## An Infinite Product Identity (Open)

Summary: Prove the infinite product identity \prod_{k=1}^{\infty} \frac{(1 + n/k)^{2k+n}}{e^{2n}} = \frac{e^{n^2 + n}}{(2 \pi)^n} \prod_{k=1}^n k^{n-2k}, \quad n = 1,2,3,\ldots.

Classification: Primary, Classical Analysis; Secondary, Sequences and Series

**Download Problem**[PDF]

**Carlo Sanna**

Department of Mathematics

Universita degli Studi di Torino

Turin, Italy

Email: [email protected]