## An Integral Identity from Physics (Open)

Summary: Prove \frac{\pi^2}{6} = \zeta(2) = \int_0^{\infty} \frac{dx}{x} \int_0^{x} \frac{dy}{y} \{\cos(x-y)-\cos x\}.

Classification: Primary, Classical Analysis; Secondary, Integrals

**Download Problem**[PDF]

**Z. K. Silagadze**

Budker Institute of Nuclear Physics and

Novosibirsk State University

630 090, Novosibirsk, Russia

Email: [email protected]