifrontal factorization 

T(A) 	
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Symmetric-pattern multifrontal factorization 

T(A) 	
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Symmetric-pattern multifrontal factorization 

T(A) 	
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!   variant of right-looking 

!   Really uses supernodes, not nodes 

!   All arithmetic happens on  
dense square matrices. 

!   Needs extra memory for a stack of pending 
update matrices 

!   Potential parallelism: 
1.  between independent tree branches 
2.  parallel dense ops on frontal matrix 



Sparse triangular solution 

!   Forward substitution for x = L \ b  (back substitution for x = U \ b) 
!   Row-oriented = dot-product = left-looking 
    
   for  i = 1 to n do 

   x(i) = b(i); 
        // dot-product 
        for j = 1 to i-1 do 
             x(i) = x(i) – L(i, j) * x(j); 

   end for 
   x(i) = x(i) / L(i, i); 

   end for 
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Sparse triangular solution: x = L \ b 

!   column-oriented = saxpy = right-looking 
!   Either way works in O(nnz(L)) time 
   
  x(1:n) = b(1:n); 
  for j = 1 to n do  

   x(j) = x(j) / L(j, j); 
        // saxpy 
        x(j+1:n) = x(j+1:n) –    

                  L(j+1:n, j) * x(j); 
   end for 
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Sparse right-hand side: x = L \ b, b sparse 

!   If A is triangular, G(A) has no cycles 
!   Lower triangular => edges directed from higher to lower #s 

!   Upper triangular => edges directed from lower to higher #s 
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 G(A) 	


Use Directed Acyclic Graph (DAG) 



Sparse right-hand side: x = L \ b, b sparse 

1 5 2 3 4 

=	


G(LT)	
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5 

L	
 x	
 b	


1.  Symbolic: 
–  Predict structure of x by depth-first search from nonzeros of b 

2.  Numeric: 
–  Compute values of x in topological order 

    
    Time = O(flops)	


b is sparse, x is also sparse, but may have fill-ins 



Recall: left-looking sparse LU 

!   Used in symbolic factorization to find nonzeros in column j 
 

U(1:j-1, j) = L(1:j-1, 1:j-1) \ A(1:j-1, j) 
for j = 1 to n d 
    for k in struct(U(1:j-1, j)) do 
         cmod(j, k) 
    end for 
    cdiv(j) 
end for 

DONE 

NOT 
TOUCHED 

U 

L 

A 

ACTIVE 

j 

sparse right-hand side 
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Exercises 

1.  Study and run the OpenMP code of dense LU factorization in 
Hands-On-Exercises/ directory 
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Lecture outline 

!   Shared-memory 
!   Distributed-memory 
!   Distributed-memory triangular solve 
 
!   Collection of sparse codes, sparse matrices 

2 



3 

SuperLU_MT  [Li, Demmel, Gilbert] 

§  Pthreads or OpenMP	

§  Left-looking – relatively more READs than WRITEs	

§  Use shared task queue to schedule ready columns in the elimination tree 

(bottom up)	

§  Over 12x speedup on conventional 16-CPU SMPs (1999)	


P1   P2	


DONE	
 NOT	

TOUCHED	


WORKING	


U	


L	


A	


P1	


P2	


DONE	
 WORKING	




Benchmark matrices 

apps dim nnz(A) SLU_MT 
Fill 

SLU_DIST 
Fill 

Avg.  
S-node 

g7jac200 Economic 
model 

59,310 0.7 M 33.7 M 33.7 M 1.9 

stomach 3D finite 
diff. 

213,360 3.0 M 136.8 M 137.4 M 4.0 

torso3 3D finite 
diff. 

259,156 4.4 M 784.7 M 785.0 M 3.1 

twotone Nonlinear 
analog 
circuit 
 

120,750 1.2 M 11.4 M 11.4 M 2.3 
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Multicore platforms 

v  Intel Clovertown (Xeon 53xx)	

Ø  2.33 GHz Xeon, 9.3 Gflops/core	

Ø  2 sockets x 4 cores/socket	

Ø  L2 cache: 4 MB/2 cores	


v  Sun Niagara 2 (UltraSPARC T2): 	

Ø  1.4 GHz UltraSparc T2, 1.4 Gflops/core	

Ø  2 sockets x 8 cores/socket x 8 hardware threads/core	

Ø  L2 cache shared: 4 MB	

	


5 



Intel Clovertown, Sun Niagara 2 

6 

!   Maximum speed up 4.3 (Intel), 20 (Sun) 
!   Question: tools to analyze resource contention? 



Matrix distribution on large distributed-memory machine 

 

Ø  2D block cyclic recommended for many linear algebra algorithms 
!   Better load balance, less communication, and BLAS-3 
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1D blocked 1D cyclic 

1D block cyclic 2D block cyclic 



2D Block Cyclic Distr. for Sparse L & U  
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Process(or) mesh 

§  SuperLU_DIST : C + MPI	

§  Right-looking – relatively more WRITEs than READs	

§  2D block cyclic layout	

§  Look-ahead to overlap comm. & comp.	

§  Scales to 1000s processors	




SuperLU_DIST:  GE with static pivoting  
[Li, Demmel, Grigori, Yamazaki] 

! Target:  Distributed-memory multiprocessors 
! Goal:     No pivoting during numeric factorization 

1.  Permute A unsymmetrically to have large elements on 
the diagonal (using weighted bipartite matching) 

2.  Scale rows and columns to equilibrate 
3.  Permute A symmetrically for sparsity 

4.  Factor A = LU with no pivoting, fixing up small pivots: 

 if  |aii| < ε · ||A||  then replace  aii  by  ±ε1/2 · ||A||  

5.  Solve for x using the triangular factors:   Ly = b, Ux = y 
6.  Improve solution by iterative refinement 



Row permutation for heavy diagonal        [Duff, Koster]	


•  Represent A as a weighted, undirected bipartite graph 
(one node for each row and one node for each column) 

•  Find matching (set of independent edges) with maximum 
product of weights 

•  Permute rows to place matching on diagonal 
•  Matching algorithm also gives a row and column scaling  

to make all diag elts =1 and all off-diag elts <=1 
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SuperLU_DIST:  GE with static pivoting  
[Li, Demmel, Grigori, Yamazaki] 

•  Target:  Distributed-memory multiprocessors 
•  Goal:     No pivoting during numeric factorization 

1.  Permute A unsymmetrically to have large elements on 
the diagonal (using weighted bipartite matching)	


2.  Scale rows and columns to equilibrate	

3.  Permute A symmetrically for sparsity 

4.  Factor A = LU with no pivoting, fixing up small pivots:	


	
if  |aii| < ε · ||A||  then replace  aii  by  ±ε1/2 · ||A||  

5.  Solve for x using the triangular factors:   Ly = b, Ux = y	

6.  Improve solution by iterative refinement	




SuperLU_DIST:  GE with static pivoting  
[Li, Demmel, Grigori, Yamazaki] 

•  Target:  Distributed-memory multiprocessors 
•  Goal:     No pivoting during numeric factorization 

1.  Permute A unsymmetrically to have large elements on 
the diagonal (using weighted bipartite matching)	


2.  Scale rows and columns to equilibrate	

3.  Permute A symmetrically for sparsity 

4.  Factor A = LU with no pivoting, fixing up small pivots:	


	
if  |aii| < ε · ||A||  then replace  aii  by  ±ε1/2 · ||A||  

5.  Solve for x using the triangular factors:   Ly = b, Ux = y	

6.  Improve solution by iterative refinement	




SuperLU_DIST steps to solution 

1.  Matrix preprocessing 
•  static pivoting/scaling/permutation to improve 

numerical stability and to preseve sparsity 
2.  Symbolic factorization 

•  compute e-tree, structure of LU, static comm. & 
comp. scheduling 

•  find supernodes (6-80 cols) for efficient dense 
BLAS operations 

3.  Numerical factorization (dominate) 
•  Right-looking, outer-product 
•  2D block-cyclic MPI process grid 

4.  Triangular solve with forward, back 
substitutions 

13 

2x3 process grid 



SuperLU_DIST right-looking factorization 

for j = 1, 2, . . . , Ns  (# of supernodes) 
    // panel factorization (row and column) 
   - factor A(j,j)=L(j,j)*U(j,j), and ISEND to PC(j) and PR(j) 
 
   - WAIT for Lj,j and factor row Aj, j+1:Ns 
        and SEND right to PC (:) 
   - WAIT for Uj,j and factor column Aj+1:Ns, j  
        and SEND down to PR(:) 
 
    // trailing matrix update 
   - update Aj+1:Ns, j+1:Ns 
 end for 
 
 
Scalability bottleneck: 
!   Panel factorization has sequential flow and limited parallelism. 
!   All processes wait for diagonal factorization & panel factorization 
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SuperLU_DIST 2.5 on Cray XE6 

!   Profiling with IPM 
!   Synchronization dominates on a large number of cores 

!   up to 96% of factorization time 
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Factorization
Communication

Accelerator (sym), n=2.7M, fill-ratio=12 DNA, n = 445K, fill-ratio= 609 



Look-ahead factorization with window size nw 
for j = 1, 2, . . . , Ns  (# of supernodes) 
    // look-ahead row factorization 
    for k = j+1 to j+nw do 
          if (Lk,k has arrived)  factor Ak,(k+1):Ns and ISEND to PC(:) 
    end for 
     // synchronization 
    - factor Aj,j =Lj,jUj,j, and ISEND to PC(j) and PR(j) 
    - WAIT for Lj,j and factor row Aj, j+1:Ns 
    - WAIT for L:, j and Uj, : 

     // look-ahead column factorization 
    for k = j+1 to j+nw do 
          update A:,k 

           if ( A:,k is ready )  factor Ak:Ns,k and ISEND to PR(:) 

      end for 
    // trailing matrix update 
     - update remaining A j+nw+1:Ns, j+nw+1:Ns 
 end for 
 
!   At each j-th step, factorize all “ready” panels in the window 

!   reduce idle time; overlap communication with computation; exploit more parallelism 

16 

0

3 4

0 1 2

3 4 5 3

0 2 0 1

3 4 5 3 4 5

0 1 2 0 1 2 0

1

1

2

2

5

0 1

4

0 1 2 0

3 4 5

2

5

0

0

3

3

3

look−ahead window



Expose more “Ready” panels in window 

!   Schedule tasks with better order as long as tasks dependencies 
are respected 

 
Dependency graphs: 
1.  LU DAG: all dependencies 
2.  Transitive reduction of LU DAG: smallest graph, removed all 

redundant edges, but expensive to compute 
3.  Symmetrically pruned LU DAG (rDAG): in between LU DAG and 

its transitive reduction, cheap to compute 
4.  Elimination tree (e-tree): 

•  symmetric case: e-tree = transitive reduction of Cholesky DAG, 
cheap to compute 

•  unsymmetric case: e-tree of |A|T+|A|, cheap to compute 
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Example: reordering based on e-tree 
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Window size = 5 
! Postordering based on depth-first 

search 
 
 

 
! Bottomup level-based ordering 
 
 



SuperLU_DIST 2.5 and 3.0 on Cray XE6 
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version 2.5
version 3.0
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version 2.5
version 3.0

Accelerator (sym), n=2.7M, fill-ratio=12 DNA, n = 445K, fill-ratio= 609 

!   Idle time was significantly reduced (speedup up to 2.6x) 
!   To further improve performance: 

!   more sophisticated scheduling schemes 
!   hybrid programming paradigms 

 



Examples 

!   Sparsity-preserving ordering: MeTis applied to structure of A’+A 
20 

Name Application Data 
type 

N |A| / N 
Sparsity 

|L\U| 
(10^6) 

Fill-ratio 

g500 Quantum 
Mechanics 
(LBL) 

Complex 4,235,364 13 3092.6 56.2 

matrix181 Fusion, 
MHD eqns 
(PPPL) 

Real 589,698 161 888.1 9.3 

dds15 Accelerator, 
Shape 
optimization 
(SLAC) 

Real 834,575 16 526.6 40.2 

matick Circuit sim. 
MNA method 
(IBM) 

Complex 16,019 4005 64.3 1.0 



Performance on IBM Power5 (1.9 GHz) 

Ø  Up to 454 Gflops factorization rate 

21 



Performance on IBM Power3 (375 MHz) 

Ø  Quantum mechanics, complex 

22 



•  Challenge: higher degree of dependency 

Distributed triangular solution 
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•  Diagonal process 
computes the solution 



•  Clovertown: 8 cores;   IBM Power5: 8 cpus/node 

•  OLD code: many MPI_Reduce of one integer each, accounting for 
75% of time on 8 cores 

•  NEW code: change to one MPI_Reduce of an array of integers 

•  Scales better on Power5 

Parallel triangular solution 
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MUMPS:  distributed-memory multifrontal 
[Current team: Amestoy, Buttari, Guermouche, L‘Excellent, Uçar] 

!   Symmetric-pattern multifrontal factorization 
!   Parallelism both from tree and by sharing dense ops 
!   Dynamic scheduling of dense op sharing 
!   Symmetric preordering 
!   For nonsymmetric matrices: 

!   optional weighted matching for heavy diagonal 
!   expand nonzero pattern to be symmetric 
!   numerical pivoting only within supernodes if possible  

(doesn’t change pattern) 
!   failed pivots are passed up the tree in the update matrix 



Collection of software, test matrices 

!   Survey of different types of direct solver codes 
 http://crd.lbl.gov/~xiaoye/SuperLU/SparseDirectSurvey.pdf 
!   LLT (s.p.d.) 
!   LDLT (symmetric indefinite)   
!   LU (nonsymmetric) 
!   QR (least squares) 
!   Sequential, shared-memory, distributed-memory, out-of-core 

•  Accelerators such as GPU, FPGA become active, have papers, no 
public code yet 

 
!   The University of Florida Sparse Matrix Collection 
     http://www.cise.ufl.edu/research/sparse/matrices/ 
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Exercises 

1.  Download and install SuperLU_MT on your machine, then run the 
examples in EXAMPLE/ directory.  

2.  Run the examples in SuperLU_DIST_3.3 directory. 
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Lecture outline  

! Supernodal LU factorization (SuperLU) 
! Supernodal ILUTP with adaptive dual dropping 

§  Threshold dropping in supernode 
§  Secondary dropping for memory concern 

!   Variants: Modified ILU (MILU) 
!   Extensive experiments, comparison with other approaches 

§  232 matrices 

2 



Preconditioner 
!   Improve efficiency and robustness of iterative solvers 
!   Solve a transformed linear system, hopefully easier: 

!   M-1Ax = M-1b  ….  Left preconditioning 
!   AM-1u = b, x = M-1u   …. Right preconditioning 

!   Goal: find preconditioner M ~ A, so that the eigenvalue spectrum of 
M-1A is improved.  
1.  Cheap to construct, store, “invert”, parallelize 
2.  Good approximation of A  

    contradictory goals à tradeoff 
!   Standard design strategy: 

!   Start with a complete factorization 
!   Add approximations to make it cheaper  (cf. 1) while (hopefully/

provably) affecting little 2. 
!   We will present two approaches 

!   Incomplete factorization 
!   Low-rank approximations 

3 



ILU preconditioner 

!   Structure-based dropping:  level-of-fill 
§  ILU(0),  ILU(k) 
§  Rationale: the higher the level, the smaller the entries 
§  Separate symbolic factorization to determine fill-in pattern 

!   Value-based dropping:  drop truly small entries 
§  Fill-in pattern must be determined on-the-fly 

!   ILUTP [Saad]: among the most sophisticated, and (arguably) 
robust; implementation similar to direct solver 
§  “T” = threshold, “P” = pivoting 
§  Dual dropping: ILUTP(p, tau) 

1)  Remove elements smaller than tau 
2)  At most p largest kept in each row or column 

4 



SuperLU    [Demmel/Eisenstat/Gilbert/Liu/Li ’99] 
           http://crd.lbl.gov/~xiaoye/SuperLU 
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•  Left-looking,  supernode 

DONE NOT 
TOUCHED 

WORKING 

U 

L 
A 

panel  
1. Sparsity ordering of columns 

use graph of A’*A 
2. Factorization 

For each panel … 
•  Partial pivoting 
•  Symbolic fact. 
•  Num.  fact. (BLAS 2.5) 

3. Triangular solve 



Primary dropping rule:  S-ILU(tau) 

!   Similar to ILUTP, adapted to supernode 
1.  U-part: 

2.  L-part:  retain supernode 

 
!   Remarks 

1)  Delayed dropping 
2)  Entries computed first, then dropped.  

 May not save many flops compared to LU 
3)  Many choices for RowSize() metric 
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Dropping in supernode 

 
 
RowSize() metric:   let m = t-s+1 be the supernode size 

1)  Mean:                                     [ used by Gupta/George for IC ] 

2)  Generalized-mean: 

3)  Infinity-norm:  
Every dropped entry in L would also be 
dropped in a column-wise algorithm 
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Supernode L(:, s : t),  if RowSize(i, s : t)< τ , then set the entire i-th row to zero

i	  

veconservati is 3)  ,aggressivemost  is 1)   , ||||||||||||  Since 21
∞≤≤ x

m
x

m
x

m
xxRowSize 2|||| )( =

∞= |||| )( xxRowSize

m
xxRowSize 1|||| )( =



Secondary dropping rule:  S-ILU(p,tau) 

!   Control fill ratio with a user-desired upper bound  
!   Earlier work, column-based 

§  [Saad]: ILU(p, tau), at most p largest nonzeros allowed in each row 
§  [Gupta/George]:  p adaptive for each column 

 May use interpolation to compute a threshold function, no sorting 
 

!   Our new scheme is area-based 
§    

§  Define adaptive upper bound function 
 

 
Ø  More flexible, allow some columns to fill more, but limit overall 
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Experiments: GMRES + ILU 

!   Use restarted GMRES with ILU as a right preconditioner 
                             
!   Size of Krylov subspace  set  to 50 
!   Initial guess is a 0-vector 
!   Stopping criteria:  

!   232 unsymmetric test matrices;  RHS is generated so the true 
solution is 1-vector 
§  227 from Univ. of Florida Sparse Matrix Collection 

 dimension 5K – 1M, condition number below 1015 
§  5 from MHD calculation in tokamak design for plasma fusion energy 

!   AMD Opteron 2.4 GHz quad-core (Cray XT5),  16 GBytes memory, 
PathScale pathcc and pathf90 compilers 

  

9 

PbyULPA - =1)~~(  Solve

b - A xk 2
 ≤ 10−8 b

2
  and ≤ 500 iterations



Compare with column C-ILU(p, tau) 
!   C-ILU: set maximum supernode size to be 1 
!   Maxsuper = 20,  gamma = 10, tau = 1e-4 
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              Factor construction GMRES Total Sec. 

Fill-
ratio 

S-node 
Cols 

Flops 
(109) 

Fact. 
sec. 

 

Iters Iter sec. 

                                 138 matrices succeeded 

S-ILU 4.2 2.8 7.60 39.69 21.6 2.93 42.68 

C-ILU 3.7 1.0 2.65 65.15 20.0 2.55 67.75 

                                 134 matrices succeeded 

S-ILU 4.2 2.7 9.45 54.44 20.5 3.4 57.0 

C-ILU 3.6 1.0 2.58 74.10 19.8 2.88 77.04 

mxxRowSize /||||)( 2=

∞= ||||)( xxRowSize



Supernode vs. column 

!   Less benefit using supernode compared to complete LU 
§  Better, but Less than 2x speedup 

 
!   What go against supernode? 

§  The average supernode size is smaller than in LU. 
§  The row dropping rule in S-ILU tends to leave more fill-ins and 

operations than C-ILU … we must set a smaller “maxsuper” 
parameter.  

e.g., 20 in ILU vs. 100 in LU 
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S-ILU for extended MHD calculation (fusion) 

!   ILU parameters:   
!   Up to 9x smaller fill ratio, and 10x faster 

12 

Problems order Nonzeros 
(millions) 

ILU 
time   fill-ratio 

GMRES 
time      iters 

SuperLU 
time   fill-ratio 

matrix31 17,298 2.7 m 8.2 2.7 0.6 9 33.3 13.1 

matrix41 30,258 4.7 m 18.6 2.9 1.4 11 111.1 17.5 

matrix61 66,978 10.6 m 54.3 3.0 7.3 20 612.5 26.3 

matrix121 263,538 42.5 m 145.2 1.7 47.8 45 fail - 

matrix181 589,698 95.2 m 415.0 1.7 716.0 289 fail - 

10 ,10 4 == − γτ



Performance profile 
E.D. Dolan and J.J. More, “Benchmarking optimization software with performance 
profiles”,  Mathematical Programming, 91(2):201–203, 2002. 

!   Visually compare solvers X inputs 

!   Let M = set of matrices, S = set of solvers 
! fr(m, s) and t(m, s) denote the fill ratio and total time needed to 

solve matrix “m” by solver s. 
!   Calculate the cumulative distribution functions for each solver s: 

!   fraction of the problems that s could solve within the fill ratio x 
 

!   fraction of the problems that s could solve within a factor of x of the 
best solution time among all the solvers 
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Prf (s, x) =
#{m ∈M : fr(m, s) ≤ x}

#M
, x ∈ R

Prt (s, x) =
# m ∈M : t(m, s)

mins∈S{t(m, s)}
≤ x
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S-ILU comprehensive tests 
!   Performance profile of fill ratio – fraction of the problems a solver could 

solve within a fill ratio of  X 
!   Performance profile of runtime – fraction of the problems a solver could 

solve within a factor X of the best solution time 

!   Conclusion:  
§  New area-based heuristic is much more robust than column-based one 
§   ILUTP(tau) is reliable; but need secondary dropping to control memory 
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Other features in the software 

!   Zero pivot ? 

 
!   Threshold partial pivoting 
 
! Preprocecssing with MC64  [Duff-Koster] 

§  With MC64, 203 matrices converge, avg. 12 iterations 
§  Without MC64, 170 matrices converge, avg. 11 iterations 

!   Modified ILU (MILU) 
§  Reduce number of zero pivots 
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Modified ILU (MILU) 

!   Reduce the effect of dropping:  for a row or column, add up the 
dropped elements to the diagonal of U 

!   Classical approach has the following property: 
§  Maintain row-sum for a row-wise algorithm:  
§  Maintain column-sum for a column-wise algorithm:  

!   Another twist … proposed for MIC 
 Maintain                           for any x, using diagonal perturbations  
§  Dupont-Kendall, Axelsson-Gustafsson, Notay (DRIC) 
§  Reduce condition number of elliptic discretization matrices by order of 

magnitude (i.e., from O(h-2) to O(h-1) ) 
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MILU algorithm 

!   C-MILU: 
1)  Obtain filled column F(:, j),  drop from F(:, j) 
2)  Add up the dropped entries: s = ∑dropped fij ;  Set fij := fij + s 
3)  Set U(1:j,  j) := F(1:j, j);   L(j+1:n, j) := F(j+1: n, j) / F(j, j) 

!   S-MILU: 
1)  First drop from U,  s = ∑dropped U(:,j) 

Set  ujj := fjj + s; 
2)  When a supernode is formed in L, drop more 

 rows in L, add the dropped entries to 
 diagonal of U 

!   Our variants: 
§  S-MILU-1:  s = ∑dropped U(:,j) 
§  S-MILU-2:  s = | ∑dropped U(:,j) |, ujj := fij + sign(fjj)*s 
§  S-MILU-3:  s = ∑dropped |U(:,j)|,   ujj := fij + sign(fjj)*s 
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Modified ILU (MILU) 
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Another look at MILU – 232 matrices 

Converge Slow Diverge Zero 
pivots 

Average 
iterations 

S-ILU 133 51 46 1737 35 

S-MILU-1 125 72 33 1058 34 

S-MILU-2 127 71 31 296 30 
 

S-MILU-3 129 73 28 289 33 
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Compare with the other preconditioners 

!   SPARSKIT [saad] : ILUTP,  closest to ours 
§  Row-wise algorithm, no supernode 
§  Secondary dropping uses a fixed p for each row 

!   ILUPACK [Bolhoefer et al.] : very different 
§  Inverse-based approach: monitor the norm of the k-th row of L-1, if too 

large, delay pivot to next level 
§  Multilevel: restart the delayed pivots in a new level 

! ParaSails [Chow]: very different 
§  Sparse approximate inverse:  M ~ A-1 

§  Pattern of powers of sparsified A as the pattern of M 
 “thresh” to sparsify A, “nlevels” to keep level of neighbors 

§  Default setting: thresh = 0.1,  nlevels = 1 
 Only 39 matrices converge, 62 hours to construct M, 63 hours after 
GMRES 

§  Smaller thresh and larger nlevels help, but too expensive 
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Compare with SPARSKIT, ILUPACK 

!   S-ILU:   
!   ILUPACK : 
!   SPARSKIT :  
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Comparison (cont) … a closer look … 

!   S-ILU and ILUPACK are comparable: S-ILU is slightly faster, 
ILUPACK has slightly lower fill 

!   None of the preconditioners works for all problems … unlike direct 
methods 

!   They do not solve the same set of problems 
§  S-ILU succeeds with 142 
§  ILUPACK succeeds with 130 
§  Both succeed with 100 problems 

!   Remark 
 Two methods complimentary to one another, both have their place 
in practice 
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Summary 

!   Secondary dropping: area-based, adaptive-p, adaptive-tau 
§  More reliable 

 
!   Empirical study of MILU 

§  Limited success, disappointing in general 
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Summary 

!   60-70% success with S-ILUTP for 232 matrices.  
 When it works,  much more efficient than direct solver. 

! Supernode 
§  Useful, but to less extend compared with complete LU 

!   Secondary dropping: area-based, adaptive-p, adaptive-tau 
§  More reliable 

!   Software  
§  Available in serial SuperLU  V4.0,  June 2009 
§  Same can be done for SuperLU_MT (left-looking, multicore) 

!   Scalable parallel  ILUTP? 
§  How to do this with right-looking, multifrontal algorithms? 

 e.g., SuperLU_DIST, MUMPS 
§  Even lower Arithmetic Intensity than complete LU 
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Exercises 

1.  Run the ILU + GMRES example in SuperLU_4.3/EXAMPLE/ 
directory  

2.  Study the incomplete Cholesky code (CholIC) in Hands-On-
Exercises/ directory 
•  Implement the subroutine Chol_IC() in the file graph_facto_mod.f90 
•  Compile and run your completed program 
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Introduction

Consider solving large sparse linear system Au = b with Gaussian
elimination: A = LU

Deliver reliable solution, error bounds, condition estimation, efficient for
many RHS, . . .

Complexity wall ... not linear time
[George ’73] For model problems, (exact) sparse LU with best ordering
Nested Dissection gives optimal complexity:

I 2D (kxk = n grids): O(n log n) Fill, O(n3/2) Flops

Fill: adding up the dense submatrices of all the “+” separators:

k2 + 4
(

k
2

)2

+ 42
(

k
4

)2

+ . . . =
∑
i=0

4i
(

k
2i

)2

= O(k2 log k)

Flops: dominated by cubic term of factorizing top-level separator: O(k3)
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Approximation

Exploit “data-sparseness” structure in separators
data-sparse: matrix may be dense, but has a compressed representation
smaller than N2

Low-rank matrices as basic building blocks

If B has exact rank at most k:
I Outer-product form: Bm×n = Um×kVT

k×n, k ≤ n
I Orthonormal outer-product form:

Bm×n = Um×kXk×kVT
k×n, UTU = VTV = Ik

If A has numerical low rank k (called ε-rank):
A = UΣVT ≈ Ak := UΣkVT , Σ = diag(σ1, . . . , σk, σk+1, . . . , σn)
Σk = diag(σ1, . . . , σk, 0, . . . , 0), with σk > ε

Algorithms:
truncated SVD
rank-revealing QR
randomized sampling, ...
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Approximations by LR matrices

Singular Value Decomposition (SVD)
A = UΣVT ≈ Ak := UΣkVT

Σ = diag(σ1, . . . , σk, σk+1, . . . , σn)
Σk = diag(σ1, . . . , σk, 0, . . . , 0)

I accuracy: ‖A− Ak‖2 = σk+1
I cost: O(m2n) (m ≤ n)

Rank-Revealing QR decomposition (RRQR)

AΠ = QR, R =

[
R11 R12
0 R22

]
, Π permutation matrix

Choose U = Q(:, 1 : k),V = Π[R11 R12]T

I accuracy: ‖A− UVT‖2 = ‖R22‖2 ≤ c σk+1
I cost: O(kmn) (m ≤ n, k ≈ m)
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LR Matrices (con’t)

Randomized sampling
1 Pick random matrix Ωn×(k+p), p small, e.g. 10
2 Sample matrix S = AΩ, with slight oversampling p
3 Compute Q = ON-basis(S)

I accuracy: with probability ≥ 1− 6 · p−p,
‖A− QQ∗A‖ ≤ [1 + 11

√
k + p ·

√
min{m, n}]σk+1

I cost: O(kmn)

Remarks
I Kernel: All have same asymptotic cost with explicit matrix

F RS can be faster when fast matrix-vector available
F RS useful when only matrix-vector available

I Putting in sparse solver: costs will be different ...
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Data-sparse representations
Hierarchical matrices: H-matrix,H2-matrix
[Bebendorf, Borm, Grasedyck, Hackbusch, Le Borne, Martinsson, Tygert, ...]

allow Fast matrix-vector multiplication, factorization, inversion, ...

H-matrix : Given a “suitable” partition P : I × J of row and column
dimensions, ranks of all blocks Ab ≤ k. (low-rank blocks chosen
independently from each other)

I Example [Bebendorf 2008]: Hilbert matrix
hij = 1

i+j−1 and the blockwise ranks:

I Flops of matrix-vector multiplication:
O(k(|I| log |I|+ |J| log |J|))

H2-matrix is a uniformH-matrix with nested cluster bases
I more restrictive but faster thanH-matrix
I Flops of matrix-vector multiplication: O(k(|I|+ |J|)) (algebraic

generalization of the Fast Multipole method)
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Data-sparse representations

(Hierarchically) Semi-Separable matrices
[Bini, Chandrasekaran, Dewilde, Eidelman, Gemignani, Gohberg, Gu, Kailath, Olshevsky, van

der Veen, Van Barel, Vandebril, White, et al.]

SS matrix: S = triu(UVT) + tril(WZT), where U,V,W, and Z are
rank-k matrices.

I Example: can be used to represent the inverse of a banded matrix
HSS matrix: the bases are required to be nested

I special case ofH2-matrix

Other low-rank factorization ideas:

BLR (Block LR) (Amestoy et al.)

MLR (Multilevel LR) (Saad et al.)
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Outline

How it works operationally?
I Hierarchical matrix representation, factorization
I HSS-embedded multifrontal factorization

F targeting at nonsymetric systems (with PDE behind)

Theory
I Schur monotonicity
I conditioning analysis
I rank analysis for discretized PDEs

Practice
I ordering within separator
I parallelization
I preconditioning

Summary
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Hierarchically Semi-Separable matrices

An HSS matrix A is a dense matrix whose off-diagonal blocks are low-rank.
High-level structure: 2× 2 blocks

A =

[
D1 U1B1VT

1

U2B2VT
1 D2

]

Fundamental property required for efficiency: nested bases

U3 =

[
U1 0
0 U2

]
Usmall

3 ,Usmall
3 : 2k × k

Same for U3, U6, V6 and recursively at subsequent levels.
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Hierarchically Semi-Separable matrices

An HSS matrix A is a dense matrix whose off-diagonal blocks are low-rank.
Recursion

A =


D1 U1B1VT

2 U3B3VT
6U2B2VT

1 D2

U6B6VT
3

D4 U4B4VT
5

U5B5VT
4 D5


Fundamental property required for efficiency: nested bases

U3 =

[
U1 0
0 U2

]
Usmall

3 ,Usmall
3 : 2k × k

Same for U3, U6, V6 and recursively at subsequent levels.
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Hierarchical bases, HSS tree

For efficiency, require:

U3 =

[
U1 0
0 U2

]
Usmall

3 ,Usmall
3 : 2k × k, U6 =

[
U4 0
0 U5

]
Usmall

6 , Usmall
6 : 2k × k

U7 =

[
U3 0
0 U6

]
Usmall

7 , Usmall
7 : 2k × k

Each basis is a product of descendents’ bases:

U7 =


U1 0 0 0
0 U2 0 0
0 0 U4 0
0 0 0 U5

[ Usmall
3 0
0 Usmall

6

]
Usmall

7 ,

Not to multiply out!
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HSS explicit representation (construction)

[Martinsson]

keep it as an unevaluated product & sum

operations going up / down the HSS tree
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Structured factorization

HSS node :

( ) ≈ V( T̃r , T̃H
c )

2. Compl. basis with V⊥:
( V⊥ , V ) is unitary

3. Change basis:
D̃ = ( V⊥ , V )H ( V⊥ , V )

4. Partially factorize D̃:(
DL

Dc T̃D

)(
DU Dr

I

)
= D̃
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Structured factorization
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}
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Structured factorization
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HSS node 3:

5. Partially factorize:(
DL

Dc U

)(
DU Dr

I

)
=

(
T̃D T̃r
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Embedding HSS in multifrontal

Approximate Frontal & Update matrices by HSS

Need following operations:

frontal HSS factorization of Fi

extend-add of two HSS update matrices Ui

and Uj

Final Cholesky factor: Classical vs HSS-embedded
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Theory

Schur monotonicity for approximate Cholesky factorization

conditioning analysis

rank analysis for discretized PDEs
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Schur monotonicity for approximate Cholesky A = RTR

R =


R1,1 R1,2 · · · R1,n

R2,2 · · · R2,n

. . .
...

Rn,n

, R ≈ R̃ =


R1 R̃1,2 · · · R̃1,n

R2 · · · R̃2,n

. . .
...

Rn


First approximation step: RT

1 R1 = A11 and H1 = D−T
1 A1,2:n

H1 =
(

U1 Û1

)(
Q1 Q̂1

)T
, HT

1 H1 = Q1QT
1 + Q̂1Q̂1eT , ‖Q̂1‖2 ≤ τ

Orthogonal dropping: H̃1 = U1Q1 −→ H̃T
1 (H1 − H̃1) = 0

Schur complement: A1 = A2:n,2:n − HT
1 H1 = A2:n,2:n −Q1QT

1 − Q̂1Q̂T
1 .

Approximate A1 by Ã1 = A2:n,2:n −Q1QT
1 = A1 + Q̂1Q̂T

1 = A1 + O
(
τ 2)

Nice Property: Successive Schur complements do not decrease in SPD sense
⇒ factorization is breakdown free

1. M. Gu, X.S. Li, P. Vassilevski, “Direction-Preserving and Schur-Monotonic Semiseparable Approximations of
Symmetric Positive Definite Matrices”, SIMAX, 31 (5), 2650-2664, 2010.

2. J. Xia, M. Gu, “Robust approximate Cholesky factorization of rank-structured symmetric positive definite matrices”,
SIMAX, 31 (5), 2899-2920, 2010.
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Conditioning analysis when RTR as preconditioner (Napov)

Goal: analyze spectral condition number κ(R−TAR−1)
Sketch: look at approximation after each step k of total l step; capture
different approximation order:

Bk =

(
R(k)

11
T

R̃(k)
12

T
S̃(k)

B

)(
R(k)

11 R̃(k)
12
I

)
, S̃(k)

B = Aik+1:n,ik+1:n − R̃
(k)
12

T
R̃(k)

12

SSS bound (sequential order):

κ(R−T AR−1) ≤
l∏

k=1

1 + γk

1− γk
, where γk = ‖(R(k)

12 − R̃
(k)
12 )S̃(k)

B
−1/2
‖ < 1

HSS bound: can be computed numerically using good estimates
γk estimate: γk ≤

∥∥∥(R(k)
12 − R̃

(k)
12

∥∥∥ ‖A−1‖1/2

I can estimate ‖A−1‖ with a few iterations of Conjugate Gradient

Adaptive threshold strategy based on γk estimate

A. Napov, “Conditioning analysis of incomplete Cholesky factorizations with
orthogonal dropping”, SIMAX, Vol. 34, No. 3, 1148-1173, 2013.
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Rank analysis for some PDEs

Consider n× m grid, lexicographical (layer-by-layer) order gives rise to block
tridiagonal matrix:

A =



A1,1 A1,2

A2,1 A2,2

. . .

. . .
. . . Am−1,m

Am,m−1 Am,m


, each n × n Schur compl. Si+1 = Ai,i − Ai,i−1S−1

i Ai,i−1

Model problem (Chandrasekaran et al.):
Ai,i = Aj,j,Ai−1,i = Aj−1,j,Ai,i−1 = Aj,j−1

In 2D, ε-rank of the off-diagonal Hankel block is constant, for n→∞
In 3D (k3), ε-rank of the strip Hankel block is bounded by O(k)

Helmholtz equations with constant velocity (Engquist,Ying):
look at the Green’s function of the Helmholtz operator.

In 2D (k2), ε-rank of the off-diagonal block bounded by O(log k)
In 3D (k3), O(k)

1. S. Chandrasekaran, P. Dewilde, M. Gu, and N. Somasunderam, “On the Numerical Rank of the Off-Diagonal Blocks
of Schur Complements of Discretized Elliptic PDEs”, SIMAX, 31 (5), 2261-2290, 2010.

2. B. Engquist, L. Ying, “Sweeping preconditioner for the Helmholtz equation: Hierarchical matrix representation”,
Communications in Pure and Applied Mathematics 64 (2011).
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Complexity of HSS-embedded multifrontal factorization

With ND order, the intermediate Schur complements my have slightly
higher ranks, but no more than twice:

A =

A11 A33
A22 A23

A31 A32 A33

 , Schur compl. S = A33 − A31A−1
11 A13 − A32A−1

22 A32

Each contribution −A31A−1
11 A13 (or −A32A−1

22 A32) satisfies the
off-diagonal rank bound, together, the off-diagonal rank bound of S is at
most twice as that of layer-by-layer order.
Given the rank bounds, can show the following cost of the HSS-MF
factorization algorithm:

Problem r MF HSS-MF
flops fill flops fill

2D Elliptic O(1)
O(n3/2) O(n log n) O(n log n) O(n log log n)

(k2) Helmholtz O(log k)
3D Elliptic O(k)

O(n2) O(n4/3) O(n4/3 log n) O(n log n)
(k3) Helmholtz O(k)

J. Xia, “Efficient structured multifrontal factorization for general large sparse
matrices”, SISC, 35 (2), A832-A860, 2012.

Warning: The constant prefactor may be large: ∼ O(100s) (∼ 10 for classical)
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Practice

ordering within separator

parallelization

preconditioning
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Separator ordering: vertex-based vs edge-based

{
{

Vertex-based approach:

Edge-based approach: {
{

HSS leaf 1

HSS leaf 2

HSS leaf 1

HSS leaf 2

1 2

1
2

1 2

1

2

2D separator from a 3D domain.

2D separator from a 3D domain.

Frontal matrix.

Frontal matrix.

{Fully-summed
variables
(separator)

CB

{Fully-summed 
variables
(separator)

CB{

{

An edge-based ordering allows us to simply match parts of the separators with nodes
of the HSS tree. 20 / 47



Ordering of separators: shape

In order to ensure some kind of admissibility condition, parts should have a
small diameter.

Large diameters. Small diameters.

For simplicity, we divide the separator into square blocks (chessboard).
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Ordering of separators: ordering of blocks

In the HSS compression stage, blocks are merged two-by-two following a tree
flow. Merged blocks should also have small diameter, thus the partioning
should have some recursive property.

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

1 2 5 6

3 4 7 8

9 10 13 14

10 11 15 16

Leaf level.

We use an edge-based Nested Dissection (we cut the domain into squares, and
order these squares using ND/Morton ordering).
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Ordering of separators: ordering of blocks

In the HSS compression stage, blocks are merged two-by-two following a tree
flow. Merged blocks should also have small diameter, thus the partioning
should have some recursive property.

1+2+3+4

5+6+7+8

9+10+11+12

13+14+15+16

1+2+3+4 5+6+7+8

9+10+11+12 13+14+15+16

Two levels above leaves: blocks are merged four-by-four.

We use an edge-based Nested Dissection (we cut the domain into squares, and
order these squares using ND/Morton ordering).
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Results - topmost separator

Topmost separator of a 2003 domain (200× 200 plane). We compare:
VND: vertex-based ND.

Nat: square blocks ordering in natural/lexicographic order.
END: edge-based ND: square blocks ordered in ND.

VND Nat END
Total HSS time (s) 55.0 51.8 32.3
Max rank 731 893 646
Min time in RRQR (s) 15.2 20.3 11.0
Max time in RRQR (s) 53.0 50.2 30.7

Ranks at the top of HSS trees:
/

483

562 558

475

603 481

VND.

/

437

441 878

436

875 440

Nat.

/

450

413 540

451

607 467

END.

END yields lower rank and better balance of ranks.
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Results - complete problem

Helmholtz equations with PML boundary(
−∆− ω

v(x)2

)
u(x, ω) = s(x, ω)

On the complete problem, with 256 cores and HSS compression at the 8
topmost levels of the tree:

VND Nat END
Total factorization time (s) 984.8 978.5 938.0
Max rank 865 893 868
Min time in RRQR (s) 304.8 322.1 310.9
Max time in RRQR (s) 674.9 683.8 654.7

END: marginal ( 5%) improvement in run time but better workload balance,
so hopefully more potential for strong scaling.
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Parallelization: two types of tree-based parallelism

Outer tree: separator tree for multifrontal factorization

Inner tree: HSS tree at each internal separator node

1 2

3

4 5

6

7

8

10 13

12119

14

15

16

21

22

23 24

25

26 27

28

30

17

31

29

19

18

20

parallel multifrontal tree

switch
level

parallel
level

HSS trees

0 1 2 3

10 32

32
10
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Parallelization strategy for HSS

Work along the HSS tree level-wise, bottom up.
2D block-cyclic distribution at each tree node (#Levels = log P)

I each Pi works on the bottom level leaf node i
I every 2 processes cooperate on a Level 2 node
I every 4 processes cooperate on a Level 3 node

Level 1: local Fi = UiF̃i

0

1

2

3

4

5

6

7

0

11

2 2

3 3

4 5 4

5 5

66

7

nodes

1

2

4

5

8

9

11

12

2D-procs mapped to HSS tree nodes
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Parallel row compression (cont)

Level 2 (2-cores/group)
0

1

2

3

4

5

6

7

0

1

2

3

5

6

7

nodes

3

6

10

13

4

10 10 10

32 32 32

54 54 54

76 76 76

Level 3 (4-cores/group)
0

1

2

3

4

5

6

7

0

1

2

3

5

6

7

nodes

7

14

1 2 4 5 8 9 11 12

4

32
0 1

76
4 5

0 1

2 3

4 5

6 7

32
0 1

76
4 5

2D-procs mapped to HSS tree nodes

27 / 47



Summary of parallel row compression & complexity

Each step involves RRQR and redistribution
I pairwise exchange

Flop count: O( r N2

P )

Communication in row compression:
#msg = O(r log2 P)
#words = O(r N log P)
(assume no overlap between comm. and comp.)

Arithmetic Intensity: O( N
P log P)

(c.f. ScaLAPACK dense LU: O( N√
P

) )
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Parallel test

Cray XE6 (hopper at NERSC)

Example: Helmholtz equation with PML boundary(
−∆− ω2

v(x)2

)
u(x, ω) = s(x, ω), (1)

∆: Laplacian
ω: angular frequency
v(x): seismic velocity field
u(x, ω): time-harmonic wavefield solution

FD discretized linear system:
I Complex, pattern-symmetric, non-Hermitian,
I Indefinite, ill-conditioned
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Parallel HSS performance

HSS constrcution on the last Schur complement corresp. to the top
separator.

Performance ratio of LU over HSS:

(a) 2D, max_rank=7 (b) 3D, max_rank=848

S. Wang, X.S. Li, J. Xia, and M.V. de Hoop, “Efficient scalable algorithms for solving
linear systems with hierarchically semiseparable matrices”, SISC, Nov. 2012. (revised)
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Parallel HSS-MF performance
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(c) 2D Helmholtz, 10Hz
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(d) 3D Helmholtz, 5Hz

HSS-MF succeeded with 6003 on 16,384 cores, while MF failed.
S. Wang, X.S. Li, F.-H. Rouet, J. Xia, and M. de Hoop, “A Parallel Geometric
Multifrontal Solver Using Hierarchically Semiseparable Structure”, ACM TOMS, June
2013. (in submission)
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Sparse results - 2D problems

2D Helmholtz problems on square grids (mesh size k, N = k2), 10 Hz.

k 10,000 20,000 40,000 80,000

P 64 256 1,024 4,096

MF

Factorization (s) 258.6 544.8 1175.8 2288.5

Gflops/s 507.3 2109.3 8185.6 31706.9

Solution+refinement (s) 10.4 10.8 11.5 11.6

Factors size (GB) 120.1 526.7 2291.2 9903.7

Max. peak (GB) 2.3 2.5 2.7 2.9

Communication volume (GB) 136.2 1202.5 9908.1 79648.4

HSS

HSS+ULV (s) 97.9 172.5 325.3 659.3

Gflops/s 196.9 715.6 2820.7 9820.6

Solution+refinement (s) 20.2 55.4 61.4 115.8

Steps 3 3 9 9

Factors size (GB) 66.2 267.7 1333.2 4572.3

Max. peak (GB) 1.7 1.7 1.7 1.7

Communication volume (GB) 74.2 573.8 4393.4 41955.8

HSS rank 258 503 1013 2015

||x− xMF||/||xMF|| 1.5× 10−5 2.2× 10−5 3.1× 10−5 3.5× 10−6

maxi
|Ax−b|i

(|A||x|+|b|)i
7.1× 10−6 1.0× 10−5 2.0× 10−6 3.5× 10−6
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Results - 3D problems

3D Helmholtz problems on cubic grids (mesh size k, N = k3), 5 Hz.

k 100 200 300 400

P 64 256 1,024 4,096

MF

Factorization (s) 88.4 1528.0 1175.8 6371.6

Gflops/s 600.6 2275.7 9505.6 35477.3

Solution+refinement (s) 0.6 2.2 3.5 4.8

Factors size (GB) 16.6 280.0 1450.1 4636.1

Max. peak (GB) 0.5 1.9 2.5 2.0

Communication volume (GB) 83.1 2724.7 26867.8 165299.3

HSS

HSS+ULV (s) 120.4 1061.3 2233.8 3676.5

Gflops/s 207.8 720.4 2576.6 6494.8

Solution+refinement (s) 2.3 8.2 31.5 182.8

Steps 4 5 10 6

Factors size (GB) 10.7 112.9 434.3 845.3

Max. peak (GB) 0.5 1.7 2.1 0.4

Communication volume (GB) 93.6 2241.2 18621.1 143300.0

HSS rank 481 925 1391 1860

||x− xMF||/||xMF|| 6.2× 10−6 9.4× 10−7 1.1× 10−6 1.7× 10−6

maxi
|Ax−b|i

(|A||x|+|b|)i
1.5× 10−7 5.7× 10−7 9.7× 10−7 3.7× 10−6
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Preconditioning results

Test matrices: 2D & 3D
I model problems
I convection-diffusion: constant coefficient, variable coefficient
I curl-curl edge elements (Nedelec elements)
I Helmholtz
I general matrices

RHS = (1, 1, . . .)T

GMRES(30)
I right preconditioner
I initial x0 = (0, 0, . . .)T

I stopping criterion: ‖rk‖2
‖b‖2
≤ 10−6
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Convection-diffusion

−ν∆u + v · ∇ u = b on Ω .
v = ...

r constant coeff. variable coeff.
2D (1/

√
2 1/

√
2) ( x(1− x)(2y− 1) y(1− y)(2x− 1) )

3D (1/2 1/2 1/
√

2) ( x(1− x)(2y− 1)z y(y− 1)(2x− 1) (2x− 1)(2y− 1)z(z− 1) )

2D:500 1k 2k 3k 4k 3d:20 40 60 80 100
2

4

6

8

10

12

14

16

18

Convection−diffusion: variable coeff.
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35 / 47



Curl-curl edge element (Nedelec element)

∇×∇× u + β = b on Ω
τ = 10−8

tt
tt
t

tt
tt
t

tt
tt
t

tt
tt
t

tt
tt

tt
tt

tt
tt

tt
tt

tt
tt

mesh size HSS-rank fill-ratio factor (s) Its GMRES (s)
5002 59 14.8e 5.8 2 0.5

10002 52 14.9 25.0 3 3.3
20002 60 14.9 106.1 3 13.3
30002 50 14.4 114.6 5 48.7

203 388 78.9 6.7 2 0.1
403 824 125.6 261.5 3 1.7
603 804 156.1 2055.8 3 7.4
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Helmholtz(
−∆− ω

v(x)2

)
u(x, ω) = s(x, ω)

τ = 10−4

mesh size HSS-rank fill-ratio factor (s) Its GMRES (s)
5002 85 8.8 8.6 4 1.6

10002 210 9.5 53.1 4 6.5
20002 229 9.7 307.1 71 500.1
30002 380 10.0 950.2 139 2464.1

203 275 13.3 2.4 3 0.1
403 533 27.0 151.9 3 1.1
603 1039 38.8 1434.6 3 5.3
803 1167 47.3 7708.1 3 16.8

37 / 47



Model problems: ∆u = f

Compare to ILU in SuperLU (Li/Shao 10)
I supernode-based ILUTP, threshold, partial pivoting
I 10−4 for HSS trunction, and ILU threshold
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General matrices

HSS- Fill-ratio Factor (s) Its
Matr. Descr. N rank HSS ILU HSS ILU HSS ILU
add32 circuit 4,690 0 2.1 1.3 0.01 0.01 1 2
mchln85ks17 car tire 84,180 948 13.5 12.3 133.8 216.1 4 39
mhd500 plasma 250,000 100 11.6 15.6 2.5 7.9 2 8
poli_large economic 15,575 64 4.8 1.6 0.04 0.02 1 2
stomach bio eng. 213,360 92 12.1 2.9 13.8 18.7 2 2
tdr190k accelerator 1,100242 596 14.1 – 629.2 – 7 –
torso3 bio eng. 259,156 136 22.6 2.4 86.7 63.7 2 2
utm5940 TOKAMAK 5,940 123 6.7 8.0 0.1 0.16 3 15
wang4 device 26,068 385 45.3 23.1 4.4 6.4 3 4
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HSS truncation tolerance

tdr190k – Maxwell equations in frequency domain, eigenvalue problem
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Summary

More theory has been developed
In practice: very promising for large problems, large machines

I demonstrated that it is implementable in parallel, with reduced
communication

Compare to ILU preconditioner
I breakdown free
I More parallel
I Dropping operation may be more expensive (row/col vs. entry-wise in

ILU)

41 / 47



Future work

Parallel low-rank factorization using randomized sampling
Analyze communication lower bound for HSS-structured sparse
factorization

I Classical sparse Cholesky (Gupta et al.’97):
3D model problem: O( N4/3

√
P

) COMM-Volume

Black-box preconditioner?
I Apply to broader simulation problems: accelerator, fusion, etc.
I compare to other preconditioners, e.g., ILU, multigrid

Precondition the Communication-Avoiding Krylov algorithms [with

Demmel’s group]

Compare to sparse solvers usingH-matrix [Weisbecker et al., Ying et al.]

Resilience at extreme scale
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Rank-revealing via randomized sampling

1 Pick random matrix Ωn×(k+p), p small, e.g. 10
2 Sample matrix S = AΩ, with slight oversampling p
3 Compute Q = ON-basis(S)

accuracy: with probability ≥ 1− 6 · p−p,
‖A− QQ∗A‖ ≤ [1 + 11

√
k + p ·

√
min{m, n}]σk+1

cost: O(kmn)
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Randomized sampling simplies extend-add

HSS construction via RS [Martinsson’11]
I SRRQR repeatedly applied to matrices with reduced column dimention

Multifrontal HSS via RS
1 Compress frontal Fi:

Form sample matrix Yi = FiXi, where Xi = (X(1)
i X(2)

i )T random,
Construct HSS of Fi with help of Yi

2 ULV factorize Fi(1, 1)
3 HSS approximation of Ui

4 Form sample matrix Zi = UiX
(2)
i , where X(2)

i is a submatrix of Xi

corresponding to Ui
5 extend-add of sample matrices to parent:

Yp ≡ FpXp = (ApXp)⊕ Zi ⊕ Zj
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At Child
Compression of Fi

Partial elimination of Fi

Compute update matrix Ui: Ui = Fi(2, 2)− UqBT
k (ŨT

k D̃−1
k Ũk)BkUT

q
I fast low-rank update: obtain Ui generators directly from Fi(2, 2)

generators

45 / 47



At Parent: extend-add of sample matrices from children

RS simplies extend-add: Yp ≡ FpXp = (ApXp)⊕ Zi ⊕ Zj
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Zi = UiX
(2)
i = Fi(2, 2)X(2)

i − UqBT
k (ŨT

k D̃−1
k Ũk)BkUT

q X(2)
i

= Y(2)
i − UqBT

k UT
k X(1)

i − UqBT
k (ŨT
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q X(2)
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UT

k X(1)
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Lecture outline 

 
!   Hybrid solver based on Schur complement method 

!   Design target: indefinite problems, high degree concurrency 
 

!   Combinatorial problems in hybrid solver 
!   Multi-constraint graph partitioning 
!   Sparse triangular solution with sparse right-hand sides 

 

2 



Schur complement method 

! a.k.a  iterative substructuring method 
 or,  non-overlapping domain decomposition 

!   Divide-and-conquer paradigm . . .  
!   Divide entire problem (domain, graph) into subproblems (subdomains, 

subgraphs) 
!   Solve the subproblems 
!   Solve the interface problem (Schur complement) 

   
!   Variety of ways to solve subdomain problems and Schur 

complement  … lead to a powerful poly-algorithm or hybrid solver 
framework 

 3 



Structural analysis view 

!   Case of two subdomains 
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2.  Perform  direct  elimination of A(1)  and A(2)  independently,
     Local  Schur complements (unassembled):  S (k ) = AI I

(k ) − AI i
(k ) (Aii

(k ) )−1Ai I
(k )   

     Global Schur complement (assembled):  S = S (1) + S (2)

Substructure contribution: 



Algebraic view 

1.  Reorder into 2x2 block system, A11 is block diagonal 
 
 

2.  Schur complement 
  

 
  
 S corresponds to interface (separator) variables, no need to form 
explicitly 

 
3.  Compute the solution 
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(1) x2 = S−1(b2 – A21 A11
-1 b1)     ←   iterative solver

(2) x1 = A11
-1(b1 – A12 x2 )           ←   direct solver



Solving the Schur complement system 
!   SPD, conditioning property [Smith/Bjorstad/Gropp’96] 

 For an SPD matrix, condition number of a Schur complement is no 
larger than that of the original matrix. 
!   S is SPD, much reduced in size, better conditioned, but denser, good 

for preconditioned iterative solver 
!   Two approaches to preconditioning S 

1.  Global approximate S (e.g., PDSLin [Yamazaki/Li.’10], HIPS [Henon/
Saad’08]) 

•  general algebraic preconditioner,  more robust, e.g. ILU(S) 
2.  Local S (e.g. MaPHys [Giraud/Haidary/Pralet’09]) 

•  restricted preconditioner,  more parallel 
•  e.g., additive Schwarz preconditioner  
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Related work 

PDSLin  
(LBNL) 

MaPHyS  
(INRIA/CERFACS) 

HIPS  
(INRIA) 

•  Multi. procs/subdom, 
•  Smaller Schur 

compl. 

•  Multi. procs/subdom, 
•  Smaller Schur compl. 

•  Multi. subdoms/proc, 
•  Larger Schur compl., 
•  Good load balance 

•  Threshold “ILU”, 
•  Global approx. 

Schur 
•  Robust 

•  Additive Schwartz, 
•  Local Schur 
•  Scalable  

•  Level-based ILU, 
•  Global approx. Schur 
•  Scalable  

7 

! PDSLin 
!   Uses two levels of parallelization and load-balancing techniques for tackling 

large-scale systems 
!   Provides a robust preconditioner for solving highly-indefinite or ill-

conditioned systems 

!   Future work: compare the 3 solvers 



Parallelization with serial subdomain 

!   No. of subdomains increases with increasing core count. 
è Schur complement size and iteration count increase 

!   HIPS (serial subdomain) vs. PDSLin (parallel subdomain) 
!   M3D-C1, Extended MHD to model fusion reactor tokamak, 2D slice of 

3D torus 
!   Dimension 801k, 70 nonzeros per row, real unsymmetric 
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P NS HIPS 1.0  
sec (iter) 

PDSLin 
sec (iter) 

8 13k 284.6 (26) 79.9 (15) 
32 29k 55.4 (64) 25.3 (16) 

128 62k --  17.1 (16) 
512 124k -- 21.9 (17) 



Parallelism – extraction of multiple subdomains 

!   Partition adjacency graph of |A|+|AT| 
 Multiple goals: reduce size of separator, balance size of subdomains 
!   Nested Dissection (e.g., PT-Scotch, ParMetis) 
!   k-way partition  (preferred) 

 

 

!   Memory requirement: fill is restricted within 
!   “small” diagonal blocks of A11, and  
!   ILU(S),  maintain sparsity via numerical dropping 
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Ordering  

!   Permute all the separators to the end 
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Hierarchical parallelism 
!   Multiple processors per subdomain 

!   one subdomain with 2x3 procs (e.g. SuperLU_DIST, MUMPS) 

 
 

 

!   Advantages: 
!   Constant #subdomains, Schur size, and convergence rate, regardless 

of core count. 
!   Need only modest level of parallelism from direct solver. 
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Combinatorial problems 

!   K-way, multi-constraint graph partitioning 
!   Small separator 
!   Similar subdomains 
!   Similar connectivity 

!   Sparse triangular sol.  with many sparse RHS (intra-subdomain) 

 
!   Sparse matrix–matrix multiplication (inter-subdomain) 
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W← sparsify(W,   σ1); G← sparsify(G,  σ1) 
T ( p) ← W ( p) ⋅ G( p)

Ŝ ( p) ← A22
( p) − T (q) (p)

q∑  ;   S← sparsify(Ŝ,   σ 2 )

S = A22 – (Ul
-T Fl

T )T  (Ll
-1El )

l
∑ = Wl ⋅Gl

l
∑ ,   where  Dl = LlUl

I. Yamazali, F.-H. Rouet, X.S. Li, B. Ucar, “On partitioning and reordering problems in a 
hierarchically parallel hybrid linear solver”,  IPDPS / PDSEC Workshop, May 24, 2013. 



PDSLin package 
http://crd-legacy.lbl.gov/FASTMath-LBNL/Software/ 
! Parallel Domain decomposition Schur complement based Linear 

solver  
!   C and MPI,  with Fortran interface. 
! Unsymmetric / symmetric, real / complex, multiple RHSs. 

!   Features 
!   parallel graph partitioning: 

•  PT-Scotch 
•  ParMetis 

! subdomain solver options: 
•  SuperLU, SuperLU_MT, SuperLU_DIST 
•  MUMPS 
•  PDSLin 
•  ILU (inner-outer) 

! Schur complement solver options: 
•  PETSc 
•  SuperLU_DIST 
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PDSLin encompass Hybrid, Iterative, Direct 
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Default 
Subdomain: LU 
Schur: Krylov 

User Options 
 
(1) num_doms = 0 
     Schur = A: Krylov 
 
(2) Subdomain: ILU 
     Schur: Krylov 
    (FGMRES inner-outer) 

User Options 
 
(1) Subdomain: LU 
     Schur: LU 
     drop_tol = 0.0 
 
(2) num_doms = 1 
     Domain: LU 
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Application 1: Burning plasma for fusion energy 

!   DOE SciDAC project: Center for Extended Magnetohydrodynamic 
Modeling (CEMM),   PI: S. Jardin, PPPL 

!   Develop simulation codes to predict microscopic MHD instabilities 
of burning magnetized plasma in a confinement device (e.g., 
tokamak used in ITER experiments). 
!   Efficiency of the fusion configuration increases with the ratio of thermal 

and magnetic pressures, but the MHD instabilities are more likely with 
higher ratio. 

!   Code suite includes M3D-C1, NIMROD 

15 

ϕ R

Z

•  At each ϕ = constant plane, scalar 2D data   
  is represented using 18 degree of freedom    
  quintic triangular finite elements Q18 
 
•   Coupling along toroidal direction 

(S. Jardin) 



2-Fluid 3D MHD Equations 

∂n
∂t
+∇•(nV ) = 0                                               continuity

∂B
∂t

= −∇×E, ∇•B = 0, µ0J = ∂×B                        Maxwell

nMt
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+V •∇V
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&
'
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)
*+∇p = J ×B−∇•ΠGV −∇•Πµ     Momentum

E +V ×B =ηJ + 1
ne
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*= −pi∇•∇−Πµ •∇V −∇•qi −QΔ ion energy
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The objective of the M3D-C1 project is to solve these equations as 
accurately as possible in 3D toroidal geometry with realistic B.C. 
and optimized for a low-β torus with a strong toroidal field. 



PDSLin vs. SuperLU_DIST 

!   Cray XT4 at NERSC 
!   Matrix211 : extended MHD to model burning plasma 

!   dimension = 801K,  nonzeros = 56M,  real, unsymmetric 
!   PT-Scotch extracts 8 subdomains of size ≈ 99K, S of size ≈ 13K  
! SuperLU_DIST to factorize each subdomain, and compute  

 preconditioner LU(    ) 
! BiCGStab of PETSc to solve Schur system on 64 processors with 

residual < 10-12 , converged in 10 iterations 

!   Needs only 1/3 memory of  
 direct solver 
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Application 2: Accelerator cavity design 

18 

•   DOE SciDAC: Community Petascale Project for Accelerator 
   Science and Simulation (ComPASS),  PI: P. Spentzouris, Fermilab 
•   Development of a comprehensive computational infrastructure     
   for  accelerator modeling and optimization 
•   RF cavity: Maxwell equations in electromagnetic field 
•   FEM in frequency domain leads to large sparse eigenvalue 
    problem;  needs to solve shifted linear systems 

bMx MK 00
2

0 )(
problem eigenvaluelinear 
=−σ

ΓE Closed 
Cavity 

ΓM 

Open 
Cavity 

Waveguide BC 

Waveguide BC 

Waveguide BC 

(L.-Q. Lee) 

bx M W -  i  K =+ )(
problem eigenvaluecomplex nonlinear 

0
2

0 σσ

RF unit in ILC 



PDSLin for RF cavity (strong scaling) 

!   Cray XT4 at NERSC;  used 8192 cores 
!   Tdr8cavity : Maxwell equations to model cavity of International 

Linear Collider 
!   dimension = 17.8M, nonzeros = 727M 
!   PT-Scotch extracts 64 subdomains of size ≈ 277K, S of size ≈ 57K 
! BiCGStab of PETSc to solve Schur system on 64 processors with 

residual < 10-12, converged in 9 ~ 10 iterations 

!   Direct solver failed ! 
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PDSLin for largest system 

!   Matrix properties: 
!   3D cavity design in Omega3P, 3rd order basis function for each matrix 

element 
!   dimension = 52.7 M,  nonzeros = 4.3 B (~80 nonzeros per row),  real, 

symmetric, highly indefinite 
! Experimental setup: 

!   128 subdomains by PT-Scotch (size  ~410k) 
!   Each subdomain by SuperLU_DIST,  preconditioner LU(    ) of size 

247k (32 cores) 
! BiCGStab to solve Sy = d by PETSc 

!   Performance: 
!   Fill-ratio (nnz(Precond.)/nnz(A)): ~ 250 
!   Using 2048 cores: 

•  preconditioner construction: 493.1 sec. 
•  solution: 108.1 second (32 iterations) 
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Combinatorial problems . . . 

!   K-way graph partitioning with multiple objectives 
!   Small separator 
!   Similar subdomains 
!   Similar connectivity 

 
!   Sparse triangular solution with many sparse RHS 

 

!   Sparse matrix–matrix multiplication 
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Two graph models 

!   Standard graph : G=(V, E) 
!   GPVS: graph partitioning with vertex separator 
!   GPES: graph partitioning with edge separator 

! Hypergraph : H = (V, N),  net = “edge”, may include more than two 
vertices 
!   Column-net hypergraph: H = (R, C) 

 rows = vertices, columns = nets 
 n3 = {1, 3, 4} 

!   Row-net hypergraph: H = (C, R) 
 columns = vertices, rows = nets 

 
!   Partition problem: π(V) = {V1, V2, . . . , Vk},  disjoint parts 

!   Graph: a cut edge connects two parts 
! Hypergraph: a cut net connects multiple parts 
è Want to minimize the cutsize in some metric (Objective), and keep 

equal weights among the parts (Constraints). 
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1.  K-way subdomain extraction 
!   Problem with ND: 

 Imbalance in separator size at different 
branches à Imbalance in subdomain size 

 
!   Alternative: directly partition into K 

parts, meet multiple constraints: 
1.  Compute k-way partitioning à balanced 

subdomains 
2.  Extract separator à balanced 

connectivity 
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k-way partition: objectives, constraints 
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Objectives to minimize: 
•  number of interface vertices 

à separator size 
•  number of interface edges 
      à nonzeros in interface 

Balance constraints: 
•  number of interior vertices and 

edges à LU of Di 

•  number of interface vertices and 
edges à local update matrix 

 (Ul
-T Fl

T )T  (Ll
-1El )

!   Initial partition to extract vertex-separator impacts load balance: 



K-way edge partition 
!   Extract vertex-separator from k-way edge partition 

!   Compute k-way edge partition satisfying balanced subdomains (e.g., 
PT-Scotch, Metis) 

!   Extract vertex-separator from edge-separators to minimize and 
balance interfaces (i.e. minimum vertex cover) 

!   Heuristics to pick the next vertex:   pick a vertex from largest 
subdomain to maintain balance among subdomains 
!   pick the vertex with largest degree to minimize separator size 
!   pick the vertex to obtain best balance of interfaces (e.g., nnz). 
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Balance & Solution time with edge part. + VC 
!   tdr190k from accelerator cavity design:  N = 1.1M, k = 32 
!   Compared to ND of SCOTCH 
!   balance = max valueℓ / min valueℓ, for ℓ = 1, 2, . . . , k 
!   Results 

!   Improved balance of subdomains, but not of interfaces due to larger 
separator à total time not improved 

!   Post-processing already-computed partition is not effective to balance 
multiple constraints 
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Recursive Hypergraph Bisection 
!   Column-net HG partition to permute an m-by-n matrix M to a 

singly-bordered form (e.g., Patoh): 
 
 

 

!   Recursive hypergraph bisection (RHB) 
!   Compute structural decomposition str(A) = str(MTM) 

•  e.g., using edge clique cover of G(A)  [Catalyurek ’09] 
!   Compute 2-way partition of M (with multiple constraints) into a singly-

bordered form based on recursive bisection 
!   Permute A as: 
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RHB: objectives, constraints 

! Objective: minimize cutsize 
     Metrics of cutsize: 

!   Connectivity – 1,                                              ( interface nz columns ) 

!   Cut-net,                                                            ( separator size ) 

!   Sum-of-external degree (soed),                       ( sum of above ) 
 
Where,  j-th net nj is in the cut, and λj is the number of parts to which nj is 
connected 

! Constraints: equal weights of different parts 
     i-th vertex weights (based on previous partition): 

!   unit weight                            ( subdomain dimension ) 
! nnz(Mk(i, :))                          ( subdomain nnz ) 
! nnz(Mk(i, :)) + nnz(Ck(i, :))    ( interface nnz ) 

28 

λ( j)−1( )
nj∈N
∑

1
nj∈N ,λ ( j )>1
∑

λ( j)
nj∈N ,λ ( j )>1
∑



Balance & Time results with RHB 
!   tdr190k from accelerator cavity design:  N = 1.1M, k = 32 
!   Compared to ND of SCOTCH 
!   Results 

!   Single-constraint improves balance without much increase of 
separator size  à 1.7x faster than ND 

!   Multi-constraints improves balance, but larger separator 
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2. Sparse triangular solution with sparse RHS 
   (intra-group within a subdomain) 
!   RHS vectors Eℓ and Fℓ are sparse (e.g., about 20 nnz per column);  

There are many RHS vectors (e.g., O(104) columns) 

!   Blocking RHS vectors 
!   Reduce number of calls to the symbolic routine and number of 

messages, and improve read reuse of the LU factors  
Ø  Achieved over 5x speedup 
!    zeros must be padded to fill the block à memory cost ! 
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Sparse triangular solution with sparse RHSs 

!   Objective:  Reorder columns of Eℓ to maximize structural similarity 
among the adjacent columns. 

!   Where are the fill-ins? 
 Path Theorem [Gilbert’94]  Given the elimination tree of Dl, fills 
generated in Gl at the positions associated with nodes on the path 
from nodes of the nonzeros in El to the root 
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Sparse RHS … postordering 

! Postorder-conforming ordering of the RHS vectors 
! Postorder elimination tree of Dl 
!   Permute columns of El  s.t. row indices of the first nonzeros are in 

ascending order 
!   Increased overlap of the paths to the root, fewer padded zeros 
!   20–40% reduction in solution time over ND 
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Sparse triangular solution … Hypergraph 

!   Partition/group columns using row-net HG 
!   Define a cost function ≈ padded zeros 

               “connectivity-1” metric      constant 

!   Minimize cost(π) using Patoh 
!   Additional 10% reduction in time  
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Sparse RHS: memory saving 

!   tdr190k from accelerator cavity design:  N = 1.1M, k = 8 
!   Fraction of padded zeros, with different block size 
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Summary 

!   Graph partitioning 
!   Direct edge partition + min. vertex cover not effective 
!   Recursive Hypergraph Bisection: 1.7x faster 

!   Reordering sparse RHS in sparse triangular solution 
! postordering: 20-40% faster;  hypergraph: additional 10% faster 

 

Remarks 
!   Direct solvers can scale to 1000s cores 
!   Domain-decomposition type of hybrid solvers can scale to 10,000s 

cores 
!   Can maintain robustness too 

!   Beyond 100K cores: Working on AMG combined with low-rank 
approximate factorization preconditioner 
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Exercises 

1.  Show that for a symmetric positive definite matrix, the condition 
number of a Schur complement is no larger than that of the 
original matrix. 
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